judy的博客

ARM汇编指令(7)——数据交换指令

judy的头像

1、SWP指令

SWP指令的格式为:

SWP{条件} 目的寄存器,源寄存器1,[源寄存器2]

SWP指令用于将源寄存器2所指向的存储器中的字数据传送到目的寄存器中,同时将源寄存器1中的字数据传送到源寄存器2所指向的存储器中。显然,当源寄存 器1和目的寄存器为同一个寄存器时,指令交换该寄存器和存储器的内容。

指令示例:

SWP R0,R1,[R2] ;将R2所指向的存储器中的字数据传送到R0,同时将R1 中的字数据传送到R2所指向的存储单元。
SWP R0,R0,[R1] ;该指令完成将R1所指向的存储器中的字数 据与R0中的数据交换。

2、SWPB指令

SWPB指令的格式为:

SWP{条件}B 目的寄存器,源寄存器1,[源寄存器2]

SWPB指令用于将源寄存器2所指向的存储器中的字节数据传送到目的寄存器中,目的寄存器的高24清零,同时将源寄存 器1中的字节数据传送到源寄存器2所指向的存储器中。显然,当源寄存器1和目的寄存器为同一个寄存器时,指令交换该寄存器和存储器的内容。

指令示例:

STM32 CAN应用-过滤器设置

judy的头像

在使用STM32的CAN控制器进行数据收发,当用到位屏蔽模式的时候,就要设置过滤器了,这个关系到是否能够接收到想要的数据。

下面针对几种不同情况对CAN过滤器(Filter)进行设置。

CAN_FilterInitStructure.CAN_FilterMode = CAN_FilterMode_IdMask; //标示符屏蔽模式
CAN_FilterInitStructure.CAN_FilterScale = CAN_FilterScale_32bit;

1、对扩展数据帧进行过滤:(只接收扩展数据帧)

stm32关于BOOT0和BOOT1设置

judy的头像

BOOT0和BOOT1

STM32三种启动模式对应的存储介质均是芯片内置的,它们是:

1)用户闪存 = 芯片内置的 Flash。
2)SRAM = 芯片内置的 RAM区,就是内存啦。
3)系统存储器= 芯片内部一块特定的区域,芯片出厂时在这个区域预置了一段 Bootloader,就是通常说的 ISP程序。这个区域的内容在芯片出厂后没有人能够修改或擦除,即它是一个 ROM区。

在每个 STM32的芯片上都有两个管脚 BOOT0和 BOOT1,这两个管脚在芯片复位时的电平状态决定了芯片复位后从哪个区域开始执行程序,见下表:

BOOT1=x BOOT0=0 从用户闪存启动,这是正常的工作模式。
BOOT1=0 BOOT0=1 从系统存储器启动,这种模式启动的程序功能由厂家设置。
BOOT1=1 BOOT0=1 从内置 SRAM启动,这种模式可以用于调试。

ARM汇编指令(6)——批量数据加载/存储指令

judy的头像

ARM微处理器所支持批量数据加载/存储指令可以一次在一片连续的存储器单元和多个寄存器之间传送数据,批量加载指令 用于将一片连续的存储器中的数据传送到多个寄存器,批量数据存储指令则完成相反的操作。

常用的加载存储指令如下:LDM(或STM)指令

LDM(或STM)指令的格式为:

LDM(或STM){条件}{类型} 基址寄存器{!},寄存器列表{∧}

LDM(或STM)指令用于从由基址寄存器所指示的一片连续存储器到寄存器列表所指示的多个寄存器之间传送数据,该指令的常见用途是将多个寄存器的内容入栈或出栈。其中,{类型}为 以下几种情况:

IA 每次传送后地址加1;
IB 每次传送前地址加1;
DA 每次传送后地址减1;
DB 每次传送前地址减1;
FD 满递减堆栈;
ED 空递减堆栈;
FA 满递增堆栈;
EA 空递增堆栈;

{!}为可选后缀,若选用该后缀,则当数据 传送完毕之后,将最后的地址写入基址寄存器,否则基址寄存器的内容不改变。

基址寄存器不允许为R15,寄存器列表可以为R0~R15的任意组合。

AVR开发 Arduino方法(二) 中断子系统

judy的头像

在了解中断子系统之前,首先要了解中断的概念。你正在看书,这时电话响了,你会怎么做呢?相信大多数人会这样:先标记看到的位置,接完电话回来后继续阅读。这就是一个现实生活中中断的例子,我们把“电话响了”成为中断源。Arduino UNO R3的主处理器ATMega328P拥有26个中断源,如下表所示:

向量号

程序地址

中断源

单片机mcu内存分配详解

judy的头像

谈到内存,我们都会想到PC,对于单片机或者arm来说也是存在内存的,简单的理解是:内存嘛……就是存放东西的地方,只不过这个东西是数据而已,好了,还是把重点放在mcu上面,对于一款mcu来说,在性能描述的时候都会告诉sram,flash的容量大小,对于初学者来说,也不会去考虑和理会这些东西,拿到东西就只用。其实不然,这些量都是十分重要的,仔细想想,代码为什么可以运行,代码量是多少,定义的int、short等等类型的变量究竟是怎么分配和存储的,这些问题都和内寸有关系。

首先单片机的内存可以大小分为ram和rom,这里就不再解释ram和rom的区别了,我们可以将其等效为flash和sram,其中根据flash和sram的定义可得,flash里面的数据掉电可保存,sram中的并不可以,但是sram的执行速度要快于flash,可以将单片机的程序分为code(代码存储区)、RO-data(只读数据存储区)、RW-data(读写数据存储区)和ZI-data(零初始化数据区)。在MDK编译器下可以观察到在代码中这4个量的值,如下图所示:

STM32中定时器的时钟源

judy的头像

STM32中有多达8个定时器,其中TIM1和TIM8是能够产生三对PWM互补输出的高级定时器,常用于三相电机的驱动,它们的时钟由APB2的输出产生。其它6个为普通定时器,时钟由APB1的输出产生。

下图是STM32参考手册上时钟分配图中,有关定时器时钟部分的截图:

STM32中定时器的时钟源

从图中可以看出,定时器的时钟不是直接来自APB1或APB2,而是来自于输入为APB1或APB2的一个倍频器,图中的蓝色部分。

下面以定时器2~7的时钟说明这个倍频器的作用:当APB1的预分频系数为1时,这个倍频器不起作用,定时器的时钟频率等于APB1的频率;当 APB1的预分频系数为其它数值(即预分频系数为2、4、8或16)时,这个倍频器起作用,定时器的时钟频率等于APB1的频率两倍。

ARM汇编指令(5)——加载/存储指令

judy的头像

ARM微处理器支持加载/存储指令用于在寄存器和存储器之间传送数据,加载指令用于将存储器中的数据传送到寄存器,存储 指令则完成相反的操作。

常用的加载存储指令如下:

1、LDR指令

LDR指令的格式为:

LDR{条件} 目的寄存器,<存储器地址>

LDR指令用于从存储器中将一个32位的字数据传送到目的寄存器中。该指令通常用于从存储器中读取32位的字数据到通用寄存器,然后对数据进行处理。当程序计数器PC作为 目的寄存器时,指令从存储器中读取的字数据被当作目的地址,从而可以实现程序流程的跳转。该指令在程序设计 中比较常用,且寻址方式灵活多样,请读者认真掌握。

指令示例:

LDR R0,[R1] ;将存储器地址为R1的字数据读入寄存器R0。
LDR R0,[R1,R2] ;将存储器地址为R1+R2的字数据读入寄存器R0。

stm32的各种时钟FCLK、PCLK、HCLK

judy的头像

在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。

①、HSI是高速内部时钟,RC振荡器,频率为8MHz。

②、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。

③、LSI是低速内部时钟,RC振荡器,频率为40kHz。

④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体。

⑤、PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,
但是其输出频率最大不得超过72MHz。

其中FCLK,HCLK,PCLK都称为系统时钟,但区别如下:

FCLK,提供给CPU内核的时钟信号,CPU的主频就是指这个信号;

HCLK,提供给高速总线AHB的时钟信号;

PCLK,提供给低速总线APB的时钟信号;

如何正确配置AVR单片机的熔丝位?

judy的头像

对AVR熔丝位的配置是比较细致的工作,用户往往忽视其重要性,或感到不易掌握。下面给出对AVR熔丝位的配置操作时的一些要点和需要注意的相关事项。

(1)在AVR的器件手册中,对熔丝位使用已编程(Programmed)和未编程(Unprogrammed)定义熔丝位的状态,“Unprogrammed”表示熔丝状态为“1”(禁止);“Programmed”表示熔丝状态为“0”(允许)。因此,配置熔丝位的过程实际上是“配置熔丝位成为未编程状态“1”或成为已编程状态“0””。

(2)在使用通过选择打钩“&raDIC;”方式确定熔丝位状态值的编程工具软件时,请首先仔细阅读软件的使用说明,弄清楚“&radIC;”表示设置熔丝位状态为“0”还是为“1”。

(3)使用CVAVR中的编程下载程序时应特别注意,由于CVAVR编程下载界面初始打开时,大部分熔丝位的初始状态定义为“1”,因此不要使用其编程菜单选项中的“All”选项。此时的“All”选项会以熔丝位的初始状态定义来配置芯片的熔丝位,而实际上其往往并不是用户所需要的配置结果。如果要使用“All”选项,应先使用“Read->Fuse Bits”读取芯片中熔丝位实际状态后,再使用“All” 选项。

页面

订阅 RSS - judy的博客