judy的博客

MCU和PC在代码加载和运行上有何区别?

judy的头像

一、首先谈一下几种掉电不丢数据的存储设备:

1.Norflash:可擦写,贵,在Norflash上可以直接运行代码!

2.Nandflash:可擦写,便宜,只能用于存储数据;

3.磁盘:就是我们常说的硬盘,可擦写,便宜,只能用于存储数据;

二、正题

1.MCU

大多数单片机的代码都是存在Norflash里面,这就意味着程序可以直接在flash直接跑,不用加载到ram里面,而且单片机的ram本来就是比较稀缺的资源;

2.PC

先从电脑的BIOS说起,我们经常说,BIOS是一个ROM区,是一个只读的区域。其实BIOS并不绝对的“只读”,因为BIOS在现代几乎所有的电脑都是存在Norflash中,还是属于可以擦写的,至于BIOS存在ROM里是很久远之前的事了。

不同于BIOS,电脑的磁盘则只能用于存储,代码无法直接在上面跑,所以要运行代码,需要将代码从磁盘加载到ram里面,也就是我们通常说的内存条,然后在ram里面跑代码。

来源:网络

昨天,冲着无人机未来去的这家企业竟然倒闭了?!这释放了什么信号?

judy的头像

“换个视角看世界!”自2016年起,中国航拍无人机市场迅速走热,目前国内已有近200家无人机生产企业,但是拥有核心技术的却不到10家,95%以上的企业大多从事的是组装业务,缺乏自主研发能力。随着中国出台各种限制条款以及劣质航拍无人机带给消费者不好体验,航拍无人机市场增速放缓。

目前中国航拍无人机市场出货量前三名厂商分别为大疆、零度智控、派诺特,其中大疆占据了52%的市场份额;但中国航空运输协会发布报告指出,经过前三年飞速发展,国内消费级航拍无人机因技术发展、使用场景、市场格局固定、政策等综合因素,已暂时进入缓慢发展时期。

数据显示,自2013年,大疆创新在之后的营业收入增速呈下滑趋势,2014年至2015年,增速分别为300%、100%;而2016年至2017年,增速分别为65%和80%,增速明显放缓。

在这样的背景下,商用无人机市场逐步走热,农业、工业、通信领域被被认为是无人机未来发展的潜力领域,但是,昨天,在农业无人机领域深耕的广东莱盛隆电子股份有限公司却宣布放弃运营了!这释放了什么信号?

如何区分数字电源、模拟电源、开关电源?

judy的头像

在电源设计中我们如何选择电源模块,那么选择的前提是,我们得了解各种电源,了解各种电源的区别,那样我们才可以正确的选择电源模块。

什么是模拟电源

即变压器电源,通过铁芯、线圈来实现,线圈的匝数决定了两端的电压比,铁芯的作用是传递变化磁场,主线圈在50HZ频率下产生了变化的磁场(我国),这个变化的磁场通过铁芯传递到副线圈,在副线圈里就产生了感应电压,于是变压器就实现了电压的转变。

模拟电源的缺点:

线圈、铁芯本身是导体,那么它们在转化电压的过程中会由于自感电流而发热(损耗),所以变压器的效率很低,一般不会超过35%。

音响器材功放中变压器的应用,大功率功放需要变压器提供更多的功率输出,那么,只有通过线圈匝数的增加、铁芯体积的增大来实现,匝数和铁芯体积的增加就会加重其损耗,所以,大功率功放的变压器必须做的非常大,这样就会导致笨重、发热量大。

什么是开关电源

ARM学习之常用的伪指令详解

judy的头像

AREA就是常见的伪指令之一。AREA是声明区域段,数据区,代码区等等。什么是数据段呢?数据段是来定义数据结构体的。格式是AREA test,CODE,READONLY。还有指令CODE16、CODE32,格式就直接写上就是。目的是声明以下是32位还是16位指令,注意不是切换arm和thunmb模式。如果是16位,那就是thunmb指令。

操作:这是之前的,如果在这里做一个声明,CODE32,也就是表示ARM指令。如果这里CODE16,就表示一下代码是16位指令,也就是thunmb指令,

ARM学习之常用的伪指令详解

也就是说在编译的时候会按照thunmb指令来进行汇编。大家注意一点,在这里通过这个切换,并不会改变处理器的运行的处理模式。不会把ARM指令状态切换为thunmb指令状态。这个切换是在状态寄存器里面去切换T。这个地方只是告诉汇编器而已,所以并不会更换运行时候的指令切换方式。

嵌入式新手要知道的五个小窍门-心得

judy的头像

对于很多即将毕业的学生和在社会打拼的底层技术者再说,对于嵌入式的发展和掌握的技术层次是迷茫的?他们不知道如何学习,其实掌握学习嵌入式没有想象中的那么难,学习它也是有窍门的。今天就给大家分享一点干货,带来几个小窍门:

1. 使用设计模式

设计模式是一个用来处理那些在软件中会重复出现的问题的解决方案。开发人员可以选择浪费宝贵的时间和预算从无到有地重新发明一个解决方案,也可以从他的解决方案工具箱中选择一个最适合解决这个问题的方案。在微处理器出现之初,底层驱动已经很成熟了,那么,为什么不利用现有的成熟的解决方案呢?

驱动程序设计模式大致分属以下4个类别:Bit bang、轮询、中断驱动和直接存储器访问(DMA)。

Bit bang模式:当微控制器没有内外设去执行功能的时候,或者当所有的内外设都已经被使用了,而此时又有一个新的请求,那么开发者就应该选择Bit bang设计模式。Bit bang模式的解决方案很有效率,但通常需要大量的软件开销来确保其实施的能力。Bit bang模式可以让开发者手动完成通信协议或外部行为。

轮询模式用于简单地监视一个轮询调度方式中的事件。轮询模式适用于非常简单的系统,但许多现代应用程序都需要中断。

浅谈STM32单片机学习---PWM输出

judy的头像

实现功能:采用定时器2的通道2,使PA1输出频率1K,占空比40的PWM波形,用PA8随意延时取反led灯,指示程序运行。

首先熟悉一下定时器的PWM相关部分。看图最明白

浅谈STM32单片机学习---PWM输出

其实PWM就是定时器的一个比较功能而已。

CNT里的值不断++,一旦加到与CCRX寄存器值相等,那么就产生相应的动作。这点和AVR单片机很类似。既然这样,我们要产生需要的PWM信号,就需要设定PWM的频率和PWM的占空比。

首先说频率的确定。由于通用定时器的时钟来源是PCLK1,而我又喜欢用固件库的默认设置,那么定时器的时钟频率就这样来确定了,如下:

AHB(72MHz)→APB1分频器(默认2)→APB1时钟信号(36MHz)→倍频器(*2倍)→通用定时器时钟信号(72MHz)。

这里为什么是这样,在RCC模块学习记录里有详细记载,不多说。

因此图中的CK_PSC就是72MHz了。

STM32烧录的常用方式

judy的头像

stm32烧录常用的方式一般为ST-LINK(或者J-tag)下载仿真和ISP下载

一、仿真器下载

仿真器分为J-TAG和SWD仿真,SWD仿真只需要4根线(VCC、GND、CLK、DATA)就可以了,传输速率也相当更快,是仿真调试的首选。仿真器的软件设置网上一大堆,这里不再赘述。J-TAG仿真用到的线较多,博主也没记住到底用了几根线,但是通用型强。

二、ISP下载

介绍:MCU在出厂前,在芯片中嵌入了BootLoad程序(用FPGA做的?),作用是将做串口转SPI通信,芯片内部的存储芯片FLASH的接口为SPI,这其实是变相的SPI烧录,只是SPI接口配置不方便,而常用的串口配置很方便,所有通过这个程序转换,就可以用串口烧录程序到内部FLASH中了。

STM32的启动方式:

BOOT1=x BOOT0=0 从用户闪存启动,这是正常的工作模式。

BOOT1=0 BOOT0=1 从系统存储器启动,即所说的ISP方式烧录,这种模式启动的程序功能由厂家设置。

BOOT1=1 BOOT0=1 从内置SRAM启动,这种模式可以用于调试。

剖析:模拟地与数字地

judy的头像

不同种类地之间用0欧电阻相连;电源引入高频器件时用磁珠;高频信号线耦合用小电容;电感用在大功率低频上。

简单来说,数字地是数字电路部分的公共基准端,即数字电压信号的基准端;模拟地是模拟电路部分的公共基准端,模拟信号的电压基准端(零电位点)。

一、分为数字地和模拟地的原因:

由于数字信号一般为矩形波,带有大量的谐波。如果电路板中的数字地与模拟地没有从接入点分开,数字信号中的谐波很容易会干扰到模拟信号的波形。当模拟信号为高频或强电信号时,也会影响到数字电路的正常工作。模拟电路涉及弱小信号,但是数字电路门限电平较高,对电源的要求就比模拟电路低些。既有数字电路又有模拟电路的系统中,数字电路产生的噪声会影响模拟电路,使模拟电路的小信号指标变差,克服的办法是分开模拟地和数字地。

存在问题的根本原因是,无法保证电路板上铜箔的电阻为零,在接入点将数字地和模拟地分开,就是为了将数字地和模拟地的共地电阻降到最小。

二、数字地和模拟地处理的基本原则如下:

如果把模拟地和数字地大面积直接相连,会导致互相干扰。不短接又不妥。

RFID天线必备基础知识

judy的头像

一、电磁波产生的基本原理

按照麦克斯韦电磁场理论,变化的电场在其周围空间要产生变化的磁场,而变化的磁场又要产生变化的电场。这样,变化的电场和变化的磁场之间相互依赖,相互激发,交替产生,并以一定速度由近及远地在空间传播出去。

周期性变化的磁场激发周期性变化的电场,周期性变化的电场激发周期性变化的磁场。

电磁波不同于机械波,它的传播不需要依赖任何弹性介质,它只靠“变化电场产生变化磁场,变化磁场产生变化电场”的机理来传播。

当电磁波频率较低时,主要籍由有形的导电体才能传递;当频率逐渐提高时,电磁波就会外溢到导体之外,不需要介质也能向外传递能量,这就是一种辐射。在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部反回原电路而没有能量辐射出去。然而,在高频率的电振荡中,磁电互变甚快,能量不可能反回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去。

根据以上的理论,每一段流过高频电流的导线都会有电磁辐射。有的导线用作传输,就不希望有太多的电磁辐射损耗能量;有的导线用作天线,就希望能尽可能地将能量转化为电磁波发射出去。于是就有了传输线和天线。无论是天线还是传输线,都是电磁波理论或麦克斯韦方程在不同情况下的应用。

晶体管单管大电路三种基本接法比较

judy的头像

在电子电路中,放大的对象是变化量,放大的本质是在输入信号的作用下,通过有源元件(晶体管或场效应管)对直流电源的能量进行控制和转换,使负载从电源中获得的输出信号能量比信号源向放大电路提供的能量大的多。晶体管放大电路有共射、共集、共基三种接法,场效应管有共源、共漏接法(与晶体管放大电路共射、共集接法相对应)。

以下通过3个主要性能(放大倍数A、输入电阻Ri、输出电阻Ro)指标对晶体管三种基本接法进行比较。

基本共射放大电路:
晶体管单管大电路三种基本接法比较
交流通路:
晶体管单管大电路三种基本接法比较
微变信号等效电路:
晶体管单管大电路三种基本接法比较

页面

订阅 RSS - judy的博客