跳转到主要内容
MCU加油站
Toggle navigation
首页
技术
新闻
下载中心
互动专区
视频
评测
活动
博客
登录
注册
技术
过压保护电路
过压保护(Over-Voltage Protect,OVP)电路主要用在需要额定电压供电电源的输入端,用于防止输入电压过高而造成电路系统元器件或引起的连带事故! 任何电子元器件都有其可以承受的最大额定工作电压,一旦超出最大耐压范围,则很有可能损坏,这与人承受过大的压力引起的后果是大致相同的。 比如,铝电解电容两端的电压超过额定值将可能有爆炸风险,如下图所示:(来自VISHAY 铝电解电容038...
阅读详情
2018-11-30 |
保护电路
PWM 和PFM
• PWM 和PFM 是两大类DC-DC 转换器架构 • 每种类型的性能特征是不一样的 • 重负载和轻负载时的效率 • 负载调节 • 设计复杂性 • EMI / 噪声考虑 做电源设计的应该都知道PWM 和PFM 这两个概念 开关电源的控制技术主要有三种: (1)脉冲宽度调制(PWM); (2)脉冲频率调制(PFM); (3)脉冲宽度频率调制(PWM...
阅读详情
2018-11-30 |
PWM
,
PFM
单片机的硬件抗干扰技术解析
单片机系统硬件抗干扰常用方法实践影响单片机系统可靠安全运行的主要因素主要来自系统内部和外部的各种电气干扰,并受系统结构设计、元器件选择、安装、制造工艺影响。这些都构成单片机系统的干扰因素,常会导致单片机系统运行失常,轻则影响产品质量和产量,重则会导致事故,造成重大经济损失。 形成干扰的基本要素有三个: (1)干扰源。指产生干扰的元件、设备或信号, 用数学语言描述如下:du/dt, di/...
阅读详情
2018-11-29 |
单片机
,
抗干扰
RTC时钟偶发性延时或超时该怎么办?
在非常温的工作环境下,RTC时钟出现偶发性的延时或者超时现象。成熟的RTC电路设计看似简单,但如何保证RTC时钟的精确度?在出现偶发性异常现象时,如何快速定位和解决问题?本文将分享一个案例。 案例情况 工控板使用了NXP的PCF8563 RTC 芯片方案,在研发做环境温度摸底测试的时候, RTC时钟出现偶发性延时或者超前现象,于是研发展开一系列的问题定位。 排查分析 1、...
阅读详情
2018-11-29 |
RTC
,
时钟
功率MOS管的五种损坏模式详解
第一种:雪崩破坏 如果在漏极-源极间外加超出器件额定VDSS的电涌电压,而且达到击穿电压V(BR)DSS (根据击穿电流其值不同),并超出一定的能量后就发生破坏的现象。 在介质负载的开关运行断开时产生的回扫电压,或者由漏磁电感产生的尖峰电压超出功率MOSFET的漏极额定耐压并进入击穿区而导致破坏的模式会引起雪崩破坏。 典型电路: 第二种:器件发热损坏 由超出安全区域引起发热而导致的。...
阅读详情
2018-11-29 |
MOS管
单片机晶振的负载电容常见问题分析
单片机晶振旁边两个对地电容叫晶振的负载电容,分别接在晶振的两个脚上和对地的电容,一般在几十皮发。它会影响到晶振的谐振频率和输出幅度,一般订购晶振时候供货方会问你负载电容是多少。 一般单片机的晶振工作于并联谐振状态,也可以理解为谐振电容的一部分。它是根据晶振厂家提供的晶振要求负载电容选值的,换句话说,晶振的频率就是在它提供的负载电容下测得的,能最大限度的保证频率值的误差。也能保证温漂等误差。...
阅读详情
2018-11-28 |
单片机
,
晶振
干货 | 电源工程师必知的11个经典运放电路
运算放大器组成的电路五花八门,令人眼花瞭乱。工程师在分析它的工作原理时常抓不住核心,令人头大。为此小编特地搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位看完后有所收获。 遍观所有模拟电子技术的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi。...
阅读详情
2018-11-28 |
电源电路
开关电源中“高频磁芯的形状”不可小觑!
开关电源中高频磁芯很常见,当你面对形状各异的高频磁芯,你能解释出来它们究竟有何不同吗? 高频变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。变压器的磁芯包括罐型磁芯,RM型磁芯,E型磁芯,EC、...
阅读详情
2018-11-28 |
开关电源
三极管和MOS管驱动电路的正确用法
1、三极管和MOS管的基本特性 三极管是电流控制电流器件,用基极电流的变化控制集电极电流的变化。有NPN型三极管(简称P型三极管)和PNP型三极管(简称N型三极管)两种,符号如下: MOS管是电压控制电流器件,用栅极电压的变化控制漏极电流的变化。有P沟道MOS管(简称PMOS)和N沟道MOS管(简称NMOS),符号如下(此处只讨论常用的增强型MOS管): 2、三极管和MOS管的正确应用 (1...
阅读详情
2018-11-27 |
三极管
,
MOS管
4个设计绝招教你减少PCB板电磁干扰
电子设备的电子信号和处理器的频率不断提升,电子系统已是一个包含多种元器件和许多分系统的复杂设备。高密和高速会令系统的辐射加重,而低压和高灵敏度 会使系统的抗扰度降低。 因此,电磁干扰(EMI)实在是威胁着电子设备的安全性、可靠性和稳定性。我们在设计电子产品时,PCB板的设计对解决EMI问题至关重要。 本文主要讲解PCB设计时要注意的地方,从而减低PCB板中的电磁干扰问题。 电磁干扰(EMI)...
阅读详情
2018-11-27 |
PCB板
,
电磁干扰
设计出更高效的嵌入式电路只需七个要素!
嵌入式开发项目中,首先需要做需求分析,然后根据需求分析进行综合考虑,这里给出几个嵌入式硬件设计时特别要注意的问题。 1、MCU的选择 选择 MCU 时要考虑 MCU 所能够完成的功能、MCU 的价格、功耗、供电电压、I/O 口电平、管脚数目以及 MCU 的封装等因素。MCU 的功耗可以从其电气性能参数中查到。供电电压有 5V、3.3V 以及 1.8V 超低电压供电模式。为了能合理分配 MCU...
阅读详情
2018-11-26 |
嵌入式
,
电路设计
带你了解引起电源模块发热的四大原因
一摸电源模块的表面,热乎乎的,模块坏了?且慢,有一点发热,仅仅只是因为它正努力地工作着。但高温对电源模块的可靠性影响极其大!基于电源模块热设计的知识,这一次,我们扒一扒引起电源模块发热的原因。 电源模块在电压转换过程中有能量损耗,产生热能导致模块发热,降低电源的转换效率,影响电源模块正常工作,并且可能会影响周围其他器件的性能,这种情况需要马上排查。但什么情况下会造成电源模块发热严重呢?...
阅读详情
2018-11-26 |
电源模块
像使用PIC® MCU一样在MPLAB® X IDE中开发AVR® MCU
David Song Microchip Technology Inc. 资深应用工程师 对PIC® MCU的爱好者来说,MPLAB® X IDE除了在一些配置不高的电脑上跑起来比较慢之外,不失为一款比较优秀的开发环境,其编辑、编译、调试和烧录功能都非常强大。而AVR® MCU的Studio 7开发环境,继承了Visual Studio(VS)的血脉,只是风格与X IDE不同而已...
阅读详情
2018-11-23 |
AVR®
,
MPLAB®
,
MCU
如何防止初次上电“炸机”?
做了这么些年的开关电源设计,一个很让我心里忐忑的事就是新做的样机进行初次上电,担心炸机。相信很多工程师跟我一样深有体会,把自己的新样机在上电之前检查再检查,生怕哪个地方有焊错焊反搭焊或者说有地方短路,甚至把工作台上都扫得干干净净以防万一。 根据工程师的经验不同,细心程度不同,样机首次通电有一定的炸机概率,并且提心吊胆的。当然“提心吊胆”一词只能用在一部分工程师上,...
阅读详情
2018-11-23 |
开关电源
,
电源设计
电压转换的级联和混合分不清?看几个示例就明白了
对于需要从高输入电压转换到极低输出电压的应用,有不同的解决方案。 一个有趣的例子是从48 V转换到3.3 V。这样的规格不仅在信息技术市场的服务器应用中很常见,在电信应用中同样常见。 如果将一个降压转换器(降压器)用于此单一转换步骤,如图 1 所示,会出现小占空比的问题。 图1. 通过单一转换步骤将电压从48 V降至3.3 V 占空比反映导通时间(当主 开关导通时)和断开时间(当主开关断开时)...
阅读详情
2018-11-22 |
电压转换
‹‹
250 中的第 176
››