晶振

晶振在单片机中是必不可少的元器件,只要用到CPU的地方就必定有晶振的存在,那么晶振是如何工作的呢?

什么是晶振    

晶振一般指晶体振荡器,晶体振荡器是指从一块石英晶体上按一定方位角切下的薄片,简称为晶片。    

石英晶体谐振器,简称为石英晶振(Crystal oscillator),如下图椭圆物体。    

1730443392530964.png

而在封装内部添加IC组成振荡电路的晶体元件称为晶体振荡器。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。

晶振工作原理    

石英晶体振荡器是利用石英晶体的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片,在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。    

若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。    

2.jpg

如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。    

在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。相关推荐:在MCU晶体两边各接一对地电容的原因。    

当晶体不振动时,可把它看成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个皮法到几十皮法。当晶体振荡时,机械振动的惯性可用电感L来等效。    一般L的值为几十豪亨到几百豪亨。晶片的弹性可用电容C来等效,C的值很小,一般只有0.0002~0.1皮法。晶片振动时因摩擦而造成的损耗用R来等效,它的数值约为100欧。    

由于晶片的等效电感很大,而C很小,R也小,因此回路的品质因数Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定度。    

计算机都有个计时电路,尽管一般使用“时钟”这个词来表示这些设备,但它们实际上并不是通常意义的时钟,把它们称为计时器可能更恰当一点。    

计算机的计时器通常是一个精密加工过的石英晶体,石英晶体在其张力限度内以一定的频率振荡,这种频率取决于晶体本身如何切割及其受到张力的大小。有两个寄存器与每个石英晶体相关联,一个计数器和一个保持寄存器。    

石英晶体的每次振荡使计数器减1。当计数器减为0时,产生一个中断,计数器从保持寄存器中重新装入初始值。这种方法使得对一个计时器进行编程,令其每秒产生60次中断(或者以任何其它希望的频率产生中断)成为可能。每次中断称为一个时钟嘀嗒。

晶振在电气上可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率为串联谐振,较高的频率为并联谐振。    

由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。    

这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。    

晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。    

一般的晶振振荡电路都是在一个反相放大器的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。    

一般的晶振的负载电容为15皮或12.5皮,如果再考虑元件引脚的等效输入电容,则两个22皮的电容构成晶振的振荡电路就是比较好的选择。

来源:STM32嵌入式开发

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 43

有一些电子设备需要频率高度稳定的交流信号,而LC振荡器稳定性较差,频率容易漂移(即产生的交流信号频率容易变化)。

在振荡器中采用一个特殊的元件——石英晶体,可以产生高度稳定的信号,这种采用石英晶体的振荡器称为晶体振荡器。

电子元器件的小型化趋势,有力促进了当下社会的发展进步,电子元器件越小,为主板节约的空间越大,因此,有人异想天开,如果能将晶振电路封装到芯片(如时钟芯片)内部将是多么完美,就如同有源晶振在无源晶振的基础内置振动芯片,就无需外部的电容电阻等元器件了。

但实际出于各种原因,晶振并没有内置到芯片中。这究竟是为什么呢?

原因1、早些年,芯片的生产制作工艺也许还不能够将晶振做进芯片内部,但是现在可以了。这个问题主要还是实用性和成本决定的。

原因2、芯片和晶振的材料是不同的,芯片 (集成电路) 的材料是硅,而晶体则是石英 (二氧化硅),没法做在一起,但是可以封装在一起,目前已经可以实现了,但是成本就比较高了。

原因3、晶振一旦封装进芯片内部,频率也固定死了,想再更换频率的话,基本也是不可能的了,而放在外面, 就可以自由的更换晶振来给芯片提供不同的频率。

有人说,芯片内部有 PLL,管它晶振频率是多少,用 PLL 倍频/分频不就可以了,那么这有回到成本的问题上来了,100M 的晶振集成到芯片里, 但我用不了那么高的频率,我只想用 10M 的频率,那我为何要去买你集成了 100M 晶振的芯片呢,又贵又浪费。

我们通常所说的 "片内时钟", 是不是实际上片内根本没有晶振, 是有RC 振荡电路。

1.png

由图可以看出系统时钟的供给可以有3种方式,HSI,HSE,PLL。如果选用内部时钟作为系统时钟,其倍频达不到72Mhz,最多也就8Mhz/2*16 = 64Mhz。

如果使用内部RC振荡器而不使用外部晶振,请按照如下方法处理:

1)对于100脚或144脚的产品,OSC_IN应接地,OSC_OUT应悬空。

2)对于少于100脚的产品,有2种接法:

i)OSC_IN和OSC_OUT分别通过10K电阻接地。此方法可提高EMC性能。

ii)分别重映射OSC_IN和OSC_OUT至PD0和PD1,再配置PD0和PD1为推挽输出并输出'0'。此方法可以减小功耗并(相对上面i)节省2个外部电阻。

STM32时钟系统结构图

时钟是STM32单片机的脉搏,是单片机的驱动源。使用任何一个外设都必须打开相应的时钟。这样的好处就是,如果不使用一个外设的时候,就把它的时钟关掉,从而可以降低系统的功耗,达到节能,实现低功耗的效果。

STM32单片机的时钟可以由以下3个时钟源提供:

1、HSI:高速内部时钟信号STM32单片机内带的时钟 (8M频率), 精度较差。

2、HSE:高速外部时钟信号,精度高。

来源:i. HSE外部晶体/陶瓷谐振器(晶振);ii.HSE用户外部时钟

3、LSE:低速外部晶体32.768kHz主要提供一个精确的时钟源 一般作为RTC时钟使用。

来源:8号线攻城狮

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 34

现象描述:

某塑料外壳产品,带一根I/O电缆,在进行 EMC 标准规定的辐射发射测试时发现辐射超标,具体频点是 160 MHz。需要分析其辐射超标的原因,并给出相应对策。

原因分析:

该产品只有一块 PCB,其上有一个频率为 16MHz 的晶振。由此可见,160MHz 的辐射应该与该晶振有关(注意:并不是说辐射超标是晶振直接辐射造成的,可能是倍频产生的)。图 1 所示的是该产品局部PCB 布局实图,从图 1 中可以明显看到,16MHz 的晶振正好布置在PCB 的边缘。

“图
图 1 该产品局部 PCB 布局实图

当一个被测产品置于辐射发射的测试环境中时,被测产品中的高速信号线或高速器件与实验室中参考接地板会形成一定的容性耦合(本产品中晶振属于高速器件,其对应的上升下降沿较陡,晶振在工作时,其引线部分的 dU/dt 比较大,属于强干扰源,在辐射发射测试中是隐患),即被测产品中的高速信号线或高速器件与实验室中参考接地板之间存在电场分布或寄生电容,这个寄生电容很小(如小于0.1pF),但是还是会导致产品出现一种共模辐射,产生这种共模辐射的原理如图 2 所示。

在图2 中,晶振壳体上的电压(外壳不接大地的晶振)或晶振时钟信号引脚上的电压Udm 和参考接地板之间产生寄生回路,回路中的共模电流通过电缆产生共模辐射,共模辐射电流 Icm ≈C * w * Udm,其中,C 为 PCB 中信号印制线与参考接地板之间的寄生电容, 约在十分之一皮法到几皮法之间;Cp 为参考接地板与电缆之间的寄生电容,约为 100 pF;w 为信号角频率。共模辐射电流 Icm 会在几微安到数十微安之间,经分析可知,电缆上流过这个数量级的共模电流已足够造成辐射发射测试的超标。

“图
图 2 晶振与参考接地板之间的容性耦合导致辐射发射原理

为什么晶振布置在 PCB 边缘时会导致辐射超标,而向板内移动后,可以使辐射发射测试通过呢?

从以上分析已经可以看出,晶振与参考接地板之间的耦合导致电缆共模辐射的实质是晶振与参考接地板之间的寄生电容,也就是说这个寄生电容越大,晶振与参考接地板之间的耦合就越厉害,流过电缆的共模电流也越大,电缆产生的共模辐射发射也越大;反之辐射发射就越小。那这个寄生电容的实质是什么呢,实际上这个晶振与参考接地板之间的寄生电容就是由于晶振与参考接地板之间存在的电场分布,当两者之间的电压差恒定时,两者之间电场分布越多,两者之间的电场强度就越大,两者之间寄生电容也会越大。当晶振布置在 PCB 的边缘时,晶振与参考接地板之间的电场分布示意图如图 3 所示。当晶振布置在 PCB 中间,或离 PCB 边缘较远时,晶振与参考接地板之间的电场分布示意图如图4 所示。

“图
图 3 PCB 边缘的晶振与参考接地板之间的电场分布示意图

从图 3 和图 4 的比较可以看出,当晶振布置在 PCB 中间,或离PCB 边缘较远时,由于 PCB 中工作地(GND)平面的存在,使大部分的电场控制在晶振与工作地(GND)之间,即在 PCB 内部,分布到参考接地板的电场大大减小,即晶振与参考接地板之间的寄生电容大大减小。这时也不难理解为何晶振布置在PCB 边缘时会导致辐射超标,而向板内移动后,辐射发射就降了。

“图
图 4 PCB 中间的晶振与参考接地板之间的电场分布示意图

处理措施:

方案一:将晶振内移,使其离 PCB 地平面边缘至少有1 cm 以上的距离,并在 PCB 表层离晶振 1 cm 的范围内敷铜,同时把表层的铜通过过孔与 PCB 地平面相连。

方案二:不改电路板的情况下选择放弃使用外部晶振,在软件中屏蔽外部晶振,采用单片机内部晶振。

本次实验采用方案一,经过修改后的测试结果有明显的改善,如下图 5 所示,左右分别是整改前与整改后的整改前后辐射发射测试频谱图,可以明显看出整改后,辐射发射有明显的改善。

“图
图 5 整改前后辐射发射测试频谱图

思考与启示

(1) 高 dU/dt 的印制线或器件与参考接地板之间的容性耦合,会产生 EMI 问题,敏感印制线或器件布置在 PCB 边缘会产生抗扰度问题;

(2) 杜绝高 dU/dt的印制线或器件放置在PCB 的边缘,如果设计中由于其他原因一定要布置在 PCB 边缘,那么可以在晶振印制线边上再布一根工作地(GND)线,并注意一定要在包地线上间隔一段距离就打过孔,把晶振部分围起来,如下图6 示意;

“图
图 6 晶振包地示意图

其理论依据同法拉第电笼:由于金属的静电等势性,可以有效屏蔽外电场的电磁干扰。法拉第屏罩无论被加上多高的电压内部也不存在电场。而且由于金属的导电性,即使笼子通过很大的电流,内部的物体通过的电流也微乎其微。在面对电磁波时,可以有效的阻止电磁波的进入。

由于法拉第屏罩的静电屏蔽原理,在汽车、飞机等交通工具中的人是不会被雷击的。同样,也是因为法拉第屏罩的原理,有金属外皮的同轴电缆也可以不受干扰地传播讯号。如果电梯内没有中继器的话,那么当电梯关上的时候,里面任何电子讯号也收不到。为防止干扰,一些精密仪器需放在笼内才可进行运作或量测。或者也可以再开一个洞,例如金属机身构造的的智能手机。

(3) 消除一种误解:不要认为辐射是由晶振直接造成的,事实上晶振个体较小,它直接影响的是近场辐射(表现为晶振与其他导体(如参考接地板)之间形成的寄生电容),造成远场辐射的直接因素是电缆或产品中最大尺寸与辐射频率波长可以比拟的导体;

(4)此外,将晶振外壳接地可以在一定程度上减少这种干扰叠加到系统上。

参考文献:

1、《EMC 电磁兼容设计与测试案例分析》郑军奇 

2、维基百科

来源: 8号线攻城狮
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 109

有一些电子设备需要频率高度稳定的交流信号,而LC振荡器稳定性较差,频率容易漂移,即产生的交流信号频率容易变化。

在振荡器中采用一个特殊的元件——石英晶体,可以产生高度稳定的信号,这种采用石英晶体的振荡器称为晶体振荡器,简称晶振,如下图是各种各样的晶振。

“晶振为什么没有封装进STM32芯片内部?"

电子元器件的小型化趋势,有力促进了当下社会的发展进步,电子元器件越小,为主板节约的空间越大,因此,有人异想天开,如果能将晶振电路封装到IC芯片(如时钟芯片)内部将是多么完美,就如同有源晶振在无源晶振的基础内置振动芯片,就无需外部的电容电阻等元器件了。

但实际出于各种原因,晶振并没有内置到IC芯片中。这究竟是为什么呢?

原因 1

早些年,芯片的生产制作工艺也许还不能够将晶振做进芯片内部,但是现在可以了。这个问题主要还是实用性和成本决定的。

原因 2

芯片和晶振的材料是不同的,芯片 (集成电路) 的材料是硅,而晶体则是石英 (二氧化硅),没法做在一起,但是可以封装在一起,目前已经可以实现了,但是成本就比较高了。

原因 3

晶振一旦封装进芯片内部,频率也固定死了,想再更换频率的话,基本也是不可能的了,而放在外面,就可以自由的更换晶振来给芯片提供不同的频率。

有人说,芯片内部有 PLL,管它晶振频率是多少,用 PLL 倍频/分频不就可以了,那么这有回到成本的问题上来了,100M 的晶振集成到芯片里, 但我用不了那么高的频率,我只想用 10M 的频率,那我为何要去买你集成了 100M 晶振的芯片呢,又贵又浪费。

我们通常所说的 "片内时钟",实际上片内根本没有晶振,只有RC振荡器。

“STM32的时钟框图"
STM32的时钟框图

可以看出STM32系统时钟的供给可以有3种方式:

  • HSI,高速内部时钟信号STM32单片机内带的时钟 (8M频率), 精度较差。
  • HSE,高速外部时钟信号,精度高。
  • PLL,低速外部晶体32.768kHz主要提供一个精确的时钟源 一般作为RTC时钟使用

如果选用内部时钟作为系统时钟,其倍频达不到72Mhz,最多也就8Mhz/2*16 = 64Mhz。

如果使用内部RC振荡器而不使用外部晶振,请按照如下方法处理:
① 对于100脚或144脚的产品,OSC_IN应接地,OSC_OUT应悬空。
② 对于少于100脚的产品,有2种接法:

  • OSC_IN和OSC_OUT分别通过10K电阻接地。此方法可提高EMC性能。

  • 分别重映射OSC_IN和OSC_OUT至PD0和PD1,再配置PD0和PD1为推挽输出并输出'0'。此方法可以减小功耗并(相对上面i)节省2个外部电阻。

时钟是STM32单片机的脉搏,是单片机的驱动源。

使用任何一个外设都必须打开相应的时钟。这样的好处就是,如果不使用一个外设的时候,就把它的时钟关掉,从而可以降低系统的功耗,达到节能,实现低功耗的效果。

来源:网络
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 101

1、单片机中如果没有了晶振会怎么样?

首先我们要知道单片机到底是什么?简单来说,它就是一个微型计算机系统。然而麻雀虽小,五脏俱全。

单片机内部用到很多和电脑功能相类似的模块,像CPU、内存、并行总线、存储数据的存储器等在单片机中都存在,不过不同的是它的这些部件性能相比电脑要弱很多,当然价钱也相对要低不少。我们可以用它来做一些控制电器等不是很复杂的工作,它主要是作为电子产品控制部分的核心部件。

那单片机晶振又是什么呢?单片机中若是没有了晶振会怎么样呢?

单片机晶振就是单片机内部电路产生单片机所需的时钟频率的电子元件,单片机晶振提供的时钟频率越高,那么单片机运行速度就越快,单片机接的一切指令的执行都是建立在其晶振提供的时钟频率,由此可见单片机中晶振的重要性了。

通常一个单片机系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,我们可以通过电子调整频率的方法保持同步。

单片机系统中晶振的主要作用就是为系统提供基本的时钟信号,晶振通常与锁相环电路配合使用,来提供系统所需的时钟频率。如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。

“没有了晶振的单片机会怎样?

所以说,单片机中没有了晶振,也就没有时钟周期,没有时钟周期,就无法执行程序代码,单片机就无法工作,程序也就无法烧入。因为单片机工作时,是一条一条地从RoM中取指令,然后逐步执行。

我们把单片机访问一次存储器的时间称之为一个机器周期,这是一个时间基准。—个机器周期包括12个时钟周期。如果一个单片机选择了12MHZ晶振,它的时钟周期是1/12us,它的一个机器周期是12×(1/12)us,也就是1us。

机器周期不仅对于指令执行有着重要的意义,而且机器周期也是单片机定时器和计数器的时间基准。若一个单片机选择了12MHZ的晶振(这个晶振可以是49S的插件晶振,也可以是贴片晶振),那么当定时器的数值加1时,实际经过的时间就是1us,这就是单片机的定时原理。

我们的电脑用过一段时间后总是会出这样那样的问题,可能是主板、CPU、电源烧坏了等严重的情况,当然也有可能仅仅是内存条有了松动、主板上的一个晶振损坏了甚至是长期没有清理灰尘等小问题,大问题我们没有办法,只能送去维修了,但是这些小问题相信我们都能够轻松解决的。

单片机也是一样,若是单片机无法启动,不要认为它已经坏了,就马上将它扔掉了,很多情况下单片机无法工作都是其中的石英晶振出现了问题。这时我们可以用简单的方法来测量晶振是否损坏。

方法很简单,我们用万用表测量晶振两个引脚电压是否是芯片工作电压的一半,比如51单片机的工作电压是+5V,则我们测量是否是2.5V左右。另外如果用镊子碰晶体另外一个脚,若是这个电压有明显变化,证明晶振是起振的。反之,则是晶振已经损坏了,我们只需更换晶振就可再次使用单片机了。

以上着重讲了石英晶振在单片机中的重要性,然而,作为一种精密的频率元件,单片机中的晶振却很容易出现问题,轻微的碰撞都可能导致晶振损坏,因此,遇到单片机晶振不起振是很常见的一种现象。那么,单片机晶振经常遇到的问题及处理方法有哪些?

2、晶振不起振的原因分析

首先,我们分析引起单片机晶振不起振的原因有哪些。

1、PCB布线错误,现在的PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合组成的。因此,PCB布线的时候可能出现问题导致晶振不起振;

2、单片机或晶振的质量问题;

3、负载二极管或匹配电容与晶振不匹配或者电容质量有问题;

4、PCB板受潮,导致阻抗失配而不能起振;

5、晶振电路的走线过长或两脚之间有走线导致晶振不起振,通常我们在PCB布线时晶振电路的走线应尽量短且尽可能靠近振荡器,严禁在晶振两脚间走线;

6、晶振受外围电路的影响而不起振。

“没有了晶振的单片机会怎样?"

3、其他要特别注意的问题分析

1)晶振的选型,选择合适的晶振对单片机来说非常重要,我们在选择晶振的时候至少必须考虑谐振频点、负载电容、激励功率、温度特性长期稳定性等参数。合适的晶振才能确保单片机能够正常工作。

2)电容引起的晶振不稳定,晶振电路中的电容C1和C2两个电容对晶振的稳定性有很大影响,每一种晶振都有各自的特性,所以我们必须按晶振生产商所提供的数值选择外部元器件。

通常在许可范围内,C1,C2值越低越好,C值偏大虽有利于振荡器的稳定,但将会增加起振时间。一般情况下我们使得C2值大于C1值,这样可使得上电时加快晶振起振。

3)单片机晶振被过分驱动引起的问题,晶振被过分驱动会渐渐损耗晶振的接触电镀从而引起晶振频率的上升。

我们可用一台示波器来检测,OSC,输出脚,如果检测一非常清晰的正弦波且正弦波的上限值和下限值都符合时钟输入需要,则晶振未被过分驱动,相反,如果正弦波形的波峰,波谷两端被削平,而使波形成为方形,则晶振被过分驱动,这时就需要用电阻RS来防止晶振被过分驱动,判断电阻RS值大小的最简单的方法就是串联一个5k或10k的微调电阻,从0开始慢慢调高,一直到正弦波不再被削平为止,通过此办法就可以找到最接近的电阻RS值。

4)画PCB的时候,要求晶振离它的放大电路(IC管脚)越近越好。这是由于晶振的输出能力有限,它仅仅输出以毫瓦为单位的电能量。在IC(集成电路)内部,通过放大器将这个信号放大几百倍甚至上千倍才能正常使用。

晶振和IC间一般是通过铜走线相连的,这根走线可以看成一段电容或数段导线,导线在切割磁力线的时候会产生电流,导线越长,产生的电流越强。

晶振好比是单片机的心脏!我们都知道,单片机晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。不同型号的单片机使用的石英晶振型号及频率也可能是不一样的。

单片机中的晶振若是出了问题,单片机也就无法正常工作了。因此,若是发现你的单片机无法正常工作,很大程度上可能是晶振问题造成的。

来源:EDA365电子论坛
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 389

XTAL1和XTAL2指的是8051系单片机上常见的用于接“晶振”(晶体谐振器-Crystal Resonator”)的两个引脚。从原理上来说,这两个引脚和MCU内部一个反相器相连接。这个反相器与外部的“晶振”组成一个构成一个皮尔斯振荡器(Pierce oscillator)。因为这个振荡器集成在器件内部的组件实在是不能更简单啦,就一个反相器和一个电阻,非常合适于各种数字IC的设计制造流程。

深入地分析这个皮尔斯振荡器的工作原理时,不妨把它表述成以下理想的电路形式:

“深入解析:单片机晶振脚原理是什么?"

模电知识告诉我们,当期望得到一个输出信号频率为图片的振荡电路时,这个电路在图片必须满足两个条件:

“深入解析:单片机晶振脚原理是什么?"的环路相移。
● 闭环增益为1。

在上面的皮尔斯振荡器的电路原理图中,不难发现反相器U1对任意的频率分量均提供了180°,即图片的相移量。同时,反相器在输入输出之间可以看作是一个buffer,因此通过对反相器的输出特性进行调教,较容易得到1的loop gain。

到这里有人会问了,相移量只有图片,上面的两个条件连一个都没达到,这哪能起振呢?问题的关键在于电路中的其它元件上。

首先,对电路中的一颗“晶振”来说,石英晶体本身具有压电效应,对石英晶体进行适当处理后可以得到一种压电谐振器件,这就是常见的石英晶体谐振器(以下简称QCR)。对QCR的物理特性进行分析,可以发现QCR的压电谐振过程可以用以下的理想电路模型近乎完美地表示出来。

“深入解析:单片机晶振脚原理是什么?"

右图的电路模型中,L1-C1-R1组成了一个RLC串联谐振电路,再加上一个实际很小的C0,整个QCR电路模型有两个很接近的谐振点。QCR在电路中与反相器并联,充当的是一个选频网络的作用。整个振荡电路在上电时可以看作是反相器的输出端打进去了一个阶跃信号,QCR把阶跃中谐振点频率的信号挑出来,其他没用的踢掉,在环路增益为1的情况下整个电路趋于稳态平衡。

模电的知识告诉我们,在QCR // inverter的组合下,这个皮尔斯振荡器已经具备了一个理想的振荡电路中的两大网络(选频+放大)。貌似振荡器中的R1和C1//C2没有什么卵用啊。且慢,这个R1和C1//C2,正是这个电路中最美妙的地方。

把R1与C1//C2单独抽出来配合反相器的电路组合貌似并不好理解,假如我们换种方式呢?

“图中引进R’是为了方便理解反相器中的loop
图中引进R’是为了方便理解反相器中的loop voltage gain

右边的运放电路除了反相结构本身提供的-180°相移外,R-C组合也提供了额外的相位延迟。更加奇妙的是这个电路组合在设计得当的情况下能够根据实际电路中各元件的误差自动调整相移大小与反相结构相互匹配(当然了谐振频率也会有少许改变),进而保证整个loop的相移满足条件1。这个“自动调整”的过程推导起来很占篇幅,在这里略过不表。

在上面的图中,还有一个很巧妙的地方,即R1是并联在反相器的输入输出端的。这个小小的电阻和反相器构成了一个反馈通路,进而使得人们能将各种模拟电路的分析设计方法用在这样一个逻辑门电路上,比如通过反馈的方法提高反相器的线性度。在这里将现实电路中反相器的非理想特性引入设计考虑的同时,却又能使电路图保持简洁易懂。

实际的MCU振荡电路是“Isolated” Pierce-Gate Oscillator,要考虑的因素比这个理论模型复杂得多,但根本原理都是一样的。振荡电路输出的波形,通过下一级的时钟发生电路(Clock Generator)进行整形调整后,得到具有稳定形状的矩形信号并输出至时钟树,作用于整个MCU的同步逻辑。

*原文地址:(来源:知乎,文:疯狂的蔬菜)
https://www.zhihu.com/question/30930577/answer/55822425

转载来源:嵌入式ARM
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 161

一、为什么51单片机爱用11.0592MHZ晶振?

其一:因为它能够准确地划分成时钟频率,与UART(通用异步接收器/发送器)量常见的波特率相关。特别是较高的波特率(19600,19200),不管多么古怪的值,这些晶振都是准确,常被使用的。

其二:用11.0592晶振的原因是51单片机的定时器导致的。用51单片机的定时器做波特率发生器时,如果用11.0592Mhz的晶振,根据公式算下来需要定时器设置的值都是整数;如果用12Mhz晶振,则波特率都是有偏差的,比如9600,用定时器取0XFD,实际波特率10000,一般波特率偏差在4%左右都是可以的,所以也还能用STC90C516 晶振12M 波特率9600,倍数时误差率6.99%,不倍数时误差率8.51%,数据肯定会出错。这也就是串口通信时大家喜欢用11.0592MHz晶振的原因,在波特率倍速时,最高可达到57600,误差率0.00%。用12MHz,最高也就4800,而且有0.16%误差率,但在允许范围,所以没多大影响。

二、在设计51单片机系统PCB时,晶振为何被要求紧挨着单片机?

原因如下:晶振是通过电激励来产生固定频率的机械振动,而振动又会产生电流反馈给电路,电路接到反馈后进行信号放大,再次用放大的电信号来激励晶振机械振动,晶振再将振动产生的电流反馈给电路,如此这般。当电路中的激励电信号和晶振的标称频率相同时,电路就能输出信号强大,频率稳定的正弦波。整形电路再将正弦波变成方波送到数字电路中供其使用。

问题在于晶振的输出能力有限,它仅仅输出以毫瓦为单位的电能量。在 IC(集成电路) 内部,通过放大器将这个信号放大几百倍甚至上千倍才能正常使用。

晶振和 IC 间一般是通过铜走线相连的,这根走线可以看成一段导线或数段导线,导线在切割磁力线的时候会产生电流,导线越长,产生的电流越强。现实中,磁力线不常见, 电磁波却到处都是,例如:无线广播发射、电视塔发射、手机通讯等等。晶振和IC之间的连线就变成了接收天线,它越长,接收的信号就越强,产生的电能量就越强,直到接收到的电信号强度超过或接近晶振产生的信号强度时,IC内的放大电路输出的将不再是固定频率的方波了,而是乱七八糟的信 号,导致数字电路无法同步工作而出错。

所以,画PCB(电路板)的时候,晶振离它的放大电路(IC管脚)越近越好。

三、单片机电路晶振不起振原因分析

遇到单片机晶振不起振是常见现象,那么引起晶振不起振的原因有哪些呢?

① PCB板布线错误;
②单片机质量有问题;
③ 晶振质量有问题;
④负载电容或匹配电容与晶振不匹配或者电容质量有问题;
⑤PCB板受潮,导致阻抗失配而不能起振;
⑥ 晶振电路的走线过长;
⑦晶振两脚之间有走线;⑧外围电路的影响。

解决方案,建议按如下方法逐个排除故障:

① 排除电路错误的可能性,因此可以用相应型号单片机的推荐电路进行比较。
② 排除外围元件不良的可能性,因为外围零件无非为电阻,电容,很容易鉴别是否为良品。
③ 排除晶振为停振品的可能性,因为不会只试了一二个晶振。
④试着改换晶体两端的电容,也许晶振就能起振了,电容的大小请参考晶振的使用说明。
⑤在PCB布线时晶振电路的走线应尽量短且尽可能靠近IC,杜绝在晶振两脚间走线。

四、51单片机时钟电路用12MHZ的晶振时那电容的值是怎样得出来的?拿内部时钟电路来说明吧!

其实这两个电容没人能够解释清楚到底怎么选值,因为22pF实在是太小了。这个要说只能说和内部的振荡电路自身特性有关系,搭配使用,用来校正波形,没有人去深究它到底为什么就是这么大的值。

五、单片机晶振电路中两个微调电容不对称会怎样?相差多少会使频率怎样变化?在检测无线鼠标的接受模块时,发现其频率总是慢慢变化(就是一直不松探头的手,发现频率慢慢变小)晶振是新的。

电容不对称也不会引起频率的漂移,说的频率漂移可能是因为晶振的电容的容量很不稳定引起的,可以换了试,换两电容不难,要不就是的晶振的稳定性太差了,或者测量的方法有问题。

六、单片机晶振与速度的疑问,执行一条指令的周期不是由晶振决定的吗。那么比如51单片机和MSP430,给51接高速晶振,430接低速的,是不是51跑的要快?是不是速度单片机速度仅仅与晶振有关,关键是单片机能不能支持那么大的晶振?

每个单片机的速度是受到内部逻辑门电平跳变速度限制的。两个芯片同时使用同样的晶振,比如12M的。因为AVR是RISC指令集,它在同样外部晶振频率下,比51要快。

比如,51最快能接40M,AVR是16M的晶振。

STC89C52大都用12MHz晶振,但由于其12个时钟周期才是一个机器周期,相当于其主频只有1MHz。

MSP430采用RISC精简指令集, 430单片机若采用内部DCO震荡可达21MHz主频。单个时钟周期就可以执行一条指令,相同晶振,速度较51快12倍。

对于一个51,给它用更高的晶振,速度会快些。但是对于高级的单片机就不一样了。高级单片机内部,一般都是有频率控制寄存器的,所以,简单的增加晶振,可能达到单片机的极限,导致跑飞。

七、请问:有什么方法可以确定某一款单片机在某一大小的晶振下是否能正常工作?

晶振选择太高不太合适,具体晶振上限是多少,恐怕测不出来,只能按照人家单片机的要求,一般STC系列单片机上限是35M或40M,stc单凭上写的有,如STC11F16XE 35I-LQFP44G其中35I就是晶振最高35M的工业级芯片。

超过上限会出现什么样的问题,没有测试过,一般晶振选择12M的比较多,如果选择STC 1T指令的,就相当于12*12=144M的晶振。如果用于串口通信,建议选用11.0592M的或22.184M,选择晶振最主要还是参照人家的说明书。

八、4个AT89C51单片机能否用一个12M的晶振使其都正常工作?一个采用内部时钟方式,其余三个用外部方式......那四个都用内部方式可以不(将4个单片机都并联在一个晶振上)?

可以,其中一个正常接晶振,他的XTAL2输出接到另外三个的XTAL1输入上。

九、单片机的运行速度和晶振大小的关系,若单片机的最高工作频率是40M,晶振是否可以选择24M或更高,但不超过40M,这样单片机的运行速度是否大增?长期在此工作频率下对单片机是否有不良影响?单片机对晶振的选择的原则是怎样的?

当然是有影响的,单片机的工作速度越快,功耗也越大,受干扰也会越厉害,总之最高能跑40M的,跑不超过40M的是没有问题的,只是对相关的技术(如PCB的设计元件的选取等)会高去很多。

十、89c51单片机的复位电路中常采用12MHZ的晶振,实际上市场上稍小于12MHZ,为什么呢?

答:需要串口通讯时一般是用11.0582MHZ的,这样波特率才好算。用12MHZ的工作周期就容易计算。

十一、单片机晶振上电不起振,但是手碰一下晶振就起振了,为什么?怎么判断单片机晶振是否起振呀?

看看晶振配的电容焊了没有,值有没有错误?

最简单是用示波器,另外可以看一下电源是否正常。

十二、怎样判断单片机外部晶振有没有起振?STC89C52单片机本来是好好的后来不行了,换了个晶振就好了。但是过了几个小时后又不行了,是怎么回事。还有就是怎样判断晶振是否起振?

①先换一块单片机试试,问题还在则排除单片机;
②可能是虚焊造成的,这点要注意;
③用STC89C52也碰到过类似的问题,换了块晶振就OK 了,好像STC起振不橡AT89S52那么顺。其实对于STC89C52可以直接看30脚(ALE),接个灯,起振一下子就能看出来了。

十三、51单片机晶振上接的电容大小该如何选择?是晶振越大,电容值也要大一些吗,一般常用多大的。有人说常用的从15-33pf,具体如何选择效果最好?比如分别用一个6M和12M的晶振,用多大电容更合适?

15-33pf都可以,一般用的是15P和30P 晶振,大小影响不大。常用的4M和12M以及11.0592M和20M 24M都用的30P,单片机内部有相应的整形电路,不必担心。

十四、没有程序的空白单片机,外部晶振能起振么?

没有内部晶振的单片机,外部晶振可以起振,如传统类MS51系列单片机有内部晶振的单片机,外部晶振不会起振,需要对外部晶振进行配置后才会起振,如果不对外部晶振进行配置仍使用内部晶振,如silicon lab系列C8051F020单片机。

十五、为什么at89c52 P1.0输出2.5v电压,单片机好像未工作,晶振波形是不规则的正弦波可不可以?线路板没有达到预想效果,发光二极管一直亮,感觉还是单片机的问题,P1.0输出2.5v电压,看门狗用的X5045,怎么回事?

将看门狗拿掉,暂时做成最小系统,既只有电源、8952、晶振和两只30P左右的电容。

①将P1.0口置1,测试该口的电压是否在2.5V以上;
②将P1.0口置0,测试改口电压是否约为0V。

是的话就是OK的,否则就要看看电源电压、晶振、8952了。电源电压是5+、-0.25V,且纹波一定要小。

十六、制作max232下载单片机,工作电压都正常,要外加晶振嘛?

当然要加,如果没有外加晶振,那么单片机的时钟电路就没有了,导致单片机串口就不能进行数据传输了,最终这个下载器具就不能下载程序了。

十七、若89c52单片机使用外接晶振,应如何设置?

晶振的两个管脚各接一个20~30pf的电容后分别接入单片机的XTAL1和XTAL2,两个电容的另一端并接后接地即可,不再需要任何设置。

十八、晶振的原理,如何产生正弦信号的,详细一点,从电路方面分析?

晶体可以等效为一个电感,与里面的电容形成振荡回路,能量从电感慢慢到电容,再从电容慢慢到电感,周而复始形成振荡。正半周是电容的充放电过程,负半周是电感的充放电过程。

十九、现在要用52单片机做一个交通灯电路。要求是红灯,绿灯30s,黄灯3s。循环变化。那么外界晶振怎样选择?单指令周期多少比较合适?图中外接的两个电容的作用是什么?大小多少合适?

如果选择晶振的话,那两个电容值可以选择:30加减10PF左右的(频率在0~33MHZ之间);

如果选择陶瓷晶振的话,电容值可以选择:40加减10PF左右的(频率在1.2~12MHZ)振荡器应尽量靠近电容。指令周期是可以算的,这个是有公式的。

二十、89c52单片机 晶振频率才12兆,太小了,怎样能改大晶振频率?

外接18.432或者24MHz的晶振。或者换4T的W77E58单片机,这样相当于把工作频率提高3倍。或者换1T的DS89C4XX单片机,这相当于把工作频率提高8倍。用1T的STC12C5A60S2单片机也有这样的效果。

二十一、单片机不能正常工作,晶振问题?如何去检查晶振正常还是不正常?另外看到说晶振跟两个小电容要离得很近,几乎都没剪引脚(就是买回来多长就多长)就插上去了,这个也有关系吗?

用万用表测量单片机连接晶振的两个引脚,正常起振的状态下电压大概比供电电压的1/2略低一些,如果其中一个或全部引脚为电源电压或零就表明没起振。那个引脚长些一般不会有什么影响,相比之下接地更关键些,两个谐振电容接地端到单片机的电源地要尽量近些。

二十二、22pf或30pf电容到底有什么作用?

刚学单片机的学长告诉我单片机的晶振电路中就是用22pf或30pf的电容就行,听人劝吃饱饭吧,照着焊电路一切ok,从没想过为什么,知其所以然而不知其为什么所以然,真是悲哀。后来,我才懂得反思,调整,我对自己持有怎么的学习态度和应该如何付诸于行动有了新的理解,这远比单纯的交给我一些知识要好很多。

让我们一起来看看到底晶振电路中为什么用22pf或30pf的电容而不用别的了。

其实单片机和其他一些IC的振荡电路的真名叫“三点式电容振荡电路”,如下图

“”

Y1是晶体,相当于三点式里面的电感,C1和C2就是电容,5404非门和R1实现一个NPN的三极管,接下来分析一下这个电路。

5404必需要一个电阻,不然它处于饱和截止区,而不是放大区,R1相当于三极管的偏置作用,让5404处于放大区域,那么5404就是一个反相器,这个就实现了NPN三极管的作用,NPN三极管在共发射极接法时也是一个反相器。

大家知道一个正弦振荡电路要振荡的条件是,系统放大倍数大于1,这个容易实现,相位满足360度,与晶振振荡频率相同的很小的振荡就被放大了。接下来主要讲解这个相位问题:

5404因为是反相器,也就是说实现了180°移相,那么就需要C1,C2和Y1实现180°移相就可以,恰好,当C1,C2,Y1形成谐振时,能够实现180移相,这个大家可以解方程等,把Y1当作一个电感来做。也可以用电容电感的特性,比如电容电压落后电流90°,电感电压超前电流90°来分析,都是可以的。当C1增大时,C2端的振幅增强,当C2降低时,振幅也增强。有些时候C1,C2不焊也能起振,这个不是说没有C1,C2,而是因为芯片引脚的分布电容引起的,因为本来这个C1,C2就不需要很大,所以这一点很重要。接下来分析这两个电容对振荡稳定性的影响。

因为5404的电压反馈是靠C2的,假设C2过大,反馈电压过低,这个也是不稳定,假设C2过小,反馈电压过高,储存能量过少,容易受外界干扰,也会辐射影响外界。C1的作用对C2恰好相反。因为我们布板的时候,假设双面板,比较厚的,那么分布电容的影响不是很大,假设在高密度多层板时,就需要考虑分布电容。

有些用于工控的项目,建议不要用无源晶振的方法来起振,而是直接接有源晶振。也是主要由于无源晶振需要起振的原因,而工控项目要求稳定性要好,所以会直接用有源晶振。在有频率越高的频率的晶振,稳定度不高,所以在速度要求不高的情况下会使用频率较低的晶振。

二十三、单片机晶振电路中两个微调电容不对称会怎样?相差多少会使频率怎样变化?我在检测无线鼠标的接受模块时,发现其频率总是慢慢变化(就是一直不松探头的手,发现频率慢慢变小)晶振是新的。

答:电容不对称也不会引起频率的漂移,你说的频率漂移可能是因为晶振的电容的容量很不稳定引起的,你可以换了试,换两电容不难,要不就是你的晶振的稳定性太差了,或者你测量的方法有问题。

二十四、晶振为何被要求紧挨着IC,单片机晶振不起振?

答:原因如下:

晶振是通过电激励来产生固定频率的机械振动,而振动又会产生电流反馈给电路,电路接到反馈 后进行信号放大,再次用放大的电信号来激励晶振机械振动,晶振再将振动产生的电流反馈给电路,如此这般。当电路中的激励电信号和晶振的标称频率相同时,电 路就能输出信号强大,频率稳定的正弦波。整形电路再将正弦波变成方波送到数字电路中供其使用。

问题在于晶振的输出能力有限,它仅仅输出以毫瓦为单位的电能量。在 IC(集成电路) 内部,通过放大器将这个信号放大几百倍甚至上千倍才能正常使用。

晶振和 IC 间一般是通过铜走线相连的,这根走线可以看成一段导线或数段导线,导线在切割磁力线的时候会产生电流,导线越长,产生的电流越强。

现实中,磁力线不常见,电磁波却到处都是,例如:无线广播发射、电视塔发射、手机通讯等等。晶振和IC之间的连线就变成了接收天线,它越长,接收的信号就 越强,产生的电能量就越强,直到接收到的电信号强度超过或接近晶振产生的信号强度时,IC内的放大电路输出的将不再是固定频率的方波了,而是乱七八糟的信 号,导致数字电路无法同步工作而出错。

所以,画PCB(电路板)的时候,晶振离它的放大电路(IC管脚)越近越好。

二十五、4个AT89C51单片机能否用一个12M的晶振使其都正常工作?一个采用内部时钟方式,其余三个用外部方式...那我四个都用内部方式可以不(将4个单片机都并联在一个晶振上)?

答:可以,其中一个正常接晶振,他的XTAL2输出接到另外三个的XTAL1输入上。

二十六、AT89C51单片机4兆的晶振能不能启动?

答:当然可以,看看datasheet吧,我估计1M的都可以,还有的单片机如2051可能还能低,台系日系有的可以到32.768kHz。

二十七、怎样判断单片机外部晶振有没有起振?我的STC89C52单片机本来是好好的后来不行了,我换了个晶振就好了。但是过了几个小时后又不行了,是怎么回事。还有就是怎样判断晶振是否起振?

答: 第一点:先换一块单片机试试,问题还在则排除单片机;

第二点:可能是虚焊造成的,这点要注意;

第三点:我用STC89C52也碰到过类似的问题,换了块晶振就OK了,好像STC起振不橡AT89S52那么顺。

其实对于STC89C52可以直接看30脚(ALE),接个灯,起振一下子就能看出来了。

二十八、我用msp430的单片机,可是外部的两个晶振总是无法起振,没用。请问是什么原因?线路连接是对的,32768HZ没有接外接电容。8M的晶振接56PF的电容。

答:32.768K的晶振接两个30P的电容试试,还有8M的晶振的电容也换成30P的。

二十九、MSP430单片机8MHz的晶振,计数器TAR增加一次 需要多少时间?

答:MSP430单片机的晶振频率可以自己设置的,是使用外部晶振还是内部振荡器做始终源,还有MCLK,SMCLK,ACLK的选择,分不分频等都有影响 我现在有点忘了,不过你可以看看文档,计数器是使用mclk,smclk,ACLK的哪一个,在判断是否分频设置,一般在1Mhz TAR加一次是1us,那么8M是1/8us自己算吧。

三十、如果MSP430单片机不初始化晶振,那么单片机用什么作为时钟?DCO的频率大概是多少呢?

答:内部DCO,不同系列的DCO默认频率不同,要参看手册。4系列的好像是1M。

三十一、dspic30f6014单片机能够烧写程序,却不能运行。晶振没有起振(换过了也没用),复位电压测量为5v,电源正常,(是成熟产品,只是偶尔会出现这种情况)

答:
01、重新检讨振荡电路所用零件(晶振与电容)及晶振附近的pcb布局
02、检查配置位是否正确
03、还可找 FAE 谘询

三十二、单片机测试晶振电压时会对工作状态有影响吗?

我的51单片机从P2口连了两个发光二极管,正常时是只有一个亮。我插上电源后,结果两个都亮了。于是我就测量晶振电压,但是我黑表笔接地,红表笔一碰晶振引脚时,两个发光二极管中,就有一个会熄灭,一放开就两个都亮。

每次刚插电源的时候,两个晶振引脚分别时1.9V,1.5v,但是稍微过了一会儿,两个引脚就分别成了5.4V和0.02V了。

答:会有一点影响,对频率会有影响,严重的会导致晶振停振。因为你万用表一加上去相当于在振荡电路上又并上或串上了分部电容电阻电感等,就影响到了原来电路的状态。

三十三、静态工作点对晶振振荡有什么影响?

答: 具有高Q值的晶振对放大器的选择并不敏感,但在过驱动时很容易产生频率漂移(甚至可能损坏)。影响振荡器工作的环境因素有:电磁干扰(EMI)、机械震动与冲击。

三十四、我用的是外置4M晶振加两个30pf瓷片电容,用示波器测频率正常,但峰峰值有的板子是6V左右,有的是3V左右,板子功能正常但我怕电压低的不稳定。

答: 没关系的,峰峰值不同是电容和晶振的参数离散导致的。只要正常工作就可以,单片机里面都有放大处理的,它们都是放大展成方波来使用的。峰峰值多高都没用。

你那电压高的倒应该看看,pic一般工作电压是5V,怎么振荡器会进来这么高电压?

我一般都是在CPU晶振输入端串联一个电阻使用的。

三十五、pic单片机 AD采样程序 有源晶振应该如何选择?

如果使用片内振荡器,是不是必须要外接谐振器?我如果外接有源晶振,选用那种频率较好?我听说4MHz的并不理想。外接20MHz的可以吗?这个是怎样选择的啊。

答:用片内振荡器不需要外接谐振器。

如果你的单片机只做AD采集转换,那就不需要太高的频率,内部4Mhz振荡器即可。

但如果还要做其他对时序要求较严的工作比如说总线通信,那就要考虑使用外部振荡器,因为内部振荡器的误差太大(即使校准了还有1%的误差) ,而用多大的晶振要看工作要求,频率越高单片机功耗越大。但只做AD的话,4M够了。

三十六、大家好。我想问个pic单片机的问题:晶振频率不一样。编译器自己带的库延时函数延时一样吗?比如晶振20MHZ delayus(1)和5MHZ delayus(1)是同是1us吗?

答: 应该一样。因为频率不一样,编译时候你的设置不一样,编译时候自然计算需要的倍数,参数就不一样了。但可能因为频率除不尽的缘故,有一点点差异。

三十七、单片机外接24M的晶振,1ms的基准延时函数用C语言怎么写?

答:
定时器T0 工作方式1 晶振频率24MHz
定时器最大定时时间(us):32768
定时器最小定时时间(us):0.5
【1ms精确定时C51代码】

void T0_init(void) //定时器初始化
{
TMOD |= 0x01;
TH0 = 0xf8; //设置定时器计数初值,定时1000us
TL0 = 0x33;
IE |= 0x82; //打开总中断
TR0 = 1; //启动定时器
}
void T0_intservice(void) interrupt 1 //定时器中断服务
{
TH0 = 0xf8; //重装载定时器计数初值
TL0 = 0x33;
//这里可以插入其他处理程序,不会影响定时器工作
}

三十八、单片机24M晶振可以测量20MHZ的信号吗?

答 :要看用什么单片机了。有些单片机执行一条指令需要两个机器周期以上的。那肯定测量不到20MHZ的信号。

三十九、用单片机的晶振电路产生信号和555计时器产生信号哪个更好?

答:一般来说,晶振的稳定性好于RC震荡器。

四十、11.0952的晶振和单片机哪些引脚连接能起作用?电源和18B20应该和单片机的哪些引脚相连呢?RT,要把单片机从实验板上引出来,应该怎么连接?1602LCD的液晶该怎么和单片机相连呢?每次从仿真上连出来都是只有背光和黑点,但是不显示已经烧录的程序。

答:晶振接单片机x1(或者叫XTAL1)和x2(或者叫XTAL2)引脚。

电源接单片机的VCC和GND。

18b20电源脚接电源上,中间的数据线可以单片机的任意io口。具体控制是靠程序完成的。

1602的数据线接单片机io(比如51单片机的P1口),其它的控制线rw,reset,cs等可以接单片机的任意io口。

烧录了程序不能运行,而程序是正确的话,你得看程序怎么定义这些引脚,根据程序定义连接单片机的位置。

四十一、89c52单片机如果不接晶振会有什么后果?

答:单片机不工作了 程序无法烧入等等。

四十二、单片机工作频率的问题,晶振到底怎么选择?

答:
1、最基本的单片机,其机器工作频率为:晶振频率÷12
2、有的单片机(高级一些的)机器工作频率为:晶振频率÷2(或者6等等)
3、以汇编语言为例,单片机执行一条指令需要的时间为1~2个机器周期(机器周期 = 1÷机器工作频率)

4、举例:

一普通单片机晶振12MHz,其机器工作频率为 12MHz÷12 = 1MHz

其机器周期 = 1÷1MHz = 0.000001秒(也就是10的负6次方)

“MOV”指令需要一个机器周期来完成,也就是说执行这条指令需要耗费10的负6次方秒,这么长的时间。

四十三、我给51单片机12M晶振接2200pF电容会怎么样?电路图里貌似是22pF的,但是我没有22pF的...接2200pF会不会不正常工作?

答:不可以,晶体会不工作的。15-33p是合理范围。你可以试试看,对单片机不会有损坏。

本文转载自:网络
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 344

1. 匹配电容-----负载电容是指晶振要正常震荡所需要的电容。一般外接电容,是为了使晶振两端的等效电容等于或接近负载电容。要求高的场合还要考虑ic输入端的对地电容。一般晶振两端所接电容是所要求的负载电容的两倍。这样并联起来就接近负载电容了。

2. 负载电容是指在电路中跨接晶体两端的总的外界有效电容。他是一个测试条件,也是一个使用条件。应用时一般在给出负载电容值附近调整可以得到精确频率。此电容的大小主要影响负载谐振频率和等效负载谐振电阻。

3. 一般情况下,增大负载电容会使振荡频率下降,而减小负载电容会使振荡频率升高。

4. 负载电容是指晶振的两条引线连接IC块内部及外部所有有效电容之和,可看作晶振片在电路中串接电容。负载频率不同决定振荡器的振荡频率不同。标称频率相同的晶振,负载电容不一定相同。因为石英晶体振荡器有两个谐振频率,一个是串联揩振晶振的低负载电容晶振:另一个为并联揩振晶振的高负载电容晶振。所以,标称频率相同的晶振互换时还必须要求负载电容一至,不能冒然互换,否则会造成电器工作不正常。

晶振旁的电阻(并联与串联)

一份电路在其输出端串接了一个22K的电阻,在其输出端和输入端之间接了一个10M的电阻,这是由于连接晶振的芯片端内部是一个线性运算放大器,将输入进行反向180度输出,晶振处的负载电容电阻组成的网络提供另外180度的相移,整个环路的相移360度,满足振荡的相位条件,同时还要求闭环增益大于等于1,晶体才正常工作。

晶振输入输出连接的电阻作用是产生负反馈,保证放大器工作在高增益的线性区,一般在M欧级,输出端的电阻与负载电容组成网络,提供180度相移,同时起到限流的作用,防止反向器输出对晶振过驱动,损坏晶振。

和晶振串联的电阻常用来预防晶振被过分驱动。晶振过分驱动的后果是将逐渐损耗减少晶振的接触电镀,这将引起频率的上升,并导致晶振的早期失效,又可以讲drive level调整用。用来调整drive level和发振余裕度。

Xin和Xout的内部一般是一个施密特反相器,反相器是不能驱动晶体震荡的.因此,在反相器的两端并联一个电阻,由电阻完成将输出的信号反向 180度反馈到输入端形成负反馈,构成负反馈放大电路.晶体并在电阻上,电阻与晶体的等效阻抗是并联关系,自己想一下是电阻大还是电阻小对晶体的阻抗影响小大?

电阻的作用是将电路内部的反向器加一个反馈回路,形成放大器,当晶体并在其中会使反馈回路的交流等效按照晶体频率谐振,由于晶体的Q值非常高,因此电阻在很大的范围变化都不会影响输出频率。过去,曾经试验此电路的稳定性时,试过从100K~20M都可以正常启振,但会影响脉宽比的。

晶体的Q值非常高, Q值是什么意思呢? 晶体的串联等效阻抗是 Ze = Re + jXe, Re<< |jXe|, 晶体一般等效于一个Q很高很高的电感,相当于电感的导线电阻很小很小。Q一般达到10^-4量级。

避免信号太强打坏晶体的。电阻一般比较大,一般是几百K。

串进去的电阻是用来限制振荡幅度的,并进去的两颗电容根据LZ的晶振为几十MHZ一般是在20~30P左右,主要用与微调频率和波形,并影响幅度,并进去的电阻就要看 IC spec了,有的是用来反馈的,有的是为过EMI的对策

可是转化为 并联等效阻抗后,Re越小,Rp就越大,这是有现成的公式的。晶体的等效Rp很大很大。外面并的电阻是并到这个Rp上的,于是,降低了Rp值 -----> 增大了Re -----> 降低了Q

关于晶振

石英晶体振荡器是高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。

一、石英晶体振荡器的基本原理

1、石英晶体振荡器的结构

石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。

2、压电效应

若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。

3、符号和等效电路

当晶体不振动时,可把它看成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个PF到几十PF。当晶体振荡时,机械振动的惯性可用电感L来等效。一般L的值为几十mH 到几百mH。晶片的弹性可用电容C来等效,C的值很小,一般只有0.0002~0.1pF。晶片振动时因摩擦而造成的损耗用R来等效,它的数值约为100Ω。由于晶片的等效电感很大,而C很小,R也小,因此回路的品质因数Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定度。

4、谐振频率

从石英晶体谐振器的等效电路可知,它有两个谐振频率,即(1)当L、C、R支路发生串联谐振时,它的等效阻抗最小(等于R)。串联揩振频率用fs表示,石英晶体对于串联揩振频率fs呈纯阻性,(2)当频率高于fs时L、C、R支路呈感性,可与电容C。发生并联谐振,其并联频率用fd表示。

根据石英晶体的等效电路,可定性画出它的电抗—频率特性曲线。可见当频率低于串联谐振频率fs或者频率高于并联揩振频率fd时,石英晶体呈容性。

二、石英晶体振荡器类型特点

石英晶体振荡器是由品质因素极高的石英晶体振子(即谐振器和振荡电路组成。晶体的品质、切割取向、晶体振子的结构及电路形式等,共同决定振荡器的性能。国际电工委员会(IEC)将石英晶体振荡器分为4类:普通晶体振荡(TCXO),电压控制式晶体振荡器(VCXO),温度补偿式晶体振荡(TCXO),恒温控制式晶体振荡(OCXO)。目前发展中的还有数字补偿式晶体损振荡(DCXO)等。

普通晶体振荡器(SPXO)可产生10^(-5)~10^(-4)量级的频率精度,标准频率1—100MHZ,频率稳定度是±100ppm。SPXO没有采用任何温度频率补偿措施,价格低廉,通常用作微处理器的时钟器件。封装尺寸范围从21×14×6mm及5×3.2×1.5mm。

电压控制式晶体振荡器(VCXO)的精度是10^(-6)~10^(-5)量级,频率范围1~30MHz。低容差振荡器的频率稳定度是±50ppm。通常用于锁相环路。封装尺寸14×10×3mm。

温度补偿式晶体振荡器(TCXO)采用温度敏感器件进行温度频率补偿,频率精度达到10^(-7)~10^(-6)量级,频率范围1—60MHz,频率稳定度为±1~±2.5ppm,封装尺寸从30×30×15mm至11.4×9.6×3.9mm。通常用于手持电话、蜂窝电话、双向无线通信设备等。

恒温控制式晶体振荡器(OCXO)将晶体和振荡电路置于恒温箱中,以消除环境温度变化对频率的影响。OCXO频率精度是10^(-10)至10^(-8)量级,对某些特殊应用甚至达到更高。频率稳定度在四种类型振荡器中最高。

三、石英晶体振荡器的主要参数

晶振的主要参数有标称频率,负载电容、频率精度、频率稳定度等。不同的晶振标称频率不同,标称频率大都标明在晶振外壳上。如常用普通晶振标称频率有:48kHz、500 kHz、503.5 kHz、1MHz~40.50 MHz等,对于特殊要求的晶振频率可达到1000 MHz以上,也有的没有标称频率,如CRB、ZTB、Ja等系列。

负载电容是指晶振的两条引线连接IC块内部及外部所有有效电容之和,可看作晶振片在电路中串接电容。负载频率不同决定振荡器的振荡频率不同。标称频率相同的晶振,负载电容不一定相同。因为石英晶体振荡器有两个谐振频率,一个是串联揩振晶振的低负载电容晶振:另一个为并联揩振晶振的高负载电容晶振。所以,标称频率相同的晶振互换时还必须要求负载电容一至,不能冒然互换,否则会造成电器工作不正常。

频率精度和频率稳定度:由于普通晶振的性能基本都能达到一般电器的要求,对于高档设备还需要有一定的频率精度和频率稳定度。频率精度从10^(-4)量级到10^(-10)量级不等。稳定度从±1到±100ppm不等。这要根据具体的设备需要而选择合适的晶振,如通信网络,无线数据传输等系统就需要更高要求的石英晶体振荡器。因此,晶振的参数决定了晶振的品质和性能。在实际应用中要根据具体要求选择适当的晶振,因不同性能的晶振其价格不同,要求越高价格也越贵,一般选择只要满足要求即可。

四、石英晶体振荡器的发展趋势

1、小型化、薄片化和片式化:为满足移动电话为代表的便携式产品轻、薄、短小的要求,石英晶体振荡器的封装由传统的裸金属外壳覆塑料金属向陶瓷封装转变。例如TCXO这类器件的体积缩小了30~100倍。采用SMD封装的TCXO厚度不足2mm,目前5×3mm尺寸的器件已经上市。

2、高精度与高稳定度,目前无补偿式晶体振荡器总精度也能达到±25ppm,VCXO的频率稳定度在10~7℃范围内一般可达±20~100ppm,而OCXO在同一温度范围内频率稳定度一般为±0.0001~5ppm,VCXO控制在±25ppm以下。

3、低噪声,高频化,在GPS通信系统中是不允许频率颤抖的,相位噪声是表征振荡器频率颤抖的一个重要参数。目前OCXO主流产品的相位噪声性能有很大改善。除VCXO外,其它类型的晶体振荡器最高输出频率不超过200MHz。例如用于GSM等移动电话的UCV4系列压控振荡器,其频率为650~1700 MHz,电源电压2.2~3.3V,工作电流8~10mA。

4、低功能,快速启动,低电压工作,低电平驱动和低电流消耗已成为一个趋势。电源电压一般为3.3V。目前许多TCXO和VCXO产品,电流损耗不超过2 mA。石英晶体振荡器的快速启动技术也取得突破性进展。例如日本精工生产的VG—2320SC型VCXO,在±0.1ppm规定值范围条件下,频率稳定时间小于4ms。日本东京陶瓷公司生产的SMD TCXO,在振荡启动4ms后则可达到额定值的90%。OAK公司的10~25 MHz的OCXO产品,在预热5分钟后,则能达到±0.01 ppm的稳定度。

五、石英晶体振荡器的应用

1、石英钟走时准、耗电省、经久耐用为其最大优点。不论是老式石英钟或是新式多功能石英钟都是以石英晶体振荡器为核心电路,其频率精度决定了电子钟表的走时精度。从石英晶体振荡器原理的示意图中,其中V1和V2构成CMOS反相器石英晶体Q与振荡电容C1及微调电容C2构成振荡系统,这里石英晶体相当于电感。振荡系统的元件参数确定了振频率。

一般Q、C1及C2均为外接元件。另外R1为反馈电阻,R2为振荡的稳定电阻,它们都集成在电路内部。故无法通过改变C1或C2的数值来调整走时精度。但此时我们仍可用加接一只电容C有方法,来改变振荡系统参数,以调整走时精度。根据电子钟表走时的快慢,调整电容有两种接法:若走时偏快,则可在石英晶体两端并接电容C,如图4所示。

此时系统总电容加大,振荡频率变低,走时减慢。若走时偏慢,则可在晶体支路中串接电容C。如图5所示。此时系统的总电容减小,振荡频率变高,走时增快。只要经过耐心的反复试验,就可以调整走时精度。因此,晶振可用于时钟信号发生器。

2、随着电视技术的发展,近来彩电多采用500kHz或503 kHz的晶体振荡器作为行、场电路的振荡源,经1/3的分频得到 15625Hz的行频,其稳定性和可靠性大为提高。面且晶振价格便宜,更换容易。

3、在通信系统产品中,石英晶体振荡器的价值得到了更广泛的体现,同时也得到了更快的发展。许多高性能的石英晶振主要应用于通信网络、无线数据传输、高速数字数据传输等。

晶振的负载电容

晶体元件的负载电容是指在电路中跨接晶体两端的总的外界有效电容。是指晶振要正常震荡所需要的电容。一般外接电容,是为了使晶振两端的等效电容等于或接近负载电容。要求高的场合还要考虑ic输入端的对地电容。应用时一般在给出负载电容值附近调整可以得到精确频率。此电容的大小主要影响负载谐振频率和等效负载谐振电阻。

晶振的负载电容=[(Cd*Cg)/(Cd+Cg)]+Cic+△C式中Cd,Cg为分别接在晶振的两个脚上和对地的电容,Cic(集成电路内部电容)+△C(PCB上电容).就是说负载电容15pf的话,两边个接27pf的差不多了,一般a为6.5~13.5pF

各种逻辑芯片的晶振引脚可以等效为电容三点式振荡器. 晶振引脚的内部通常是一个反相器, 或者是奇数个反相器串联. 在晶振输出引脚 XO 和晶振输入引脚 XI 之间用一个电阻连接, 对于 CMOS 芯片通常是数 M 到数十 M 欧之间. 很多芯片的引脚内部已经包含了这个电阻, 引脚外部就不用接了. 这个电阻是为了使反相器在振荡初始时处与线性状态, 反相器就如同一个有很大增益的放大器, 以便于起振. 石英晶体也连接在晶振引脚的输入和输出之间, 等效为一个并联谐振回路, 振荡频率应该是石英晶体的并联谐振频率. 晶体旁边的两个电容接地, 实际上就是电容三点式电路的分压电容, 接地点就是分压点.

以接地点即分压点为参考点, 振荡引脚的输入和输出是反相的, 但从并联谐振回路即石英晶体两端来看, 形成一个正反馈以保证电路持续振荡. 在芯片设计时, 这两个电容就已经形成了, 一般是两个的容量相等, 容量大小依工艺和版图而不同, 但终归是比较小, 不一定适合很宽的频率范围. 外接时大约是数 PF 到数十 PF, 依频率和石英晶体的特性而定. 需要注意的是: 这两个电容串联的值是并联在谐振回路上的, 会影响振荡频率. 当两个电容量相等时, 反馈系数是 0.5, 一般是可以满足振荡条件的, 但如果不易起振或振荡不稳定可以减小输入端对地电容量, 而增加输出端的值以提高反馈量.

设计考虑事项:

1. 使晶振、外部电容器(如果有)与 IC之间的信号线尽可能保持最短。当非常低的电流通过IC晶振振荡器时,如果线路太长,会使它对 EMC、ESD 与串扰产生非常敏感的影响。而且长线路还会给振荡器增加寄生电容。

2. 尽可能将其它时钟线路与频繁切换的信号线路布置在远离晶振连接的位置。

3. 当心晶振和地的走线

4. 将晶振外壳接地

如果实际的负载电容配置不当,第一会引起线路参考频率的误差。另外如在发射接收电路上会使晶振的振荡幅度下降(不在峰点),影响混频信号的信号强度与信噪。

当波形出现削峰,畸变时,可增加负载电阻调整(几十K到几百K)。要稳定波形是并联一个1M左右的反馈电阻。

本文转自:畅学电子

围观 238

页面

订阅 RSS - 晶振