芯片

自从上世纪七十年代 MCU 诞生以来,芯片的破解技术与防止芯片被破解方案就在不断在上演着“道高一尺,魔高一丈”,一山更比一山高的追逐。本文将单片机在安全保护方面的发展历程与大家分享。并在文章的最后,总结了现阶段安全级别最高的智能卡芯片的优点及其缺点。

一、单板机时代

上世纪 70 年代初期,嵌入式系统是由分离部件如:CPU、ROM、RAM、I/O 缓存、串口和其他通信与控制接口组成的控制板。这一时期除法律外,几乎没有保护措施来防止侵入者复制单板机上 ROM 区的数据。

二、单片机时代

随着大规模集成电路技术的发展,中央处理单元(CPU)、数据存储器(RAM)、程序存储器(ROM)及其他 I/O 通信口都集成在一块单片机芯片上了,微控制器 MCU 取代了单板机。如图:

“”

这一时期,内部存储器 EEPROM 和 MCU 是分开封在同一封装内部。侵入者可用微探针来获取数据。

三、安全熔断丝(Security Fuse)

随着入侵者的增加,MCU 为了自身的安全,后来增加了安全熔断丝(Security Fuse)来禁止访问数据。如图:

“”

优点:很容易做到,不需要完全重新设计 MCU 构架,仅用熔断丝来控制数据的访问。

缺点:熔断丝容易被定位、攻击。例如:熔丝的状态可以通过直接把位输出连到电源或地线上来进行修改。有些仅用激光或聚焦离子束来切断熔丝的感应电路就可以了。用非侵入式攻击也一样成功,因为一个分离的熔丝版图异于正常存储阵列,可以用组合外部信号来使位处与不能被正确读出的状态,那样就可以访问存在内部芯片上信息了。用半侵入式攻击可以使破解者快速取得成功,但需要打开芯片的封装来接近晶粒。一个众所周知方法就是用紫外线擦掉安全熔断丝。

四、安全熔丝变成存储器阵列的一部分

再后来 MCU 制造商将安全熔丝做成存储器阵列的一部分,如图:

“”

一般的熔丝与主存储器离得很近,或干脆共享些控制线,与主存储器用相同的工艺来制造,熔断丝很难被定位。非入侵试攻击仍然可以用,可以用组合外部信号来使熔断位处于不被正确读出的状态。同样,半侵入式攻击也可用。当然破解者需要更多的时间去寻找安全熔丝或控制电路负责安全监视的部分,但这些可以自动完成。进行侵入式攻击将是很困难需要手工操作,那将花费更多的成本来破解。

五、用主存储器的一部分来控制外部对数据访问

利用上电时锁定特定区域地址的信息,将它作为安全熔丝。或用密码来控制对存储器访问。例如德州仪器的 MSP430F112 只有输入正确的 32 字节密码后才能进行回读操作。如果没输入,只有擦字节密码后才能进行回读操作。尽管这个保护方法看上去比先前的更有效,但它有一些缺点可以用低成本的非侵入式攻击,如时序分析和功耗来破解。如果安全熔丝状态是上电或复位后存储器的一部分,这就给破解者用电源噪声来破解的机会,强制路进入存储中错误状态。

六、使用顶层金属网络

使用顶层金属网络设计,提升入侵难度。所有的网格都用来监控短路和开路,一旦触发,会导致存储器复位或清零。如图:

“”

普通的 MCU 不会使用这种保护方法,因为设计较难,且在异常运行条件下也会触发,如:高强度电磁场噪声,低温或高温,异常的时钟信号或供电不良。故有些普通的 MCU 使用更廉价的伪顶层金属网格,会被非常高效的光学分析进行微探测而被攻击。另外,这些网格不能防范非侵入式攻击。同样不能有效防范半侵入式攻击,因为导线之间有电容,并且光线可以通过导线抵达电路的有效区域。在智能卡中,电源和地之间也铺了一些这样的网格线。部分可编程的智能卡走的更远,干脆砍掉了标准的编程接口,甚至干掉了读取EEPROM 接口,取而代之的是启动模块,可以在代码装入后擦掉或者屏蔽自己,之后只能响应使用者的嵌入软件所支持的功能。有效的防范了非侵入式攻击。

七、智能卡芯片安全设计

近些年,一些智能卡使用存储器总线加密(Bus Encryption)技术来防止探测攻击。如图:

“”

数据以密文方式存储在存储器中。即使入侵者获得数据总线的数据,也不可能知道密钥或者别的敏感信息(如数据还原方法)。这种保护措施有效的防范了侵入式和半侵入式攻击。有些智能卡甚至能够做到每张卡片总线加密密钥不同,这样即使入侵者完全破解了,也无法生产出相同功能的芯片来,因为每个智能卡芯片有唯一的 ID 号,无法买到相同 ID 号的智能卡。另外值得一提的是,有些智能卡将标准的模块结构如解码器,寄存器文件,ALU 和 I/O 电路用类似 ASIC 逻辑来设计。这些设计成为混合逻辑(Gle Logic)设计。混合逻辑使得实际上不可能通过手工寻找信号或节点来获得卡的信息进行物理攻击。大大提高了 CPU 内核的性能和安全性。混合逻辑设计几乎不可能知道总线的物理位置,有效的防范了反向工程和微探测攻击。

智能卡芯片加密方案优缺点

对于开发者来讲,选择更为安全设计的微控制器或可以得到更好的保护。与大多数微控制器相比,即使是十年前设计的智能卡也能提供更好的保护。现代的智能卡提供了更多的防攻击保护,内部电压传感器保护免受电源噪声攻击(Power Glitch attacks)、过压和欠压保护。时钟频率传感器防止受到静态分析(Static analysis)的降低时钟频率攻击。同时也可以防止时钟噪声(Clock glitch attacks)进行提高时钟频率的攻击。顶层金属网格和内部总线硬件加密使可以防止微探测攻击。但是与微控制器相比,智能卡芯片也有劣势,如:芯片价格昂贵,小批量的很难买到货。开发工具昂贵,需要和制造商签署保密协议,即使是说明书也要这样。很多制造商仅向特定客户销售大批量的智能卡。另一个不足是 I/O 的功能受限,普通智能卡芯片通常只有ISO7816 接口,极少有单独的 I/O 口。这使得多数应用中不能取代微控制器,而只能用于安全要求非常高的行业,如:付费机顶盒,银行卡,SIM 卡,二代身份证,高端加密芯片等领域。智能卡芯片在加密芯片领域的应用,将是个不错的方向。因为智能卡芯片安全等级高,IO 资源少。而普通 MCU 的硬件资源非常丰富,安全程度却不高,可以将 MCU 中一些关键算法及运行参数,以特殊形式存放在智能卡芯片中,从而实现高安全强度的强大功能。

后记

坚持不懈的尝试突破保护机制的破解团体和不断引入新的安全防范方案的制造商之间的斗争是没有尽头的。“道高一尺,魔高一丈”,又或是“邪不压正”,将不停的在两派之间上演!

来源:IoVSecurity(作者: 武者)
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 114

作者: 侯成敬

概述

晶体管发明并大量生产之后,各式固态半导体组件如二极管、晶体管等大量使用,取代了真空管在电路中的功能与角色。到了20世纪中后期半导体制造技术进步,使得集成电路成为可能。相对于手工组装电路使用个别的分立电子组件,集成电路可以把很大数量的微晶体管集成到一个小芯片,是一个巨大的进步。集成电路的规模生产能力,可靠性,电路设计的模块化方法确保了快速采用标准化集成电路代替了设计使用离散晶体管。

集成电路对于离散晶体管有两个主要优势:成本和性能。成本低是由于芯片把所有的组件通过照相平版技术,作为一个单位印刷,而不是在一个时间只制作一个晶体管。性能高是由于组件快速开关,消耗更低能量,因为组件很小且彼此靠近。2006年,芯片面积从几平方毫米到350 mm²,每mm²可以达到一百万个晶体管。

制造过程


芯片制作完整过程包括芯片设计、晶片制作、封装制作、测试等几个环节,其中晶片制作过程尤为的复杂。

首先是芯片设计,根据设计的需求,生成的“图样”

芯片的原料晶圆

晶圆的成分是硅,硅是由石英沙所精练出来的,晶圆便是硅元素加以纯化(99.999%),接着是将这些纯硅制成硅晶棒,成为制造集成电路的石英半导体的材料,将其切片就是芯片制作具体所需要的晶圆。晶圆越薄,生产的成本越低,但对工艺就要求的越高。

晶圆涂膜

晶圆涂膜能抵抗氧化以及耐温能力,其材料为光阻的一种。

晶圆光刻显影、蚀刻

光刻工艺的基本流程,首先是在晶圆(或衬底)表面涂上一层光刻胶并烘干。烘干后的晶圆被传送到光刻机里面。光线透过一个掩模把掩模上的图形投影在晶圆表面的光刻胶上,实现曝光,激发光化学反应。对曝光后的晶圆进行第二次烘烤,即所谓的曝光后烘烤,后烘烤是的光化学反应更充分。最后,把显影液喷洒到晶圆表面的光刻胶上,对曝光图形显影。显影后,掩模上的图形就被存留在了光刻胶上。涂胶、烘烤和显影都是在匀胶显影机中完成的,曝光是在光刻机中完成的。匀胶显影机和光刻机一般都是联机作业的,晶圆通过机械手在各单元和机器之间传送。整个曝光显影系统是封闭的,晶圆不直接暴露在周围环境中,以减少环境中有害成分对光刻胶和光化学反应的影响。

该过程使用了对紫外光敏感的化学物质,即遇紫外光则变软。通过控制遮光物的位置可以得到芯片的外形。在硅晶片涂上光致抗蚀剂,使得其遇紫外光就会溶解。这时可以用上第一份遮光物,使得紫外光直射的部分被溶解,这溶解部分接着可用溶剂将其冲走。这样剩下的部分就与遮光物的形状一样了,而这效果正是我们所要的。这样就得到我们所需要的二氧化硅层。

掺加杂质

将晶圆中植入离子,生成相应的P、N类半导体。

具体工艺是是从硅片上暴露的区域开始,放入化学离子混合液中。这一工艺将改变搀杂区的导电方式,使每个晶体管可以通、断、或携带数据。简单的芯片可以只用一层,但复杂的芯片通常有很多层,这时候将该流程不断的重复,不同层可通过开启窗口联接起来。这一点类似多层PCB板的制作原理。 更为复杂的芯片可能需要多个二氧化硅层,这时候通过重复光刻以及上面流程来实现,形成一个立体的结构。

晶圆测试

经过上面的几道工艺之后,晶圆上就形成了一个个格状的晶粒。通过针测的方式对每个晶粒进行电气特性检测。一般每个芯片的拥有的晶粒数量是庞大的,组织一次针测试模式是非常复杂的过程,这要求了在生产的时候尽量是同等芯片规格构造的型号的大批量的生产。数量越大相对成本就会越低,这也是为什么主流芯片器件造价低的一个因素。

封装

将制造完成晶圆固定,绑定引脚,按照需求去制作成各种不同的封装形式,这就是同种芯片内核可以有不同的封装形式的原因。比如:DIP、QFP、PLCC、QFN等等。这里主要是由用户的应用习惯、应用环境、市场形式等外围因素来决定的。

测试、包装

经过上述工艺流程以后,芯片制作就已经全部完成了,这一步骤是将芯片进行测试、剔除不良品,以及包装。

封装

最早的集成电路使用陶瓷扁平封装,这种封装很多年来因为可靠性和小尺寸继续被军方使用。商用电路封装很快转变到双列直插封装,开始是陶瓷,之后是塑料。1980年代,VLSI电路的针脚超过了DIP封装的应用限制,最后导致插针网格数组和芯片载体的出现。

表面贴着封装在1980年代初期出现,该年代后期开始流行。它使用更细的脚间距,引脚形状为海鸥翼型或J型。以Small-Outline Integrated Circuit(SOIC)为例,比相等的DIP面积少30-50%,厚度少70%。这种封装在两个长边有海鸥翼型引脚突出,引脚间距为0.05英寸。

作用

芯片其实就是一块高度集成的电路板也可以叫IC比如说电脑的CPU其实也是一块芯片不同的IC有不同的作用,比如说视频编码/解码IC及是专门用来处理视频数据的,音频编码/解码IC则是用来处理声音的。

和CPU的区别

二者的区别是芯片集成了上外围器件,CPU不带外围器件(例如存储器阵列),是高度集成的通用结构的处理器,CPU是一种数字芯片,只是众多芯片中的一类。

芯片和cpu区别通俗的讲就是,如果把中央处理器CPU比喻为整个电脑系统的心脏,那么主板上的芯片组就是整个身体的躯干。

具体区别如下:

1、功能上的区别
cpu的功能是顺序控制、操作控制、时间控制、数据加工,解释计算机指令以及处理计算机软件中的数据。电脑中所有操作都由CPU负责读取指令,对指令译码并执行指令的核心部件。

而芯片的功能是提供对CPU的类型和主频、内存的类型和最大容量、ISA/PCI/AGP插槽、ECC纠错等支持。

2、构成不同
芯片是指将电子逻辑门电路用激光刻录到硅片上,从而构成各种各样的芯片,当今集成度最高、功能最强大的应该CPU芯片了。CPU是指所有时期,各种电子元件构成的计算机中央处理器的统称。

3、定义不同
芯片在电子学中是一种把电路(主要包括半导体设备,也包括被动组件等)小型化的方式,并通常制造在半导体晶圆表面上,集成电路块的代称,记忆不异常变化的意思是这种记忆类型是不需要不断保持能量。

cpu是电子计算机的主要设备之一,电脑中的核心配件。

4、制作组成不同
芯片的制备主要依赖于微细加工、自动化及化学合成技术,而CPU包括运算逻辑部件、寄存器部件,运算器和控制部件。

5、外观差别

芯片

cpu

在一定方面可以说cpu是芯片的一种。

和贴片的不同

芯片是其中一款电子元器件,内含集成电路的硅片,体积很小,广泛应用于计算机和电子设备。 贴片是指贴片元器件,无引脚元件,透过贴装技术(SMT)将元器件焊接在电路板上,通常由机器自动完成焊接,但也可以由手工焊接。

本文转自:自动化控制技术控,作者: 侯成敬,转载此文目的在于传递更多信息,版权归原作者所有。

围观 126

中美贸易摩擦已经延伸到半导体领域,近日,美国政府对华为的各种封锁和打压让我们更清楚地认识到大力发展本土集成电路产业的重要性和迫切性,我们已经有近2000家本土IC设计公司,但是要打破封锁就需要更多本土精品IC,为此,电子创新网推出“毛衣战下的本土精品IC推介会”系列活动,每次活动我们推介四到五款左右的本土精品IC,这些精品IC在参数指标上都表现优异,完全可以替代国外同类产品,我们欢迎更多本土精品IC报名参加推介活动。

我们诚挚地邀请本土系统公司,设计方案公司以及关注本土IC投资者、产业链伙伴报名参会,第一期活动免费参加!

研讨会具体安排

1、2019年7月3日下午(星期三)

2、地点:康佳研发大厦康佳之星孵化器(科技园科技南路十二路28号康佳研发大厦7层B区(康佳之星))
备注:深圳地铁一号线高新园站D出口出来300米即到,康佳研发大厦康佳之星孵化器(科技园科技南路十二路28号康佳研发大厦7层B区(康佳之星))

3、会议议程(具体内容以主办方最新通知为主)

时间段 内容 拟邀嘉宾
13:00~14:00 签到  
14:00~14:10 开幕致辞——
中美毛衣战未来走势分析
电子创新网CEO张国斌
14:10~14:40 高性能ADC产品推介 芯海科技
14:40~15:10 高性能神经网络加速器推介 Imagination
人工智能资深技术专家 李安
15:10~15:40 茶歇与交流  
15:40~16:10 国产电源管理芯片推介 赛微微电子
高级产品经理 杨剑
16:10~16:40 本土无线连接芯片推介 深圳芯之联
大客户市场销售经理 韩锐
16:40~17:30 圆桌互动——
本土IC如何做大做强?
发言嘉宾
金浦投资黄光锋
紫光同创市场总监吕喆
17:30~17:50 抽奖 运动手环、智能音箱、
移动电源、儿童故事机
18:00 活动结束  

点击下方二维码快速报名!

毛衣战下的第一期本土精品IC推介会报名了!

 

围观 243

在我们阐明半导体芯片之前,我们先应该了解两点。其一半导体是什么,其二芯片是什么。

半导体

半导体( semiconductor),指常温下导电性能介于绝缘体(insulator)与导体(conductor)之间的材料。人们通常把导电性差的材料,如煤、人工晶体、琥珀、陶瓷等称为绝缘体。而把导电性比较好的金属如金、银、铜、铁、锡、铝等称为导体。

与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体才得到工业界的重视。常见的半导体材料有硅、锗、砷化镓等,而硅则是各种半导体材料中,在商业应用上最具有影响力的一种。
  
芯片

芯片(chip),又称微芯片(microchip)、集成电路(integrated circuit, IC)。是指内含集成电路的硅片,体积很小。一般而言,芯片(IC)泛指所有的半导体元器件,是在硅板上集合多种电子元器件实现某种特定功能的电路模块。它是电子设备中最重要的部分,承担着运算和存储的功能。广泛应用于军工、民用等几乎所有的电子设备。

讲到这里你大概对于半导体和芯片有个简单了解了,接下来我们来聊聊半导体芯片。

半导体芯片是什么?

一般情况下,半导体、集成电路、芯片这三个东东是可以划等号的,因为讲的其实是同一个事情。


半导体是一种材料,分为表格中四类,由于集成电路的占比非常高,超过80%,行业习惯把半导体行业称为集成电路行业。而芯片就是集成电路的载体,广义上我们就将芯片等同于了集成电路。

所以对于小白来说,只需要记住,当芯片、集成电路、半导体出现的时候,别慌,是同一码事儿。

半导体芯片内部结构

半导体芯片虽然个头很小。但是内部结构非常复杂,尤其是其最核心的微型单元——成千上万个晶体管。我们就来为大家详解一下半导体芯片集成电路的内部结构。一般的,我们用从大到小的结构层级来认识集成电路,这样会更好理解。

1. 系统级

我们还是以手机为例,整个手机是一个复杂的电路系统,它可以玩游戏、可以打电话、可以听音乐... ...

它的内部结构是由多个半导体芯片以及电阻、电感、电容相互连接组成的,称为系统级。(当然,随着技术的发展,将一整个系统做在一个芯片上的技术也已经出现多年——SoC技术)  

2. 模块级

在整个系统中分为很多功能模块各司其职。有的管理电源,有的负责通信,有的负责显示,有的负责发声,有的负责统领全局的计算,等等 —— 我们称为模块级,这里面每一个模块都是一个宏大的领域。


3. 寄存器传输级(RTL)

那么每个模块都是由什么组成的呢?以占整个系统较大比例的数字电路模块(它专门负责进行逻辑运算,处理的电信号都是离散的0和1)为例。它是由寄存器和组合逻辑电路组成的。

寄存器是一个能够暂时存储逻辑值的电路结构,它需要一个时钟信号来控制逻辑值存储的时间长短。

实际应用中,我们需要时钟来衡量时间长短,电路中也需要时钟信号来统筹安排。时钟信号是一个周期稳定的矩形波。现实中秒钟动一下是我们的一个基本时间尺度,电路中矩形波震荡一个周期是它们世界的一个时间尺度。电路元件们根据这个时间尺度相应地做出动作,履行义务。

什么是组合逻辑呢,就是由很多“与(AND)、或(OR)、非(NOT)”逻辑门构成的组合。比如两个串联的灯泡,各带一个开关,只有两个开关都打开,灯才会亮,这叫做与逻辑。
一个复杂的功能模块正是由这许许多多的寄存器和组合逻辑组成的。把这一层级叫做寄存器传输级。

4. 门级

寄存器传输级中的寄存器其实也是由与或非逻辑构成的,把它再细分为与、或、非逻辑,便到达了门级(它们就像一扇扇门一样,阻挡/允许电信号的进出,因而得名)。

5. 晶体管级

无论是数字电路还是模拟电路,到最底层都是晶体管级了。所有的逻辑门(与、或、非、与非、或非、异或、同或等等)都是由一个个晶体管构成的。因此集成电路从宏观到微观,达到最底层,满眼望去其实全是晶体管以及连接它们的导线。
 
双极性晶体管(BJT)在早期的时候用的比较多,俗称三极管。它连上电阻、电源、电容,本身就具有放大信号的作用。

像堆积木一样,可以用它构成各种各样的电路,比如开关、电压/电流源电路、上面提到的逻辑门电路、滤波器、比较器、加法器甚至积分器等等。由BJT构建的电路我们称为TTL(Transistor-TransistorLogic)电路。BJT的电路符号长这个样子:


但是后来金属-氧化物半导体场效应晶体管(MOSFET)的出现,以优良的电学特性、超低的功耗横扫IC领域。除了模拟电路中BJT还有身影外,基本上现在的集成电路都是由MOS管组成的了。

同样的,由它也可以搭起来成千上万种电路。而且它本身也可以经过适当连接用来作电阻、电容等基本电路元件。MOSFET的电路符号如下:


综上所述,在实际工业生产中,芯片的制造,实际上就是成千上万个晶体管的制造过程。只不过现实中制造芯片的层级顺序正好反过来了,是从最底层的晶体管开始一层层向上搭建。

也就是说,按照“晶体管->芯片->电路板”的顺序,我们最终可以得到电子产品的核心部件——电路板。

来源:21ic电子网

围观 1288

一颗芯片是如何定价的?看完终于懂了!

demi的头像

芯片设计行业是典型的高投入,高收益的行业,但是也是一个风险非常大的行业,万一设计的芯片达不到预期,巨额投入就打了水漂。下面说说一颗芯片的成本构成,以及一枚芯片的售价是如何定义出来的。

芯片的成本包括芯片的硬件成本和芯片的设计成本:

芯片硬件成本

芯片硬件成本包括晶圆成本+掩膜成本+封装成本+测试成本四部分,写成一个公式就是芯片硬件成本=(晶圆成本+掩膜成本+封装成本+测试成本)/最终成品率

晶圆是制造芯片的原材料,晶圆成本可以理解为每一片芯片所用的材料(硅片)的成本。在产量足够大,以亿为单位来计算的话,晶圆成本在硬件成本里面占比是最高的。

掩膜成本就是采用不同的制程工艺所花费的成本,像40/28nm的工艺已经非常成熟,40nm低功耗工艺的掩膜成本为200万美元;28nmSOI工艺为400万美元;28nmHKMG成本为600万美元。但是最先进的制程工艺,那就是天价了。14nm制程工艺在2014年刚投入生产的时候,掩膜成本是3亿美元;而下一代的10nm制程工艺,根据Intel官方估算,掩膜成本至少需要10亿美元。

2018年非常具有代表性的十大“芯”品盘点

demi的头像

芯片作为微处理器或多核处理器的核心,它可以控制计算机、手机等产品,是它们的“大脑”。近年来,随着各个国家对芯片产业的重视,纷纷加大对芯片的研究力度,芯片热成为2018年整个产业的一大亮点。

设计开发一个芯片需要很多的技术,随着人们对小尺寸和高集成度的要求,芯片越来越小,功能却越来越多。对于芯片制造工艺和设计,市场有很多新的要求。2018年是“芯”品频出的一年,笔者盘点了这一年非常具有代表性的十大新品,它们来自于全球各大知名企业。(排名不分先后)

1、上海贝岭EEPROM存储芯片

2018年7月,在由众多业内媒体策划的第一届“我用中国芯”最佳半导体芯片评选中,上海贝岭股份有限公司的2Mbit的EEPROM BL24CM02芯片荣获存储类的最受欢迎芯片奖和最佳芯片奖。据悉,上海贝岭的EEPROM产品,封装形式从SOP、DIP、TSSOP、UDFN、TSOT23到WLCSP都有,产品特点是零静态功耗、品质可靠等,在网通设备、仪表、CCM等领域都可应用。

2、百度AI芯片“昆仑”

在线烧录因集烧录测试一体的优势受到众多用户喜爱,但却往往因连接工装,夹具导致接线过长,进而增加不稳定性和烧录不良率,这究竟要如何改善呢?

1. 增加屏蔽层,防止电磁干扰、静电干扰

编程器作为一款与芯片密切通讯的工具,对电磁干扰较为敏感。烧录环境一般为工厂车间,大功率的设备,使得电磁干扰较为严重,为了降低电磁干扰,我们可以在烧录线上增加屏蔽网,或者选择屏蔽功能的线,如屏蔽电缆,网线等,另外操作时最好穿戴静电手套,以防止静电干扰。

2. 选择导电能力强的线

信号传输的完整性与线的材质、长度、粗细有关,可以选择更粗的,导电能力更强的线,好的材质可以减少内阻,降低信号损耗,如纯铜线、镀金线、镀银线等。

芯片烧录不稳定?可能你忽略了这些
图:金属电阻率

3. 降低通讯频率

通讯频率是信息传输的重要参数,频率越高传输速度越快,但信号的衰减会随着频率的增加而增加,并且随着传输距离的增加而迅速衰弱,因此接线较长时,可以适当的降低通讯频率,以增加通讯的稳定性。

4. 在关键信号线上接上拉或下拉电阻

有些芯片的编程接口,本身驱动能力较弱,需要在接口上加适当的上拉或下拉电阻,以增强驱动能力,如IIC、SWIM接口需要在数据线上接强上拉电阻,汽车钥匙芯片PCF79xx、NCF29xx等需要在时钟线上接下拉电阻等等。

5. 选择驱动能力强的编程器

编程器管脚的驱动能力,将直接影响接线的长度,市面上的一些支持在线的编程器,直接引出内部控制芯片的IO口或FPGA的管脚作为编程信号的输入与输出,其驱动能力较弱,当用户的接线比较长(一般大于30cm)时,就会出现信号失真,导致编程不稳定。

转自: ZLG致远电子

围观 318

元器件选型基本原则:

1)普遍性原则:所选的元器件要是被广泛使用验证过的,尽量少使用冷门、偏门芯片,减少开发风险。

2)高性价比原则:在功能、性能、使用率都相近的情况下,尽量选择价格比较好的元器件,降低成本。

3)采购方便原则:尽量选择容易买到、供货周期短的元器件。

4)持续发展原则:尽量选择在可预见的时间内不会停产的元器件。

5)可替代原则:尽量选择pin to pin兼容芯片品牌比较多的元器件。

6)向上兼容原则:尽量选择以前老产品用过的元器件。

7)资源节约原则:尽量用上元器件的全部功能和管脚。

芯片的选型过程是对各个维度考量的折衷。

芯片选型如何做?“老司机”的深刻总结!

全流程关注芯片属性

1、我们在选型的时候,需要考虑试产的情况、同时需要考虑批量生产时的情况。

小批量采购的价格、供货周期、样片申请;同时需要关注,大批量之后的价格和供货周期。有可能批量变大之后,供货的价格没有优势、或者批量大了之后,产能不足。

另外,根据自己的实际采购情况,找对应的量级的供应商。例如,原厂往往不直接供货,需要通过代理商。有些代理商的供货量级都是有要求的。

之前,有一个选型,选择了ST的STM32F427IGT6,原厂很给力帮忙申请样片。但是在采购的过程中碰到困难,虽然我们希望整盘采购,但是由于其代理商出货量都有一定的要求,导致价格跟一开始通过原厂了解到的价格不一致。要高出很多。

同时由于整个行业使用该芯片的场景不是很多,所以导致淘宝价格非常贵,根本没法接受。同时,有做芯片销售的朋友说是由于无人机厂家大量使用,导致有人在炒这颗芯片的价格,所以导致很难买到。

2、关注器件本身的生命周期与产品生命周期的匹配。

对于通信设备一般要求我们选用的器件要有5年以上的生命周期,并且有后续完整的产品发展路标。

我们的当时的一个新硬件平台,产品规划的时候是用于替代发货量在百万级单板数量的成熟平台。由于切换周期比较长。新产品在完成开发1~2年之后,才逐步上量。其中一个DSP电路板,外设存储是SDRAM。正在产品准备铺量的时候,镁光等几大内存芯片厂家,宣布停产。导致产品刚上量,就大量囤积库存芯片,并且寻找台湾的小厂进行器件替代。

所以在器件选型的时候,充分体现了“人无远虑必有近忧”。

3、除了考虑功能和实验室环境,还需要考虑整个生命周期的场景。

芯片选型如何做?“老司机”的深刻总结!

来源:硬件十万个为什么

围观 1715

页面

订阅 RSS - 芯片