芯片

深耕于高压集成电路高能效功率变换领域的知名公司Power Integrations(纳斯达克股票代号:POWI)今天宣布推出InnoSwitch™4-CZ系列的高频率、零电压开关(ZVS)反激式开关IC。

InnoSwitch4-CZ器件集成了一个采用Power Integrations的PowiGaN™技术的可靠耐用的750V初级开关,以及一个新型高频有源箝位反激式控制器,可轻松设计出适用于手机、平板电脑和笔记本电脑的新型超紧凑型充电器。今天,全球移动设备充电专家Anker在新品发布会上推出了首批基于InnoSwitch4-CZ 器件的消费类充电设备。

“”

Power Integrations首席执行官Balu Balakrishnan表示:“InnoSwitch4-CZ系列IC的推出标志着氮化镓(GaN)技术达到了一个重要里程碑。PowiGaN开关与我们的有源箝位解决方案ClampZero™结合使用,可实现高效的设计和极为紧凑的外形尺寸。我们很高兴与Anker团队密切合作,将这种新型的移动充电器推向市场。”

Anker创始人兼CEO阳萌表示,我们很高兴能成为PI公司InnoSwitch4芯片的独家首发合作伙伴。InnoSwitch4-CZ器件具有极为出色的集成度和运行效率,是Anker Nano II USB-C系列能实现紧凑设计的关键所在。”

InnoSwitch4-CZ产品系列采用薄型InSOP-24D封装,同时集成了750V开关、初级和次级控制器、ClampZero接口、同步整流以及符合安全标准的反馈电路。高达140kHz的稳态开关频率可最大程度地减小变压器尺寸,进一步提高功率密度。

与其他旧有的有源箝位反激方案相比,InnoSwitch4-CZ和ClampZero的组合可使系统效率最高达到95%,并在整个输入电压、系统负载和输出电压变化时保持非常高的效率。这是通过对有源箝位的变频非对称控制,进而实现智能的零电压开关的方式来实现的,同时可以兼容非连续和连续导通两种工作模式,从而极大地提高了设计的灵活性,并在整个工作范围内实现了效率的最大化。

新型反激式开关IC具有优异的恒压/恒流精度,不受外围元件的影响,并且在具有输入电压检测安全保护功能的前提下,空载功耗仍然能够小于30mW。

InnoSwitch4-CZ IC提供输出恒压恒流点可调的输出特性,非常适合于高效紧凑型USB-PD适配器、高达110W的高功率密度反激设计以及高效的恒压/恒流电源应用。在输出出现过压、欠压的情况下,新器件会进入自动重启动或锁存状态的故障保护模式。根据输出的变化,器件具有多个欠压故障保护阈值,且具有迟滞恢复特性的初级侧过温保护特性。所有这些都可以为这些电源设备提供完善的保护。

围观 28

MCU(MicrocontrollerUnit),又称微控制器或单片机,是把CPU的频率与规格做适当缩减,并将内存(Memory)、计数器(Timer)、USB、A/D转换、UART、PLC、DMA等周边接口,甚至LCD驱动电路都整合在单一芯片上,形成芯片级计算机。从而实现终端控制的功能,具有性能高、功耗低、可编程、灵活度高等优点。

MCU由Intel率先提出,经过4位、8位、16位、32位乃至64位MCU迭代更新,已广泛应用于多种场景。目前市场上以8位和32位MCU为主,未来随着产品性能要求的不断提高,32位MCU的市场规模将进一步扩大。而在国内,现阶段8位、32位MCU企业居多,未来企业加大研发投入,将进一步实现MCU的国产替代。

MCU芯片在很多领域都有着广泛的应用,在此次“芯片荒”浪潮中,MCU是受影响最严重的芯片。

1、MCU简介

微控制单元(Microcontroller Unit;MCU) 就是我们俗称的“单片机”。MCU内部的功能部件主要是CPU、存储器(程序存储器和数据存储器)、I/O端口、串行口、定时器、中断系统、特殊功能寄存器等八大部分,还有一些诸如时钟振荡器、总线控制器和供电电源等辅助功能部件。

此外,很多增强型单片机还集成了A/D、D/A、PWM、PCA、WDT等功能部件,以及SPI、I2C、ISP等数据传输接口方式,这些使单片机更具特色、更有市场应用前景。

“▲MCU结构"
▲MCU结构

在MCU应用中,真实世界的各种物理量,通过传感器转换为电信号,经信号调理,再通过放大器进行放大,然后通过ADC把模拟信号转化为数字信号,在MCU或CPU或DSP等处理后,再经由DAC还原为模拟信号,最后通过功率驱动器实现输出。

“▲MCU信号链"
▲MCU信号链

MCU由Intel率先提出,经过4位、8位、16位、32位乃至64位MCU迭代更新,已广泛应用于多种场景。目前市场上以8位和32位MCU为主,未来随着产品性能要求的不断提高,32位MCU的市场规模将进一步扩大。而在国内,现阶段8位、32位MCU企业居多,未来企业加大研发投入,将进一步实现MCU的国产替代。

目前市场的MCU以8位和32位为主。其中8位MCU凭借超低成本、设计简单等优势,活跃于市场,特别是中国市场。

由于32位MCU出现并持续降价及8位MCU简单耐用又便宜的低价优势下,夹在中间的16位MCU市场不断被挤压,成为出货比例中最低的产品。

“▲MCU位数及其应用场景"
▲MCU位数及其应用场景

目前市场上主流的MCU中央处理器,包括由Intel开发MCS-51内核、由英国公司ARMHoldinds开发的ARM Cortex-M内核、由Motorola开发的6800内核、由MIPSTechnologies, Inc.开发的MIPS内核、由Atmel公司开发的AVR内核、由MicrochipTechnologies公司开发PIC内核、由加利福尼亚大学伯克利分校开发的RISC-V内核。

“▲MCU常见中央处理器"
▲MCU常见中央处理器

据2020中国通用微控制器市场简报:市场上MCU,32位占比54%、8位占比43%;RISC指令集的MCU占比76%,CISC指令集的MCU占比24%;通用型MCU为主,占比73%;市场上MCU内核类型以ARM Cortex、8051和RISC-V为主,分别占比52%、22%和2%。

2、产业链概况

MCU产业链上游可分为原材料供应商和代工厂商(与中游Fabless厂商合作),原材料主要为圆晶、以及来自于ARM等的内核授权;代工厂商主要包括台积电、格罗方德、联电、中芯国际、华虹半导体等。

2019年头部的台积电、格罗方德、联电、中芯国际等厂商市占率超过90%,其中台积电市占率高达58.6%,由于原材料的不可替代性与代工厂商的高度集中性,上游厂商议价能力较强。

“▲2019年MCU代工厂竞争格局"
▲2019年MCU代工厂竞争格局

全球MCU供应商以国外厂商为主,行业集中度相对较高:全球MCU厂商主要为瑞萨电子(日本)、恩智浦(荷兰)、英飞凌(德国)、微芯科技(美国)、意法半导体等,TOP7头部企业市占率超过80%。

中国MCU奋起直追,逐步扩大市场份额:国内MCU芯片厂商在中低端市场具备较强竞争力。兆易创新、华大半导体、中颖电子、东软载波、北京君正、中国台湾企业新唐科技、极海半导体等市占率稳步上升。

另外, 国外大厂如意法半导体、瑞萨电子、德州仪器、微芯、英飞凌采用IDM模式,集芯片设计、芯片制造、芯片封装和测试等多个产业链环节于一身;国外个别厂商如恩智浦以及大部分大陆厂商采用Fabless模式,只负责芯片的电路设计与销售;中国台湾企业盛群、松翰、新唐以及大陆厂商士兰微、华大半导体等采用IDM模式。

“▲2019年全球MCU竞争格局"
▲2019年全球MCU竞争格局

“▲
▲ 2019年中国MCU竞争格局

国外厂商产品齐全,国内厂商集中在消费电子领域:国外厂商产品种类齐全,覆盖消费电子、汽车电子、工业控制领域,且产能分布较为均衡,国内厂商产能主要集中消费电子特别是家电领域,芯旺微、比亚迪等企业拥有车规级MCU产品,其他厂商尚处在研发或认证阶段。

国内外厂商产品位数相差不大:国外厂商如意法半导体、恩智浦、微芯科技等主流产品均为32位,部分国内厂商如中颖电子产品以8位为主,目前大部分国内厂商均具备32位产品生产能力,整体差距不大。

内核方面,各家厂商均以ARM内核为主,国内厂商主要使用ARM Cortex-M0/M3内核,国外厂商对更性能更好的M4/M7内核使用率较低。另外部分国外厂商如微芯科技拥有自主开发的内核,国内厂商中芯旺微拥有自研内核。

在应用领域上,全球汽车电子占比最高,中国集中在家电领域。据IC Insights数据,2019年全球MCU下游应用主要分布在汽车电子(33%)、工控/医疗(25%)、计算机(23%)和消费电子(11%)四大领域。具体到中国,2019年中国MCU市场销售额集中在消费电子(26%)、计算机网络(19%)领域,而汽车电子(16%)及工业控制(11%)领域的MCU占比则显著低于全球水平,中国MCU应用仍主要集中在家电等品类。

“▲2019年全球MCU应用分布"
▲2019年全球MCU应用分布

“▲
▲ 2020年中国MCU应用领域销售额分布

3、四大应用领域

1)物联网

伴随着物联网的发展,MCU市场经历价量齐升的过程。未来物联网将实现端到端人机互动,几乎每个设备每个端都需要一个甚至多个MCU。更多的数据更高的计算要求,推动设备向32位高端MCU升级。

根据GSMA数据,2018年全球物联网设备数量为91亿个,2010-2018年复合增长率为20.9%,预计2025年全球物联网设备将高达252亿个。

中国物联网整体规模逐年增长,2015年中国物联网整体规模为7500亿元,预计2020年达到18300亿元,2015年-2020年复合增长率为19.5%。

“▲全球物联网设备连接数量及预测情况"
▲全球物联网设备连接数量及预测情况

“▲中国物联网整体规模及增长率"
▲中国物联网整体规模及增长率

设备联网的关键在于组网技术,组网技术有LoRa(远距离无线电)、Zigbee(短距离低速)、WiFi、NB-IoT(蜂窝网络)、蓝牙,需要搭配响应的组网模块才能遥控设备。

我国物联网连接数2020年达到35亿,2017-2020的复合增长率为34%。主要的组网方式是WiFi和蓝牙,2020年WiFi和蓝牙组网技术占比达67.3%,蜂窝网络组网占比逐年提升,由2017年的3%上升到2020年占8.75%。

“▲中国物联网连接数(单位:亿)"
▲中国物联网连接数(单位:亿)

根据Techno Systems Research 2017年2月及2018年2月发布的各年度研究报告,在物联网Wi-Fi MCU 芯片领域,乐鑫是与高通、德州仪器、美满、赛普拉斯、瑞昱、联发科等同属于第一梯队的大陆企业。

目前主流嵌入式WiFi芯片企业包括:高通(美国)、瑞昱(中国台湾)、乐鑫、博通集成、联盛德以及博流,国产替代率高。

“▲主流WiFi
▲主流WiFi MCU性能对比

2)消费电子

家电智能化趋势:机械按键交互向触摸语音交互转变、数码管显示向液晶显示转变、单频向变频转变等。计算能力和抗干扰能力要求增大,需求向更高级的MCU转移。

2020年,中国智慧家庭产品出货总量达到2.8亿台,到2025年出货总量将增长至8.1亿台,年复合增长率可达23.7%。

家庭视频视讯设备(电视机、机顶盒)和智慧安防产品(摄像头、门锁)占比最高,分别达到39.2%和19.6%;智能白电(冰箱、空调、洗衣机)占比接近两成,达到17.1%。

“▲中国智慧家庭出货量及预测(单位:百万台)"
▲中国智慧家庭出货量及预测(单位:百万台)

全国家用电器工业信息中心数据显示,2019年国内市场家电零售额规模8032亿元,同比增长率为-2.2%。

根据《IDC中国智能家居设备市场季度跟踪报告》,2019年上半年中国智能大家电市场出货量约为2838万台,同比增长22.8%。

家电市场整体表现平稳,智能家电市场的销售保持稳步增长态势。传统家电智能化转型迫在眉睫。

“▲2016-2019年中国家电行业零售额"
▲2016-2019年中国家电行业零售额

“▲八大家电企业自给率高,纷纷加速智能化转型,加速家电芯片国产替代进程"
▲八大家电企业自给率高,纷纷加速智能化转型,加速家电芯片国产替代进程

一般家电芯片包括MCU主控芯片、电源管理芯片、通信芯片、驱动芯片和图像处理芯片,目前家电企业的造芯进程中,几乎所有芯片都已布局。八大家电企业造芯布局中,MCU的占比最高,达到34%

家电MCU国产替代程度高,中颖电子在中国小家电MCU中处于领先地位,据中国产业信息统计数据,2017年中颖电子在中国家电MCU中的占比为19.8%,排名第三,与排名前二的MCU厂家盛群半导体(22.6%)和盛群电子(21.2%)的差距不大,预计未来小家电领域MCU国产替代率会进一步提升。

“▲八大家电布局芯片类型占比"
▲八大家电布局芯片类型占比

“▲
▲ 2017年中国小家电MCU竞争格局

2016年苹果发布第一代Air Pods,开创真无线耳机(TWS)时代,iPhone 12系列取消标配耳机,再次引发TWS耳机销量暴增。

传统有线耳机线路简单,无需配置MCU主控芯片。

TWS产业链主要包括ODM厂商,无线耳机和充电盒元器件厂商,其包括主控芯片、存储芯片、FPC、语音加速感应器、MEMS、过流保护IC、电池等。

据Counterpoint预计,TWS耳机市场会有十年前智能手机一样的增长趋势,智能手机市场2009-2012年CAGR为80%,预计TWS市场2019-2022年CAGR为80%。

在Air Pods引爆市场后,各手机厂商如华为、OPPO、vivo、小米以及传统音频厂商Sony、BOSE、1MORE、漫步者纷纷跟进推出相关产品,苹果市场份额虽仍是第一,其他品牌耳机也在加速抢占,使得苹果市场份额逐年减少,据Statista数据,苹果TWS耳机市场占有率从2018年Q4的60%下降到2019年Q3的45%。

“▲TWS耳机市场竞争格局
▲TWS耳机市场竞争格局

高端手表处理的任务多,需要用内嵌操作系统的SoC,而手环只需要时钟、记步、统计热量小号、测血压等简单的功能,使用MCU即可。

随着智能手表性能和功能的加强,使用带系统的SoC+MCU会是的趋势,其中WiFi模块中集成了MCU,另外需要多一颗MCU来链接众多的传感器,辅助SoC采集数据。

“"
▲小米手环3拆解

得益于硬件创新,智能手表逐步成熟,与智能手机组成的应用生态日趋完善。通过定位聚焦于运动、健康、移动支付领域,行业持续加速发展,预计2021年智能手表的支出将达到273.88亿美元。

智能手环相比智能手表,性能较低、功能单一、只支持苹果或安卓单一操作系统。t4ai预测未来整个智能手环市场将持续萎缩。

小米智能手环市场占有率高,预计未来市场集中度进一步提升。

“▲全球智能手表消费趋势"
▲全球智能手表消费趋势

未来,智能手表行业将更进一步地向头部集中。苹果、三星、华为、Garmin将占据超过75%的市场份额。

参考智能手机市场的发展,未来苹果TWS耳机的市场份额会进一步下降,而国内厂商诸如小米、华为、OPPO、vivo等手机厂商会快速崛起,为芯片国产替代提供条件。目前充电盒国产主控MCU方案成熟,如芯海科技、昇生微、微源半导体等均有成熟的方案且被各大TWS品牌商采用。

“▲2020上半年全球主要智能手表企业"
▲2020上半年全球主要智能手表企业

3)汽车电子

ECU(Engine Control Unit),即发动机控制单元,特指电喷发动机的电子控制系统。但是随着汽车电子的迅速发展,ECU的定义也发生了巨大的变化,变成了electronic control unit即电子控制单元,泛指汽车上所有电子控制系统。而原来的发动机ECU有很多的公司称之为EMS(Engine Management System)。

常见的ECU有导航ECU、安全气囊ECU、引擎ECU、电动车窗ECU、悬吊系统ECU。

ECU由MCU、存储器、输入/输出接口、模数转换器以及驱动等集成电路组成。其中MCU是ECU真正起到控制作用的关键。

“▲汽车ECU"
▲汽车ECU

汽车电子应用已经占据超过1/3的MCU市场,汽车向智能化过程中,对安全、环保要求越来越高,因此对MCU的需求增长迅猛。据IC Insights预测,车用MCU销售额将在2020年接近65亿美元,并在2023年达到81亿美元。

据Strategy Analytics统计,传统燃油车中MCU占整车半导体价值的23%,纯电动汽车MCU占整车半导体价值的11%,2018年传统燃油车单车半导体价值量为338美元,新能源汽车单车半导体价值量为704美元,MCU价值量在传统燃油车和新能源车中相当,均为78美元左右。

“▲燃油和电动汽车半导体占比"
▲燃油和电动汽车半导体占比

据Strategy Analysis数据,全球以及国内车载MCU市场主要由恩智浦、瑞萨、英飞凌、德州仪器、微芯科技占领,共占约85%市场份额。

汽车级MCU产品品质严苛,认证过程很复杂,投入大,短期内难有盈利。目前国内汽车级MCU已量产的公司有:杰发科技、上海芯旺微电子、赛腾微电子、中微半导体等公司。

国内车载MCU起步晚,较少公司涉及该领域业务,未来国产替代潜力巨大。

4)工业控制

MCU是实现工业自动化的核心部件,如步进马达、机器手臂、仪器仪表、工业电机等。以工控的主要应用场景——工业机器人为例,为了实现工业机器人所需的复杂运动,需要对电机的位置、方向、速度和扭矩进行高精度控制,而MCU则可以执行电机控制所需的复杂、高速运算。

工业4.0时代下工业控制市场前景广阔,催涨MCU需求。根据Prismark统计,2019年全球工业控制的市场规模为2310亿美元,预计至2023年全球工业控制的市场规模将达到2600亿美元,年复合增长率约为3%。根据赛迪智库的数据,2020年中国工业控制市场规模达到2321亿元,同比增长13.1%。2021年市场规模有望达到2600亿元。

“▲全球工业控制市场规模及其增速"
▲全球工业控制市场规模及其增速

“▲中国工业控制市场规模及其增速"
▲中国工业控制市场规模及其增速

MCU市场现被国外厂商主导,国内厂商虽百花齐放,但占比较低,国产替代空间巨大。根据前瞻产业研究院,2019年全球MCU市场主要被微芯、意法半导体、瑞萨、德州仪器、恩智浦等厂商占据,前五大厂商合计市场份额达72.8%。中国MCU市场主要被意法半导体、恩智浦、微芯、瑞萨、英飞凌等厂商占据,前五大厂商合计市场份额达74.42%。

近期MCU市场缺货行情持续,本土MCU产业链有望加速产品的市场拓展,提升产品的价值量或出货量,从而充分受益于MCU市场高涨的应用需求。另一方面,高性能MCU的价量齐升,带来可观的毛利率,驱使更多国内优秀企业进军MCU领域,加快实现国产替代。

国内厂商在工业控制MCU产品方面,销售收入及其占比逐年上升,产品出货量增长显著,国产替代指日可待。

智东西认为,随着我国电动汽车如火如荼的快速发展,在汽车电子上的应用使得MCU芯片未来注定在我国的芯片行业中扮演者一个十分重要的角色。但是,现阶端国产MCU主要还是集中在家电等行业低端应用行业。好消息是,虽然32位MCU是现在的主流,但国内厂商有优势的8位芯片仍然在物联网等行业中有着广泛的应用,在国外巨头的统治下,国产MCU仍然有着不差的生长土壤,假以时日大规模的国产替代也不是不可能。

来源:智东西
免责声明:本文部分内容为网络转载,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。

围观 356

全球领先的信息技术研究和顾问公司Gartner预测,全球半导体供应短缺将在整个2021持续并在2022年第二季度恢复至正常水平。

Gartner首席研究分析师Kanishka Chauhan表示:“半导体供应短缺将严重扰乱供应链并将在2021年制约多种电子设备的生产。芯片代工厂正在提高芯片的价格,而芯片公司也因此提高设备的价格。”

最初出现芯片供应短缺问题的设备主要包括电源管理、显示设备和微控制器等,这些设备在8英寸芯片代工厂的传统节点上制造,其供应量有限。现在,供应短缺问题已扩展至其他设备,而且基板、焊线、无源器件、材料和测试等芯片代工厂以外的供应链环节都出现产能受限和供应短缺问题。这些产业均已高度商品化,因此在短时间内几乎不具备积极投资的灵活性/能力。

大多数类别的设备供应短缺预计将持续到2022年第二季度(见图一),而基板产能限制可能会延长到2022年第四季度。

图一、Gartner库存指数半导体供应链追踪——2021年至2022年全球半导体库存指数变动预测

“Gartner库存指数半导体供应链追踪——2021年至2022年全球半导体库存指数变动预测"

注:2021年第一季度为模型预估,具体数据可能会根据厂商在2021年第二季度报告的实际财务状况而发生变化。2021年第二季度至2022年第四季度指数条仅代表方向性预估。

来源:Gartner(2021年5月)

Gartner分析师建议直接或间接依赖半导体的原始设备制造商可采取四项关键行动来缓解全球芯片供应短缺期间的风险和收入损失。

扩展供应链的可见性 ——由于芯片供应短缺,供应链领导者需要将供应链可见性从供应商扩展至芯片层面,这对于预测供应限制和瓶颈以及最终预测这一危机情况何时能够改善至关重要。

通过联合模式和/或提前投资来保证供应 ——需要较小和关键器件的原始设备制造商必须寻求与类似的实体开展合作并与芯片代工厂和/或封测代工厂(OSAT)组成联合实体,这样才能获得一些优势。此外,如果规模允许,提前投资于芯片供应链的商品化环节和/或芯片代工厂可以保证公司的长期供应。

追踪领先指标 ——虽然单凭任何一项相关参数无法预测供应短缺情况将如何演变,但可以通过多项相关参数的组合帮助指导企业机构朝着正确的方向发展。

Gartner公司研究副总裁Gaurav Gupta表示:“由于目前芯片供应短缺情况在不断发生变化,因此我们必须持续了解它的变化。”通过追踪资本投资、库存指数及作为库存情况早期指标的半导体行业收入增长预测等领先指标,可以帮助企业机构了解这一问题的最新进展和整个行业的发展情况。

建立多样化的供应商体系 ——虽然验证不同芯片来源和/或封测代工厂的资质需要付出更多的精力和投资,但这对降低风险大有帮助。此外,与经销商、转售商和贸易商建立密切的战略关系有助于企业机构找到小批量的急用器件。

关于Gartner

Gartner, Inc.(纽约证券交易所:IT)是全球领先的信息技术研究和顾问公司,也是标准普尔500指数包含的上市公司之一。Gartner为企业领导者提供必不可少的见解、建议和工具,以帮助他们达成在当前需优先处理的关键事项及建设在未来能够取得成功的企业机构。

Gartner完美结合了专家主导、来源于从业者的资源和数据驱动的研究,使客户能够在最重要的问题上做出正确的决策。Gartner的客户遍及100多个国家的14,000个企业机构,覆盖各行各业、各种企业规模的主要职能部门。这些客户都深信Gartner是值得信赖的顾问和客观的资源提供者。

欲了解更多Gartner如何帮助决策者推动企业未来发展,请访问http://www.gartner.com/cn

围观 13

近期,各大科技公司纷纷入局智能座舱领域,从华为、高通、NXP智能座舱解决方案,到大陆、博世、哈曼国际、电装,再到北汽、WEY、蔚来、小鹏、理想、吉利、领克、福特、凯迪拉克等车厂,整条产业链几乎处于ALL-IN的状态,预计至 2025 年全球智能座舱规模将超461亿美元。

智能座舱是什么?

简单来说,如果把汽车比作手机,智能座舱就相当于手机通过硬件(如摄像头)、软件升级的方式,让手机使用起来更便捷。

智能座舱是传统汽车中控屏的升级,与传统驾驶舱对比,智能座舱可提升近80%单车价值量。传统驾驶舱通常只有一个中控屏(普遍十英寸以内),单车价值量在1500元左右;智能座舱可添加更多功能,如更大的屏(价格可以达到2500元)、液晶仪表盘、HUD、后座娱乐系统、流媒体后视镜以及车联网模块。整体来看,这些硬件的单车价值量将很可能增加至9000元以上。

座舱芯片厂商汇总

目前智能座舱芯片主要有传统电子和消费电子两类厂商。

传统电子:恩智浦(i.MX系列)、瑞萨(R系列)、德州仪器(Jacinto系列)和意法半导体(Accordo系列)。

消费电子:高通、英特尔、谷歌、三星、华为、联发科。

“”

各厂商竞争格局:一芯多屏的未来趋势对芯片算力提出更高要求,目前以高通芯片的算力及出货遥遥领先,其次是英特尔及瑞萨。

其中2020年是高通座舱出货大年,核心出货量比较大的车型包括奥迪改款A4L、本田雅阁十代等,并且大部分新能源车型都选择高通820A作为座舱芯片。

“(图片来源:东方证券)"
(图片来源:东方证券)

附:智能座舱部件及厂商图谱

智能座舱主要部件有中控液晶屏、仪表盘、HUD、中控娱乐系统等等。当前新车型上全液晶仪表盘的渗透率约28%,HUD渗透率约10%。

“”

“”

“”

“”

“”

本文转载自:安芯商城
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 701

苏州纳芯微电子股份有限公司(以下简称“纳芯微”)宣布推出高性价比三通道数字隔离器NIRS31及RS-485接口隔离芯片NIRS485。NIRS31/485采用创新的Adaptive OOK®电容隔离技术,具有低辐射噪声、高抗干扰性,适用于各类对成本敏感的应用场合,如电力电表、工业BMS、楼宇自动化等。

小体积,高耐压

NIRS31/NIRS485具有典型值150kV/μs的瞬态抗扰度、6KV的浪涌耐压,更易通过系统级浪涌测试,并减少外围保护器件。4.9mm×3.9mm的SSOP16小封装,使其更适用于高集成度方案,帮助工程师大幅节省PCB尺寸和布板空间。NIRS31/NIRS485现已通过CQC及UL认证,隔离耐压达3kVrms,可满足各种系统安规需求。此外,纳芯微从芯片设计、晶圆制作到封装测试全部国产化,保证了供应的稳定性。

“”

更简易,更节能

与分立高速光耦隔离方案相比,NIRS31集成度更高,数据速率达1Mbps,在满足性能指标的同时节省了更多成本。与485接收器加光耦的分立方案相比,NIRS485简单易用,使其不仅节省了电路板尺寸,也大幅节省了客户的物料管理成本。

“”

NIRS31产品特性

  • 高达3000Vrms的绝缘耐压
  • 数据速率DC到1Mbps
  • 供电电源电压:2.5V至5.5V
  • 高CMTI(典型值): ±150kV/us
  • 芯片级EMC性能: HBM:±6kV
  • 浪涌耐压 >6kV
  • 低功耗:1.5mA/ch (1 Mbps)
  • 低传输延时 <500ns
  • 工作温度,-40℃~125℃

NIRS485产品特性

  • 高达3000Vrms的绝缘耐压
  • 总线侧电源电压: 3.0V至5.5V
  • VDD1电源电压:2.5V至5.5V
  • 高CMTI(典型值):±150kV/us
  • 较高的系统级EMC性能:总线引脚符合IEC61000-4-2±8kV ESD
  • 浪涌耐压 >6kV
  • 故障安全保护接收器
  • 支持256个收发器
  • 工作温度:-40℃~105℃

关于纳芯微

苏州纳芯微电子股份有限公司是国内领先的信号链芯片及其解决方案提供商,聚焦传感器与数字隔离两大产品方向。纳芯微电子专注于高性能集成电路芯片的设计、开发、生产和销售,为客户提供一站式系统解决方案。如需了解更多信息,敬请访问www.novosns.com

围观 124

作为一名电源研发工程师,自然经常与各种芯片打交道,可能有的工程师对芯片的内部并不是很了解,不少同学在应用新的芯片时直接翻到Datasheet的应用页面,按照推荐设计搭建外围完事。如此一来即使应用没有问题,却也忽略了更多的技术细节,对于自身的技术成长并没有积累到更好的经验。今天以一颗DC/DC降压电源芯片LM2675为例,尽量详细讲解下一颗芯片的内部设计原理和结构,IC行业的同学随便看看就好,欢迎指教!

LM2675-5.0的典型应用电路

“”

打开LM2675的DataSheet,首先看看框图

“”

这个图包含了电源芯片的内部全部单元模块,BUCK结构我们已经很理解了,这个芯片的主要功能是实现对MOS管的驱动,并通过FB脚检测输出状态来形成环路控制PWM驱动功率MOS管,实现稳压或者恒流输出。这是一个非同步模式电源,即续流器件为外部二极管,而不是内部MOS管。

下面咱们一起来分析各个功能是怎么实现的

01、基准电压

类似于板级电路设计的基准电源,芯片内部基准电压为芯片其他电路提供稳定的参考电压。这个基准电压要求高精度、稳定性好、温漂小。芯片内部的参考电压又被称为带隙基准电压,因为这个电压值和硅的带隙电压相近,因此被称为带隙基准。这个值为1.2V左右,如下图的一种结构:

“”

这里要回到课本讲公式,PN结的电流和电压公式:

“”

可以看出是指数关系,Is是反向饱和漏电流(即PN结因为少子漂移造成的漏电流)。这个电流和PN结的面积成正比!即Is->S。

如此就可以推导出Vbe=VT*ln(Ic/Is) !

回到上图,由运放分析VX=VY,那么就是I1*R1+Vbe1=Vbe2,这样可得:I1=△Vbe/R1,而且因为M3和M4的栅极电压相同,因此电流I1=I2,所以推导出公式:I1=I2=VT*ln(N/R1) N是Q1 Q2的PN结面积之比。

回到上图,由运放分析VX=VY,那么就是I1*R1+Vbe1=Vbe2,这样可得:I1=△Vbe/R1,而且因为M3和M4的栅极电压相同,因此电流I1=I2,所以推导出公式:I1=I2=VT*ln(N/R1) N是Q1 Q2的PN结面积之比。

这样我们最后得到基准Vref=I2*R2+Vbe2,关键点:I1是正温度系数的,而Vbe是负温度系数的,再通过N值调节一下,可是实现很好的温度补偿!得到稳定的基准电压。N一般业界按照8设计,要想实现零温度系 数,根据公式推算出Vref=Vbe2+17.2*VT,所以大概在1.2V左右的,目前在低压领域可以实现小于1V的基准,而且除了温度系数还有电源纹波抑制PSRR等问题,限于水平没法深入了。最后的简图就是这样,运放的设计当然也非常讲究:

“”

如图温度特性仿真:

“”

02、振荡器OSC和PWM

我们知道开关电源的基本原理是利用PWM方波来驱动功率MOS管,那么自然需要产生振荡的模块,原理很简单,就是利用电容的充放电形成锯齿波和比较器来生成占空比可调的方波。

“”

最后详细的电路设计图是这样的:

“”

这里有个技术难点是在电流模式下的斜坡补偿,针对的是占空比大于50%时为了稳定斜坡,额外增加了补偿斜坡,我也是粗浅了解,有兴趣同学可详细学习。

03.误差放大器

误差放大器的作用是为了保证输出恒流或者恒压,对反馈电压进行采样处理。从而来调节驱动MOS管的PWM,如简图:

“”

04.驱动电路

最后的驱动部分结构很简单,就是很大面积的MOS管,电流能力强。

“”

05.其他模块电路

这里的其他模块电路是为了保证芯片能够正常和可靠的工作,虽然不是原理的核心,却实实在在的在芯片的设计中占据重要位置。

具体说来有几种功能:

1、启动模块

启动模块的作用自然是来启动芯片工作的,因为上电瞬间有可能所有晶体管电流为0并维持不变,这样没法工作。启动电路的作用就是相当于“点个火”,然后再关闭。如图:

“”

上电瞬间,S3自然是打开的,然后S2打开可以打开M4 Q1等,就打开了M1 M2,右边恒流源电路正常工作,S1也打开了,就把S2给关闭了,完成启动。如果没有S1 S2 S3,瞬间所有晶体管电流为0。

2、过压保护模块OVP

很好理解,输入电压太高时,通过开关管来关断输出,避免损坏,通过比较器可以设置一个保护点。

“”

3、过温保护模块OTP

温度保护是为了防止芯片异常高温损坏,原理比较简单,利用晶体管的温度特性然后通过比较器设置保护点来关断输出。

“”

4、过流保护模块OCP

在譬如输出短路的情况下,通过检测输出电流来反馈控制输出管的状态,可以关断或者限流。如图的电流采样,利用晶体管的电流和面积成正比来采样,一般采样管Q2的面积会是输出管面积的千分之一,然后通过电压比较器来控制MOS管的驱动。

“”

还有一些其他辅助模块设计。

六、恒流源和电流镜

在IC内部,如何来设置每一个晶体管的工作状态,就是通过偏置电流,恒流源电路可以说是所有电路的基石,带隙基准也是因此产生的,然后通过电流镜来为每一个功能模块提供电流,电流镜就是通过晶体管的面积来设置需要的电流大小,类似镜像。

“”

“”

七、小结

以上大概就是一颗DC/DC电源芯片LM2675的内部全部结构,也算是把以前的皮毛知识复习了一下。当然,这只是原理上的基本架构,具体设计时还要考虑非常多的参数特性,需要作大量的分析和仿真,而且必须要对半导体工艺参数有很深的理解,因为制造工艺决定了晶体管的很多参数和性能,一不小心出来的芯片就有缺陷甚至根本没法应用。整个芯片设计也是一个比较复杂的系统工程,要求很好的理论知识和实践经验。最后,学而时习之,不亦说乎!

本文转载自:网络
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 82

随着5G技术的发展,射频前端(RFFE)设计变得越来越复杂,而系统级封装(SiP)技术因其可集成多颗裸芯片与无源器件的特点,开始被广泛用于射频前端的设计中。

芯片设计与封装设计传统上是由各自工程团队独立完成,这样做的缺陷是增加了迭代时间和沟通成本。如果能够实现芯片和封装协同设计,不仅可大幅减少迭代次数,提高设计成功率,而且使能芯片工程师在设计流程中随时评估封装性能。

目前在市场上,要实现快速的芯片和封装协同仿真的方法并不多。芯和半导体独创的这套联合仿真流程中,三维建模简单易用,并配有专门针对联合仿真的优化求解器,能够提供更高的仿真加速和仿真效率。

三维建模和仿真流程

1.导入芯片和封装版图文件

在Metis工具中,可直接导入Cadence的设计文件(.mcm/.sip/.brd)、ODB++文件、以及DXF和GDS文件。本案例中芯片和封装版图均为GDS格式,同时还需要layermap文件和仿真工艺信息lyr文件。依次导入芯片和封装版图后,在Metis 3D视图中自动生成了它们的三维结构(图2),此时它们的相对位置是任意,需要通过Bump将它们连接在一起。

“
图1 导入版图界面

“图2
图2 导入芯片和封装文件

2.模型堆叠

在左侧的项目管理栏,选择Assemblies,进入堆叠设置界面。在上侧Model栏,我们将芯片设置为Upper Model,将封装设置为Lower Model(图3)。

“图3
图3 切割后的模型 左:Serdes; 右:DDR

接着我们使用拖拽功能,将Upper Model拖拽至正确的封装焊点位置(图4)。

“图4
图4 移动upper Model至正确位置(右图)

最后创建合适的Bump模型,通过在芯片pad上点击增加Bump模型,将芯片和封装结构连接在一起(图5)。

“图5
图5 Bump建模及添加

3.端口添加

模型堆叠完毕后,用户可以直接在3D视图中添加集总端口,其中信号类型,金属层次,端口阻抗可任意配置。在本案例中,我们选择封装焊盘的一边作为信号端口。

“图6
图6 叠层及端口管理

“图7
图7 生成的最终仿真模型

4.仿真环境设置

Metis的网格划分、金属和过孔模型可以根据不同的结构进行分开设置,从而达到仿真精度与效率的双重提升。本案例中芯片的金属设置为Thick,过孔为Lumped,网格大小为50um,而封装的金属设置为3D,过孔为3D,网格大小为200um。最后点击Run Solver进行联合仿真。

“图8
图8 芯片的仿真设置

5.仿真结果比对

我们分别仿真了不带封装和带封装两种应用场景,来分析封装对芯片滤波特性的影响。绿色曲线是不带封装的芯片仿真数据,红色曲线是带封装的芯片仿真数据。通过对比RL和IL两个指标,我们发现在通带内滤波器特性并没有明显恶化,但是由于封装的容性寄生,导致带外的抑制性能急剧下降。这将对射频系统接收信号和本征信号带来干扰,从而导致信号的阻塞。由此我们得出结论,封装效应是芯片设计不得不考虑的重要因素,同时Metis能很好的解决联合仿真建模困难,优化设计效率低的问题。

“
图9 RL与IL比对结果

总结

本文介绍了一种采用芯和半导体的Metis工具实现芯片和封装联合仿真的方法。通过Metis分别导入芯片和封装的版图文件,将芯片倒装焊在封装基板上,建立三维堆叠模型。最后使用Metis进行快速的电磁仿真分析,我们考察了封装对芯片性能指标的影响。此案例可以帮助设计人员进行芯片和封装协同设计可大幅减少迭代次数,提高设计成功率,使能芯片工程师在设计流程中随时评估封装性能。

来源:芯和半导体
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 318

近日,联想商用正式发布了智能物联新产品——基于瑞芯微RK3568芯片研发的联想边缘增强计算板卡ECB-PR51,以及采用此主板开发的联想边缘增强智能网关。瑞芯微与联想商用携手为商用智能物联解决方案赋能,可广泛应用于智能制造、智慧零售、智慧城市等诸多行业场景。

“”

RK3568芯片是瑞芯微全新推出的新一代AIoT计算平台,除具有高性能CPU和GPU外,还搭载第三代AI处理器,有效拓展安防、工控、物联网网关应用的性能需求。其具备五大技术特性:

“”

1. 高性能处理器。采用四核A55架构CPU,G52 GPU;内置NPU,可提供0.8T算力

2. 高可靠性设计。支持DDR及CPU Cache全链路ECC

3. 内置安防级ISP图像处理器。8M@30fps处理能力,强大的HDR功能,支持畸变矫正、去雾、噪点消除等功能

4. 丰富的显示、外设及拓展接口。内置HDMI/eDP/LVDS/MIPI/RGB/T-CON显示接口,支持多显;支持10x UART, 6x I2C, 16x PWM, 4x SPI, 3x CAN, 8xADC;支持PCIe 3.0及PCIe2.0、双千兆以太网、SATA3.0及USB3.0等灵活高速扩展接口

5. 强大的视频编解码能力。支持4K H.264/H.265/VP9等多种格式高清解码,支持1080p 60fps的H.264及H.265格式编码

搭载RK3568的联想边缘增强计算板卡ECB-PR51主板,遵循Leez家族的标准化设计,可全面兼容Leez丰富的功能模块及高防护外壳。可快速响应客户的个性化需求, 进行定制化产品开发。基于ECB-PR51主板的强大性能,以及开源、开放的Leez开发平台,联想智能网关在商业智慧应用落地中极具市场优势。

“”

基于RK3568的联想边缘增强智能网关ECG-AR51P系列,使用Leez标准化设计。采用无风扇散热、工业级防护、防尘静音,更可靠。该设备具有超强的兼容性和扩展性,专业接口模块,客户可灵活选择RS232、RS485以及CAN等数据接口。网络通信方面,可选扩展4G、5G移动数据网络,双路千兆以太网、Wifi 5、蓝牙5.0等一应俱全。外置HDMI高清显示接口,可流畅支持4K显示。同时,可扩展AI加速模块,提供3-12Tops的增强算力。0.8L的超小紧凑机身与强大性能的组合,让智能网关ECG-AR51P系列可应用于丰富的行业场景。

“”

瑞芯微RK3568芯片以高性能、高可靠性持续赋能智能物联产品落地。此次,与联想商用的携手,凭借其深厚的智能化转型经验及领先的商用物联网边缘计算产品实践经验,将共同探索及拓展更多智能物联的应用场景,助力行业客户提升产品市场竞争优势。

*图三、图四产品宣传图由联想商用提供,版权归其所有

围观 226

STM32芯片主要由内核和片上外设组成,STM32F103采用的是Cortex-M3内核,内核由ARM公司设计。STM32的芯片生产厂商ST,负责在内核之外设计部件并生产整个芯片。这些内核之外的部件被称为核外外设或片上外设,如 GPIO、USART(串口)、I2C、SPI 等。

“芯片内部架构示意图"
芯片内部架构示意图

芯片内核与外设之间通过各种总线连接,其中驱动单元有 4 个,被动单元也有 4 个,具体如上图所示。可以把驱动单元理解成是内核部分,被动单元都理解成外设。

ICode 总线

ICode总线是专门用来取指令的,其中的I表示Instruction(指令),指令的意思。写好的程序编译之后都是一条条指令,存放在 FLASH中,内核通过ICode总线读取这些指令来执行程序。

DCode总线

DCode这条总线是用来取数的,其中的D表示Data(数据)。在写程序的时候,数据有常量和变量两种。常量就是固定不变的,用C语言中的const关键字修饰,放到内部FLASH当中。变量是可变的,不管是全局变量还是局部变量都放在内部的SRAM。

系统System总线

我们通常说的寄存器编程,即读写寄存器都是通过系统总线来完成的,系统总线主要是用来访问外设的寄存器。

DMA总线

DMA总线也主要是用来传输数据,这个数据可以是在某个外设的数据寄存器,可以在SRAM,可以在内部FLASH。

因为数据可以被Dcode总线,也可以被DMA总线访问,为了避免访问冲突,在取数的时候需要经过一个总线矩阵来仲裁,决定哪个总线在取数。

内部的闪存存储器Flash

内部的闪存存储器即FLASH,编写好的程序就放在这个地方。内核通过ICode总线来取里面的指令。

内部的SRAM

内部的SRAM,是通常所说的内存,程序中的变量、堆栈等的开销都是基于内部SRAM,内核通过DCode总线来访问它。

FSMC

FSMC的英文全称是Flexible static memory controller(灵活的静态的存储器控制器)。通过FSMC可以扩展内存,如外部的SRAM、NAND-FLASH和NORFLASH。但FSMC只能扩展静态的内存,不能是动态的内存,比如就不能用来扩展SDRAM。

AHB

从AHB总线延伸出来的两条APB2和APB1总线是最常见的总线,GPIO、串口、I2C、SPI 这些外设就挂载在这两条总线上。这个是学习STM32的重点,要学会对这些外设编程,去驱动外部的各种设备。

本文转载自:STM32嵌入式开发
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 274

页面

订阅 RSS - 芯片