PCB

一、引言

为了提高传输速率和传输距离,计算机行业和通信行业越来越多的采用高速串行总线。在芯片之间、板卡之间、背板和业务板之间实现高速互联。这些高速串行总线的速率从以往USB2.0、LVDS以及FireWire1394的几百Mbps到今天的PCI-Express G1/G2、SATA G1/G2 、XAUI/2XAUI、XFI的几个Gbps乃至10Gbps。计算机以及通信行业的PCB客户对差分走线的阻抗控制要求越来越高。这使PCB生产商以及高速PCB设计人员所面临的前所未有的挑战。本文结合PCB行业公认的测试标准IPCTM-650手册,重点讨论真差分TDR测试方法的原理以及特点。

二、IPC-TM-650手册以及PCB特征阻抗测试背景

IPC-TM-650测试手册是一套非常全面的PCB行业测试规范,从PCB的机械特性、化学特性、物理特性、电气特性、环境特性等各方面给出了非常详尽的测试方法以及测试要求。其中PCB板电气特性要求在第2.5节中描述,而其中的2.5.5.7a,则全面的介绍了PCB特征阻抗测试方法和对相应的测试仪器要求,重点包括单端走线和差分走线的阻抗测试。

三、TDR的基本原理及IPC-TM-650对TDR设备的基本要求

3.1 TDR的基本原理

图1是一个阶跃信号在传输线(如PCB的走线)上传输时的示意图。而传输线是通过电介质与GND分隔的,就像无数个微小的电容的并联。电信号到达某个位置时,就会令该位置上的电压产生变化,就像是给电容充电。因此,传输线在此位置上是有对地的电流回路的,因此就有阻抗的存在。但是该阻抗只有阶跃信号自身才能“感觉到”,这就是我们所说的特征阻抗。

当传输线上出现阻抗不连续的现象时,在阻抗变化的地方阶跃信号就会产生反射的现象,如果将反射信号进行取样并显示在示波器的屏幕上,就会得出如图2所示的波形,从波形中我们可以看出一条被测试的传输线在不同位置上的阻抗变化。同时我们可以比较图2中的两个波形。这是使用两台分辨率不同的TDR设备在测试同一条传输线时获得的测试结果。对于传输线阻抗变化的反映一个明显而另一个不明显。TDR设备感知传输线阻抗不连续的分辨率取决于TDR设备所发出的阶跃信号上升时间的快慢,上升时间快所获得的分辨率就高。而TDR设备的上升时间往往和测试系统的带宽紧密相关,带宽高的测试系统有更快的上升时间。

从另外一个角度来考虑,TDR设备的系统带宽限制了TDR测试的分辨率。在IPC-TM-650测试手册中对TDR设备的上升时间是按照系统上升时间(tsys)来定义的。当我们要测量一台TDR设备的系统上升时间时,我们可以短路一台TDR设备的输出,此时可以测出该TDR设备的(tsys)(上升时间以及下降时间)。例如图3的TDR设备的系统上升时间就高达28ps左右。

PCB差分走线的阻抗控制技术(一)

图4是另一台TDR设备的系统上升/下降时间的测试结果,系统的上升/下降时间在38ps~40ps之间。可见不同的TDR设备在系统上升/下降时间上是有很大的区别的,由此带来的就是传输线阻抗测试分辨率的很大不同。
PCB差分走线的阻抗控制技术(一)

系统上升时间和分辨率的关系可以用下列的公式来描述:

Resolution= (tsys*V)/2,V为电信号在被测试传输线上的传输速率。

为了方便测试者了解TDR测试的分辨率以及PCB板走线的最小测试长度,在IPC-TM-650测试手册的表4-1(图5)中给出了速查数据。

PCB差分走线的阻抗控制技术(一)

3.2 IPC-TM-650手册对差分TDR设备的基本要求

IPC-TM-650测试手册是一套非常全面的PCB行业测试规范,从PCB的机械特性、化学特性、物理特性、电气特性、环境特性等各方面给出了非常详尽的测试方法以及测试要求。在以往的IPC-TM-650手册中,对PCB差分TDR测试的要求较为宽松。手册中允许测试者根据TDR测试设备的情况使用两种不同的方法。

方法一:当测试者拥有差分TDR测试设备时,测试设备同时打出两个幅度相等、方向相反的阶跃脉冲,并通过这对差分信号的相互作用直接测出差分走线的阻抗。

方法二:当测试者没有差分TDR测试设备时,测试设备在差分走线(A线与B线)时,先在A线上打出阶跃信号,测试A阶跃信号在A线上的反射特性记作AA,同时测出A阶跃信号在B线上的感应信号,记录为BA。随后,在B线上打出阶跃信号,测试B阶跃信号在B线上的反射特性记作BB,同时测出B阶跃信号在A线上的感应信号,记录为AB。通过对获得的AA、AB、BB、BA四个数值进行计算可以得出差分走线的阻抗。该方法又叫做“Super-Position”。

但是在(2004年3月版)IPC-TM-650手册中,仅仅保留了方法一中的真差分TDR测试描述。而不再有方法二的“伪差分”TDR测试方法的描述。

转自: wair-博客园

围观 527

芯片解密主要应用在PCB抄板方面,PCB抄板除了对电路板复制的简单概念,还包括了板上一些加密芯片的解密。随着专利概念和知识保护的加强,芯片解密会慢慢向为程序研究服务方向发展,而不是现在的产品复制方向。

芯片解密又叫单片机解密,单片机破解,芯片破解,IC解密,我们把CPLD解密,DSP解密都习惯称为芯片解密。单片机攻击者借助专用或自制设备,利用单片机芯片设计上的漏洞或软件缺陷,通过多种技术手段提取关键信息,获得单片机内的程序即为芯片解密技术。

芯片解密属于法律边缘的行业,但仁者见仁智者见智。某负责人表示,芯片解密只是一把刀,本身并没有对错,不过是握在谁的手里,拿刀去做什么,才最终决定了其性质的好坏。

撇开芯片解密的性质不谈,就芯片解密技术本身来说,也是一种精密复杂的高端科技,需要破解人员具有扎实的逆向工程知识及丰富的解密经验。否则,很可能解密失败,赔了“母片”又折兵。一般的解密方法包括:软件攻击、电子探测攻击、过错产生技术以及探针技术。

软件攻击技术

软件攻击解密技术即软解密技术,就是通过软件找出单片机的设计缺陷,将内部OTP/falsh ROM 或eeprom代码读出,这种芯片解密方法并不是最理想的,因为研究时间太长且同一系列的单片机不是每个都一样。

电子探测攻击技术

电子探测攻击技术通常以高时间分辨率来监控处理器在正常操作时所有电源和接口连接的模拟特性,并通过监控它的电磁辐射特性来实施攻击。因为单片机是一个活动的电子器件,当它执行不同的指令时,对应的电源功率消耗也相应变化。这样通过使用特殊的电子测量仪器和数学统计方法分析和检测这些变化,即可获取单片机中的特定关键信息。

过错产生技术

过错产生技术使用异常工作条件来使处理器出错,然后提供额外的访问来进行攻击。使用最广泛的过错产生攻击手段包括电压冲击和时钟冲击,低电压和高电压攻击可用来禁止保护电路工作或强制处理器执行错误操作。时钟瞬态跳变也许会复位保护电路而不会破坏受保护信息,电源和时钟瞬态跳变可以在某些处理器中影响单条指令的解码和执行。

探针技术

探针技术和FIB技术解密,是一个很流行的一种芯片解密方法,但是要一定的成本。首先将单片机的Config(配置文件)用烧写器保存起来,用在文件做出来后手工补回去之用,再用硝酸熔去掉封装,在显微镜下用微形探针试探,得出结果后在显微镜拍成图片用FIB连接或切割加工完成。当然,也有不用FIB用探针就能用编程器将程序读出。

来源: 中国电力电子产业网

围观 516

2.1.印制电路板

印制电路板(Printed Circuit Board,简称PCB)在电子设备中是电子元器件的载体,提供机械支撑和电气连接,并保证电子产品的电气、热和机械性能的可靠性。为自动焊锡提供阻焊图形,为电子元器件安装、检查、维修提供识别字符和图形。

PCB板由焊盘、导线、丝印、绝缘漆、定位孔、导通孔、贯穿孔等要素构成:

(1)焊盘:焊盘是电路板上用来焊接元器件或引线的铜箔,经过回焊炉将锡膏熔解或过波峰焊后对零件进行固定;

(2)导线:用于连接电路板上各种元件的引脚,完成各个元件之间电信号的连接;

(3)丝印:也即白油,文字印刷标明零件的名称、位置、方向。PCB上有产品型号、版本、厂商标志和生产批号等;

(4)绝缘漆:绝缘漆作用是绝缘、阻焊、防止PCB板面被污染,黄油和绿油偏多;

(5)导通孔:PCB上充满或涂上金属的小洞,它可以与两面的导线相连接,又称VIA孔;

(6)贯通孔:用于插装通孔元器件;

(7)定位孔:用于将PCB固定在电子设备中。

2.2 PCB的分类

PCB按印刷版电路层数可分为单面板、双面板、多层板;按基板材质分有刚性PCB、柔性PCB(挠性板)、刚柔结合PCB(刚挠结合板)等。与此同时,印制板继续朝着高精度、高密度和高可靠性方向发展,体积不断缩小,、成本不断减轻,而性能却不断提高,使得印制板在未来电子设备地生产过程中,仍然保持着强大的生命力。

2.3 PCB的基板材料

覆铜板(Copper Clad Laminates,简称 CCL)是PCB的基材,它是用增强材料,浸以树脂胶黏剂,通过烘干、裁剪、叠合成坯料,然后覆上铜箔,用钢板作为模具,在热压机中经高温高压成形加工而制成的。一般用来制作多层板的半固化片,是覆铜板在制作过程中的半成品,多为玻璃布浸以树脂,经干燥加工而成。

PCB基板材料,可分为纸基、玻璃布基、复合材料基(Composite Epoxy Material,简称CEM)、特殊材料基(陶瓷、金属芯基等)四大类,如表2-1所示。

按基板所采用的树脂胶黏剂不同进行分类,常见的纸基CCL有:酚醛树脂(XPc、XxxPC、FR-1、FR-2等)、环氧树脂(FR-3)、聚酯树脂等各种类型。常见的玻璃纤维布基CCL有环氧树脂(FR24、FR-5),它是目前使用最广泛的玻璃纤维布基类型。另外, 还有其他特殊性树脂,如双马来酰亚胺改性三嗪树脂(BT)、聚酰亚胺树脂(PI)、二亚苯基醚树脂(PPO)、马来酸酐亚胺—苯乙烯树脂(MS)、聚氰酸酯树脂、聚烯烃树脂等。

表2-1 PCB基材的分类

PCB与贴片元器件

2.4贴片元器件(SMC/SMD)

2.4.1 SMC/SMD的封装

封装(Package)就是指把硅片上的电路管脚,用导线接引到外部接头处,以便与其它器件连接。封装形式是指安装半导体集成电路芯片用的外壳,它不仅起着安装、固定、密封、保护芯片及增强电热性能等方面的作用,而且还通过芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印刷电路板上的导线与其它器件相连接,从而实现内部芯片与外部电路的连接。

1.标准封装

(1)无源片式元件(CHIP)

长方形无源器件称为“CHIP”片式元器件,它的体积小、重量轻、抗冲击性和抗震性好、寄生损耗小,被广泛应用于各类电子产品中。主要用于电阻、电容、电感等元件,主要特点是没有突出的引脚。

无源片式元件用两种尺寸代码来表示。一种尺寸代码是由4位数字表示的EIA(美国电子工业协会)代码,前两位与后两位分别表示电阻的长与宽,以英寸为单位。我们常说的0603封装就是指英制代码。另一种是米制代码,也由4位数字表示,其单位为毫米。英制的1005,0201、0402、0603、0805、1206片状元件,相当于公制的0402、0603、1005、1608、2012、3216(mm)元件,通常使用的都是英制标注,下表列出贴片电阻封装英制和公制的关系及详细的尺。

(2)柱状封装元件(MELF)

主要用于二极管、电阻、电感、陶瓷或钽电容等。焊接端头为圆柱体金属成份,如银、金或钯银合金等,易滚动,如图2-10。

PCB与贴片元器件
图2-10 柱状元件

(3)小外形晶体管(SOT,Small Outline Transistor )

主要用于二极管、三极管、达林顿管等。引出端特点是分列于元器件对称的两端,引脚为“一”和“L”形,基本分为对称与不对称两类,有以下几个系列SOT23、SOT89、SOT223等。

(4)小外形封装(SOP, Small Outline Package)

SOP封装主要用于中小规模集成电路。引出端特点是对称分列于元器件的两边,引脚形态基本分为“L”与“鸥翼”(Gullwing)、“J”、“I”等四类,如图2-12。SOP封装技术由1968~1969年菲利浦公司开发成功,以后逐渐派生出SOJ(J型引脚小外形封装)、TSOP(薄小外形封装)、VSOP(甚小外形封装)、SSOP(缩小型SOP)、TSSOP(薄的缩小型SOP)及SOT(小外形晶体管)、SOIC(小外形集成电路)等。

(5)四周扁平封装(QFP)

多用于各类型的集成电路,引脚形态基本上分为“鸥翼”形,引脚间距从0.3mm至1.0mm多个系列,封体形态为正方形或长方形,封装材料为塑料(PQFP)或陶瓷(CQFP)。

(6)塑封引线芯片载体(PLCC)

PLCC多用于各类型的集成电路,引脚形态为 “J”形,引脚间距1.27mm,封体形态为正方形或长方形、不规则形状,封装材料为塑料,可直接装入芯片插座或焊接。

(7)球栅阵列封装(BGA)

大规模集成电路的BGA封装发展缘由:集成电路的集成度迅速提高,封装尺寸必须缩小。电极采用球形引脚,球形引脚优点:尺寸小利于高密度组装;再流焊时有自校准效应,降低了贴片精度,提高组装可靠性。该类型封装已很多见,多用于大规模、高集成度器件,封装材料为塑料或陶瓷、金属,焊球间距为1.27mm、1.00mm、0.8mm、0.65mm、0.5mm等,球径随着间距而相应缩小,阵列规格多样,各家标准不一。BGA品种: 陶瓷BGA(CBGA)、塑料BGA(PBGA)、 微型BGA(Micro-BGA、μBGA、CSP)

(8)芯片尺寸封装(CSP)

该类型从形式上类似于BGA,但其定义为封装尺寸不大于芯片尺寸的1/3。有些公司的产品又称为μBGA。焊球间距一般均在1.00mm以下。

(9)倒装芯片(FP)

为目前最为先进的IC形式,应用晶圆片半导体工艺,产生具有规则或不规则凸点阵列,凸点间距在0.8mm以下,凸点直径在0.5mm以下,基本属裸芯片。

2.4.2SMC/SMD的包装

表面贴装元器件的大量应用,是由表面贴装设备高速发展促成的,同时高速度、高密度、自动化的贴装要求,又促使了表面贴装元器包装技术的开发,表面贴装元器件的包装形式已经成为SMT系统中的重要环节,表面组装元器件的包装类型有编带、管装、托盘等。

1.编带包装

编带包装在SMA生产中占有较大比例,常见的有电阻、电容以及各种IC等。带状包装由带盘与编带组成,类似电影拷贝

根据材质不同,有纸编带,塑料编带及黏结式编带,其中纸编带包装与塑料编带的元件,可用同一种带状供料器,而黏结式塑料编带所使用的带状供料器的形式有所不同,但不管哪种材料的包装带,均有相同的结构。

纸编带由基带、底带和带盖组成,其中基带是纸,而底带和盖带则是塑料薄膜。基带上布有小圆孔,又称同步孔,是供带状送料器上棘轮传动时的定位孔,两孔之间的距离称为步距。矩形孔是装载元器件的料糟,用来装载不同尺寸的元件。W指带宽,带宽已有标准化尺寸,有8mm,12mm,16mm,24mm和32mm等。用来装载0603以上尺寸元件的同步孔距均为4mm,而小于0603尺寸的包装带上的同步孔距则为2mm,故定购供料器时应加以区别。

2.管装包装

主要用于SOP、SOJ、PLCC、PLCC插座,以及异形元件等。

3.托盘包装

盘装又称华夫盘包装,它主要用于QFP、SOP等元件。通常这类元件引脚精细,极易碰伤,故采用上下托盘将元件的本体夹紧,并保证左右不能移动,便于运输和贴装。

2.4.3 SMC/SMD的储存与使用

1.存放环境条件:

(1)环境温度:30℃下;

(2)环境湿度:

(3)环境气氛:库房及环境中不得有影响焊接性能的疏、氯、酸等有害气体;

(4)防静电措施:要满足表面组装对防静电的要求。

2.存放周期:

从生产日期起为二年。到用户手中算起一般为一年(南方潮湿环境下3个月以内)。

3. 防潮

塑封元器件均对湿度有不同的敏感度,因而对敏感程度较高的元器件在包装中,除正常的产品标识、合格证外,正规厂家均会在其包装中放置若干物品,如:干燥剂、防潮袋、警示标签、湿度指标卡等,对具有防潮要求的SMD元件,打开封装后一周内或72小时内(根据不同元件的要求而定)必须使用完毕,如果72小时内不能使用完毕,应存放在

4.防静电

操作人员在拿取SMD元件时应带好防静电手环、防静电手套等工具。

2.4.4 BOM的识读

物料清单(Bill of materail,简称 BOM)在电子组装生产中是一种非常重要的文件,是电子产品研发的成果性文件,也是电子企业中各个部门沟通的重要媒介,如采购部门根据BOM可以知道要采购哪些元器件,生产部门根据BOM清楚的知道,线路板的组装过程中每个元器件数量以及安装位置。要清楚生产用料必须学会看BOM,如表2-21所示,阅读BOM主要注意几方面:

1. 要清楚产品型号、版本,如VA-391 V3.2

2. 区分BOM中哪些是SMC/SMD,哪些是THC:

BOM描述中有下列文字或字母之一都是SMT用料 “SMD、0603、0805、1206、Chip、SMT、QFP、PLCC、BGA、SOJ”;

插装件一般有“DIP”字样,但电解电容一般为DIP型,BOM上通常省去“DIP”字样,如:BOM 第31行对电解电容的描述为6.8uF/400V,Φ8*15,105℃,20%。

3.有些零件要看外形才知属SMD还是DIP元件。举例:

(1)描述为chip CAP 0.01μF 50V +80%-20% SMD 0603

表示:该电容是晶片陶瓷电容,容值为0.01μF ,耐压50V,误差为+80%-20%,即容值允许范围: 0.018μF ~0.008μF ,SMD 0603型的;

(2)描述为chip Resister 10 OHM 1/10W 5% 0603

表示:该晶片电阻阻值为10Ω,功率为0.1瓦,误差为±5% 0603规格;

(3)描述为:Chipset Sis6326 H0 208-Pin PQFP

表示:该芯片为SIS公司名称为6326版本为H0,208个脚,PQFP型;

(4)描述为:PCB VA-391 V3.2 16×8.3cm,4-L SS Yellow

表示:该PCB为VA-391,版本为3.2,长×宽×厚为143*112.5*1.6MM,基板材料为,FR-4的双面板。

4.看清楚描述是否有指定零件的厂牌及颜色等。

5.位置是指零件用在PCB板上的位置以及数量。

表2-21 VA-391 V3.2 主板BOM
PCB与贴片元器件

来源: 电子技术应用

围观 369

1.前言、背景

汽车电子其实并非与其它复杂电子产品完全不同:多个中央处理器、网络、实时数据收集,以及极为复杂的PCB。汽车行业的设计压力与其它类型的电子产品相似:设计时间短,市场竞争激烈。那么汽车电子与例如一些高端娱乐产品电子之间有什么区别?天壤之别!如果PCB在娱乐产品中发生故障,人们的性命不受威胁;但要是在汽车中发生故障,人们的性命就岌岌可危了。因此,汽车电子部件的可靠性设计是设计过程中需要考虑的一个主要方面。

2.全文要点与大纲如下:

a.时间和费用压力

与承受着设计时间和开发费用压力的所有产品一样,汽车部件也不例外。一项开发实践能给电子产品公司满足这些基本商业目标提供很大帮助,它是使用虚拟样机来对设计进行分析,并且无需费用和时间来建立多种物理样机,测试这些模型以及根据测试结果做出递增修改。另外,影响产品可靠性的许多因素需要经过数周、数月或者数年的物理破坏才能发现。因此这些情况下的物理样机不是可行的方式。即使在实验舱内,你也不可能精准无误地复制数年的物理振荡、热环境、震动和温度循环破坏。

b.仿真是关键

仿真,或者说虚拟样机,已经成为了设计过程中越来越重要的步骤。正如明导电子的Expedition Enterprise一样,一个复杂的PCB系统设计解决方案含有多种形式的虚拟样机功能。

PCB可靠性在汽车中的应用
图1–虚拟原型应当在整个设计过程中都加以使用,从而减少循环时间和费用,以及制造出一种可靠的产品。

c.热控制

影响可靠性的最关键的一点(这里是就性能而言)是热。集成电路(IC)过热会随时间出现问题,汽车环境也会变得非常无情。例如,过热发动机舱里的部件,或开车经过从密歇根州冬季直至亚利桑那州夏季这样的气候。从IC封装开始,贯穿PCB,直至运行环境下的完整产品,都应能控制热度。

PCB可靠性在汽车中的应用
图2–确定热捷径能引导设计人员做出改变,使散热发生很大变化。

在PCB设计和机械设计领域使用复杂热分析能带来更好的热管理和可靠性,且无需建立和测试多种物理样机。这节约了大量时间和费用。另外,有了与设计系统紧密整合的方便易用的软件,设计人员能快速利用多种“假设”场景进行实验,并获得性能更好的解决方案。

d.高加速寿命测试

车辆出现可靠性问题的另一原因是PCB的持续振动及随后出现的组件引线和附件故障。一般可通过构建样机并将它们放置在加速室,使PCB发生振动和温度循环试验,以检测是否出现故障。随着设计的进展,这种方法需要构建多个样机,并且通常需要几周甚至几个月的时间才能完成在加速室对汽车零部件预期寿命的模拟。这是一项非常耗时且费用极高的过程,因此可靠性增强测试可能并不完整和全面。

目前有软件可以在虚拟样机模式下开展同样的测试。设计人员可利用这种软件对PCB进行界定并轻松开展损耗仿真实验。该软件可在几小时内完成复杂的分析,并指出可能出现的故障(图3)。

PCB可靠性在汽车中的应用
图3:明导的H.A.L.T.软件可以在数小时内完成振荡、震动和温度循环故障分析,而在测试室内则需要几周甚至几个月的时间。

e.电源完整性分析保证高可靠性

在电子产品设计中,电源完整性是一项越来越复杂的问题。

PCB可靠性在汽车中的应用
图4:明导的HyperLynx电源完整性分析可确定高电平电流密度空间和可能出现的长期印刷电路板故障

空间狭窄可导致严重的可靠性问题,而这一问题可能几年后才会显现。电流过高会使空间温度上升,从而导致PCB像保险丝一样烧坏或爆板。而目前可在软件中对这些配电网进行分析,并可确定虚拟样机和高电平电流密度空间。然后设计人员便能够对空间进行扩大或在相邻层创建平行电流路径,从而在维持IC充足电流供应的同时解决这一问题。

在测试室内通过使用物理样机对电流密度问题进行测试并不实际,因为它可能在几年后才能引发故障。而问题可能永远不会显现出来,导致随后出现这方面的故障。

3.研究报告总结

可靠性在汽车电子中非常重要,而如今鉴于来自产品上市时间和成本缩减的压力,采取在软件虚拟样机环境中相对于测试室内的物理样机进行分析的方法显得愈发必要。目前因软件的存在,从而使电子和机械设计人员可进行更多的模拟仿真方案。

来源: 快易购

围观 562

IPC最新发布的《2016年全球PCB生产报告》显示,2016年全球PCB产值达到582亿美元,实际增长2.2%;北美地区PCB产值下降了0.1%。据《IPC2017年北美地区PCB行业年报》显示,北美市场继续缓慢萎缩,2016年下降了1.7%。

《全球PCB生产报告》显示,全球PCB产值一半以上来自中国,但是台湾企业主导着大部分离岸PCB的生产。印度成为亚洲PCB行业增长最快的国家,并在2016年跃入前十大PCB生产国榜单。

报告中还显示刚性板和挠性板的增长趋势发生了急剧变化。近几年来,刚性板增长减速,2016年仅稍有增长,但是以前增速最快的挠性板突然减速,预计2017年持续缓慢增长。

《全球PCB生产报告》由全球顶尖PCB分析师共同开发而成,数据来源可靠。其内容包括主要PCB生产国/地区的八种产品类别的PCB产值。另外还包括全球和区域PCB行业的历史数据和趋势评述,及BPA咨询公司提供的告诉数据传输报告。

《2017年北美地区PCB行业年度报告》显示军工和航天市场持续增长,占到PCB销售额的三分之一以上,并且在此垂直市场的销售额占比继续增长。

北美PCB报告涵盖可以按PCB产品类型的区域市场规模和增长率,RF和埋入式元器件等技术的应用情况,平均营运收入、产能利用率、库存周转率、备货周期等经营性指标。此报告中的数据来自参加IPC北美PCB统计调研项目的样本公司提交的生产经营数据,参与调研项目的企业数量占到该地区PCB企业的一半以上。

报告详情,请登录: www.ipc.org/market-research-reportswww.ipc.org/IndustryData ,或联系IPC市场调研团队,邮箱: marketresearch@ipc.org ;购买报告,请联系 BDAChina@ipc.org

来源:SMT商务通

围观 391

PCB的设计中芯片与PCB互连对设计来说是重要的,然而芯片与PCB互连的最主要问题是互连密度太高会导致PCB材料的基本结构成为限制互连密度增长的因素。本文分享了高频PCB设计的实用技巧。就高频应用而言,PCB板内互连进行高频PCB设计的技巧有:

1、 传输线拐角要采用45°角,以降低回损;

2、要采用绝缘常数值按层次严格受控的高性能绝缘电路板。这种方法有利于对绝缘材料与邻近布线之间的电磁场进行有效管理。

3、要完善有关高精度蚀刻的PCB 设计规范。要考虑规定线宽总误差为+/-0.0007英寸、对布线形状的下切(undercut)和横断面进行管理并指定布线侧壁电镀条件。对布线(导线)几何形状和涂层表面进行总体管理,对解决与微波频率相关的趋肤效应问题及实现这些规范相当重要。

4、突出引线存在抽头电感,要避免使用有引线的组件。高频环境下,最好使用表面安装组件。

5、对信号过孔而言,要避免在敏感板上使用过孔加工(pth)工艺,因为该工艺会导致过孔处产生引线电感。如一个20 层板上的一个过孔用于连接1至3层时,引线电感可影响4到19层。

6、要提供丰富的接地层。要采用模压孔将这些接地层连接起来防止3 维电磁场对电路板的影响。

7、要选择非电解镀镍或浸镀金工艺,不要采用HASL法进行电镀。这种电镀表面能为高频电流提供更好的趋肤效应。此外,这种高可焊涂层所需引线较少,有助于减少环境污染。

8、阻焊层可防止焊锡膏的流动。但是,由于厚度不确定性和绝缘性能的未知性,整个板表面都覆盖阻焊材料将会导致微带设计中的电磁能量的较大变化。一般采用焊坝(solderdam)来作阻焊层。

以上就是今天为大家分享的PCB板内互连进行高频PCB设计的技巧,假如你熟悉这些方法,就能明白采用背面覆铜共面微带设计比带状线设计更为经济,实用了。

围观 321

PCB设计是开关电源设计非常重要的一步,对电源的电性能、EMC、可靠性、可生产性都有关联。当前开关电源的功率密度越来越高,对PCB布局、布线的要求也越发严格,合理科学的PCB设计让电源开发事半功倍,以下细节供您参考。

一、布局要求

PCB布局是比较讲究的,不是说随便放上去,挤得下就完事的。一般PCB布局要遵循几点:

1、布局的首要原则是保证布线的布通率,移动器件时注意飞线的连接,把有连线关系的器件放在一起。

2、以每个功能电路的核心元件为中心,围绕它来进行布局。元器件应均匀、 整齐、紧凑地排列在PCB电路板上,这样,不但美观,而且装焊容易,易于批量生产。尽量减少和缩短各元器件之间的引线和连接;振荡电路,滤波去耦电容要紧靠近IC,地线要短,如图1所示。

开关电源PCB设计要点

图1

3、放置器件时要考虑以后的焊接和维修,两个高度高的元件之间尽量避免放置矮小的元件,如图2所示,这样不利于生产和维护,元件之间最好也不要太密集,但是随着电子技术的发展,现在的开关电源越来越趋于小型化和紧凑化,所以就需要平衡好两者之间的度了,既要方便焊装与维护又要兼顾紧凑。还有就是要考虑实际的贴片加工能力,按照IPC-A-610E的标准,考虑元件侧面偏移的精度,不然容易造成元件之间连锡,甚至由于元件偏移造成元件距离不够。

开关电源PCB设计要点

图2

4、光电耦合器件和电流采样电路,容易被干扰,应远离强电场、强磁场器件,如大电流走线、变压器、高电位脉动器件等。

5、元件布局的时候,要优先考虑高频脉冲电流和大电流的环路面积,尽可能地减小,以抑制开关电源的辐射干扰。如图3所示的几个电流环路是需要特别注意的。

开关电源PCB设计要点

图3

6、高频脉冲电流流过的区域要远离输入、输出端子,使噪声源远离输入、输出口,有利于提高EMC性能。

开关电源PCB设计要点

图4

如图4所示,左图变压器离入口太近,电磁的辐射能量直接作用于输入输出端,因此,EMI测试不通过。改为右边的方式后,变压器远离入口,电磁的辐射能量距输入输出端距离加大,效果改善明显,EMI测试通过。

7、发热元件(如变压器,开关管,整流二极管等)的布局要考虑散热的效果,使得整个电源的散热均匀,对温度敏感的关键元器件(如IC)应远离发热元件,发热较大的器件应与电解电容等影响整机寿命的器件有一定的距离。

8、布板时要注意底面元件的高度。例如对于灌封的DC-DC电源模块来说,因为DC-DC模块本身体积就比较小,如果底面元件的高度四边不平衡,灌封的时候会出现两边引脚高度一边高一边低的现象。

开关电源PCB设计要点

图5

9、布局的时候要注意控制引脚的抗静电能力,相应的电路元件之间的距离要足够,例如Ctrl引脚(低电平关断),其电路不像输入、输出端那样具有电容滤波,所以抗静电能力是整个模块最弱的,一定要确保有足够的安全间距。

二、走线原则

1、小信号走线要尽量远离大电流走线,两者不要靠近平行走线,如果无法避免平行的话,也要拉开足够的距离,避免小信号走线受到干扰。

开关电源PCB设计要点

图6

2、关键的小信号走线,如电流取样信号线和光耦反馈的信号线等,尽量减小回路包围的面积。

开关电源PCB设计要点

图7

3、相邻之间不应有过长的平行线(当然同一电流回路平行走线是可以的),上下层走线尽量采用交叉用垂直方式,走线不要突然拐角(即:≤90°),直角、锐角在高频电路中会影响电气性能。

开关电源PCB设计要点

图8

4、功率回路和控制回路要注意分开,采用单点接地方式,如图9和图10所示。

初级PWM控制IC周围的元件接地接至IC的地脚,再从地脚引出至大电容地线,然后与功率地连接。次级TL431周围的元件接地至TL431的3脚,再与输出电容的地连接。多个IC的情况,采用并联单点接地的方式。

开关电源PCB设计要点

图9

开关电源PCB设计要点

图10

5、高频元件(如变压器、电感)底下第一层不要走线,高频元件正对着的底面也最好不要放置元件,如果无法避免,可以采用屏蔽的方式,例如高频元件在Top层,控制电路正对着在Bottom层,注意要在高频元件所在的第一层敷铜进行屏蔽,如图11所示,这样可以避免高频噪声辐射干扰到底面的控制电路。

开关电源PCB设计要点

图11

6、滤波电容的走线要特别注意,如图12,左图有一部分纹波&噪声会经过走线出去,右图滤波效果会好很多,纹波&噪声经过滤波电容被完全滤掉。

开关电源PCB设计要点

图12

7、电源线、地线尽量靠近,以减小所包围的面积,从而减小外界磁场环路切割产生的电磁干扰,同时减少环路对外的电磁辐射。电源线、地线的布线尽量加粗缩短,以减小环路电阻,转角要圆滑,线宽不要突变,如图13所示。

开关电源PCB设计要点

图13

8、发热大的元件(如TO-252封装的MOS管)下可以大面积裸铜,用于散热,这样可以提高元件的可靠性。功率走线铜箔较窄处可以裸铜用于加锡以保证大电流的流通。

三、安规距离与工艺要求

1、电气间隙:两相邻导体或一个导体与相邻导电机壳表面的沿空气测量的最短距离。爬电距离:两相邻导体或一个导体与相邻导电机壳表面的沿着绝缘表面测量的最短距离。如果碰到模块PCB空间有限,爬电距离不够,可以采用开槽的方式,如图14所示,在光耦处开隔离槽以满足初次级良好隔离。一般最小开槽宽度为1mm,如果要开更小的槽(如0.6mm,0.8mm),一般需要特殊说明,找加工精度高的PCB厂家才行,当然费用也会增加。

开关电源PCB设计要点

图14

一般电源模块电压与最小爬电距离的关系可参照下表:

开关电源PCB设计要点

2、元件到板边的距离要求。位于电路板边缘的元器件,离电路板边缘一般不少于2mm,对于像10W以下的小型化DC-DC模块,由于元件体积和高度比较小,而且输入输出电压不高,为了满足小型化的要求,也要至少留有0.5mm以上的距离。大面积铜箔到外框的距离应至少保证0.20mm以上的间距,因在铣外形时容易铣到铜箔上造成铜箔翘起及由其引起焊剂脱落问题。

3、若走线入圆焊盘或过孔的宽度较圆焊盘的直径小时,则需加泪滴,加强吸附力,避免焊盘或过孔脱落。

开关电源PCB设计要点

图15

4、SMD器件的引脚与大面积铜箔连接时,要进行热隔离处理,不然过回流焊的时候由于散热快,容易造成虚焊或脱焊。

开关电源PCB设计要点

图16

5、PCB拼板的时候,要考虑分板可行性,确保元件离板边的距离要足够,同时还要考虑分板的应力会不会造成元件的脱翘。如图17所示,可以适当的开槽,减小分断PCB时的应力,元件A摆放的位置与V-CUT槽方向平行,分断时应力比元件B小;元件C比元件A远离V-CUT槽,分断时应力也比元件A的小。

开关电源PCB设计要点

图17

当然,以上只是个人总结的一些开关电源PCB设计的经验,还有很多细节上的或其他方面的知识需要注意的,最后我想说的是PCB设计,除了原则要求和经验知识之外,最重要的一点是细心再细心,检查再检查。

文章来源: ZLG致远电子

围观 347

PCB表面处理最基本的目的是保证良好的可焊性或电性能。由于自然界的铜在空气中倾向于以氧化物的形式存在,不大可能长期保持为原铜,因此需要对铜进行其他处理。

1、热风整平(喷锡)
热风整平又名热风焊料整平(俗称喷锡),它是在PCB表面涂覆熔融锡(铅)焊料并用加热压缩空气整(吹)平的工艺,使其形成一层既抗铜氧化,又可提供良好的可焊性的涂覆层。热风整平时焊料和铜在结合处形成铜锡金属间化合物。PCB进行热风整平时要沉在熔融的焊料中;风刀在焊料凝固之前吹平液态的焊料;风刀能够将铜面上焊料的弯月状最小化和阻止焊料桥接。

2、有机可焊性保护剂(OSP)
OSP是印刷电路板(PCB)铜箔表面处理的符合RoHS指令要求的一种工艺。 OSP是Organic Solderability Preservatives的简称, 中译为有机保焊膜,又称护铜剂,英文亦称之Preflux。 简单地说,OSP就是在洁净的裸铜表面上,以化学的方法长出一层有机皮膜。这层膜具有防氧化,耐热冲击,耐湿性,用以保护铜表面于常态环境中不再继续生锈 (氧化或硫化等);但在后续的焊接高温中,此种保护膜又必须很容易被助焊剂所迅速清除,如此方可使露出的干净铜表面得以在极短的时间内与熔融焊锡立即结合 成为牢固的焊点。

3、全板镀镍金
板镀镍金是在PCB表面导体先镀上一层镍后再镀上一层金,镀镍主要是防止金和铜间的扩散。现在的电镀镍金有两类:镀软金(纯金,金表面看起来不亮)和镀硬金(表面平滑和硬,耐磨,含有钴等其他元素,金表面看起来较光亮)。软金主要用于芯片封装时打金线;硬金主要用在非焊接处的电性互连。

4、沉金
沉金是在铜面上包裹一层厚厚的、电性良好的镍金合金,这可以长期保护PCB;另外它也具有其它表面处理工艺所不具备的对环境的忍耐性。此外沉金也可以阻止铜的溶解,这将有益于无铅组装。

5、沉锡
由于目前所有的焊料都是以锡为基础的,所以锡层能与任何类型的焊料相匹配。沉锡工艺可以形成平坦的铜锡金属间化合物,这个特性使得沉锡具有和热风整平一样的好的可焊性而没有热风整平令人头痛的平坦性问题;沉锡板不可存储太久,组装时必须根据沉锡的先后顺序进行。

6、沉银
沉银工艺介于有机涂覆和化学镀镍/沉金之间,工艺比较简单、快速;即使暴露在热、湿和污染的环境中,银仍然能够保持良好的可焊性,但会失去光泽。沉银不具备化学镀镍/沉金所具有的好的物理强度因为银层下面没有镍。

7、化学镍钯金
化学镍钯金与沉金相比是在镍和金之间多了一层钯,钯可以防止出现置换反应导致的腐蚀现象,为沉金作好充分准备。金则紧密的覆盖在钯上面,提供良好的接触面。

8、电镀硬金
为了提高产品耐磨性能,增加插拔次数而电镀硬金。

来源:致远电子

围观 395

作者:ERIN GOWDY, MENTOR GRAPHICS CORPORATION

正如我们在近期发布的白皮书《影响 PCB 工程团队工作效率的三大难题》中指出的,人口结构的剧变导 致了电气工程师工作范围的转变。特别是,工程师被迫要肩负过去由资深专家执行的任务。需要重申一下,电子系统开发方式的这一根本改变是由三大挑战造成的:

1. 首先是持续呈加速度式上升的设计复杂性。在解决复杂性问题的同时,还需要满足上市时间、成本 降低以及质量提高等业务驱动因素的要求。
2. 其次是 PCB 设计人员和设计工程师人才储备的萎缩。其结果是,剩余的人员需要用更少的资源实现 更大的产出。
3. 最后一项是,企业在开发项目中采用了更加“依赖于系统”的方案。项目不再是以 PCB 为中心的单 个设计,而是跨多个领域的整体系统。

我们认为,正是这三项挑战,导致了系统开发方法以及确保获得最大成功所需的工具发生重大的变革。

越来越多的领先设计创建工具供应商正在潜心研究软件可用性的提升,以帮助企业应对这些挑战。无论 采用何种设计规程,软件设计都应满足用户的期望,说到底,就是应该易于使用。
本白皮书探讨了易于使用的 EDA 软件的价值,并且提出了一套有助于实现此目标的重要原则。而后,我们 还会提供一系列示例来展示 Mentor Graphics 公司如何将功能落实到 Xpedition® 设计创建工具中,以满足 这些易用原则。

易用的六大原则:

通常来说,设计工程师可以花在 EDA 工具上的时间非常的少,因此我们总结了工具应遵循的六大原则, 以便帮助工程师充分利用设计创建流程中的每一分钟。

1. 清晰易辨:清晰易辨不仅限于应用程序中的文本;包括文本、图片以及 Layout 在内的整个界面都必须“清晰可辨”。如果各项功能清楚明了,则可以最大限度减少寻求外部资源(如培训或其他文档)的需要。
2. 行为可预测 工具行为应当贴合用户的预期。功能布局应合理妥当,并以最自然的方式发挥作用。
3. 简约:人们常说“简约成就非凡”,这是对简约原则的最佳描述。如果有多种方式可实现同一个目标,工具就 会显得混乱而难以记忆。
4. 高度自动化 这类易用性更强的工具可以自动完成简单的任务,从而加快设计的输入过程,并帮助设计人员避免出错。
5. 流程引导:工具应能引导用户完成隐含的工作流程,而不会造成任何障碍。此流程中的每一步都应明确界定,但同时,工具不应限制工作流程。
6. 高效:通过采用上述原则,设计工具可实现更高的效率,并为用户提供更高的质量。

通过根据您的期望和行为设计工具,对新手和生手的要求也就相应降低了,因此他们可以将更多注意力 放在工程设计任务上,而不是用于执行任务的工具上。这样就能够提升效率和质量,同时降低拥有成 本,因为所需的培训减少了,并且不常使用软件的人也不必花费大量时间重新学习他们的工具。

原则付诸实践:XPEDITION 设计创建 某个工具集要想在设计创建领域成为名副其实的标准,必须具备一系列特性。

一方面,它应该易于使用,易于部署,并且可以随时取用,以便用户立即投入工作。另一方面,该解决 方案还应该具备可扩展性,从而适应不同的设计复杂性和设计团队规模。随着设计复杂性的提高,该工 具应支持更强大的功能,以实现高效的团队设计,同时保持其易用性。

Mentor Graphics 公司将这些看似矛盾的需求整合在一起,最终打造出强大的 Xpedition 设计创建工具。在 打造 Xpedition 时,我们充分考虑了这六大指导原则。凭借其诸多特性,专业设计工程师不仅能完成自己 的设计,而且还能实现效率最大化,同时还不会牺牲功能性和可扩展性。

高级工具提示可及时提供帮助

凭借增强型工具提示,用户能够在不退出工具的情况下了解命令的工作方式。与传统的帮助系统不同, 工具提示可提供包括详细说明和功能视频在内的丰富内容。

■ Xpedition 工具提示是渐进显示的,也就是说只有当用户将鼠标较长时间悬停在工具栏按钮上时才会 显示,因此不会中断资深用户的工作流程。
■ 工具提示可最大限度地加快您的学习速度,省去大量的培训工作。

利用工具提示,设计人员可快速获取有关命令的信息

图 1:利用工具提示,设计人员可快速获取有关命令的信息。

环境感知界面仅在有用时显示信息

Xpedition 用户界面已经过优化,可以最大限度地减少混乱情况。通过感知环境,工具仅在必要时才为用户 呈现相关信息。

■ 利用层次化模块的工具提示,用户可以预览内容,并通过双击缩略图来导航到所需图纸。
■ 将一个多管脚元器件插入到一组已命名网络后,将会高亮显示并选中网络名称,以便根据需要将其 一键重新分配到其他网络。

轻松布局元件,并提供环境感知的元件布局协助

图 2:轻松布局元件,并提供环境感知的元件布局协助。

功能触手可及

无需离开绘图区域便可获得输入设计所需的诸多功能,使得设计流程更加高效。

■ 内置文本编辑允许用户方便地插入或替换文本,或者执行更改字体或颜色等编辑功能。
■ 系统内总线/网络布线允许通过鼠标的上下文菜单方便地访问重要的布线功能。
■ 利用键盘快捷键,您可以快捷地更改选择模式,从选择框到重叠,甚至智能选择特定的元素,所有 这些操作都不需要更改全局设置。

通过对接进行连接,使得设计人员可以轻松地向设计添加网络

图 3:通过对接进行连接,使得设计人员可以轻松地向设计添加网络。

按您的思考方式设计

插件式对话框可用于快速访问收藏的元件、特殊元器件和最近使用的元件,以帮助设计人员快速输入设 计。与有助于布局符号的动态对齐标记结合在一起后,用户能够创建明确记录的原理图,并且只需要极 少的返工或清理工作即可。

插件式对话框可用于快速访问最常用的元件

图 4:插件式对话框可用于快速访问最常用的元件。

通过设计自动化提高效率

强大的设计自动化可最大限度地减少连接多管脚符号所需的工作量和鼠标点击次数。

■ 按单个管脚或管脚组进行管脚选择,可提供自动管脚到管脚连接的灵活性,同时让您仍保持对网络 布线的控制。
■ 将多个串行元器件快速插入到现有网络中,或将多管脚元件插入到现有布线中,支持自动网络分 割,并且方便用户重新分配网络名称。

自动网络分割可节省设计人员的时间和精力

图 5:自动网络分割可节省设计人员的时间和精力。

不同领域采用统一的图形界面

设计人员和库管理员采用通用环境,可一致地呈现包括字体、分层图形和配色方案在内的图形对象。两种 环境使用相同的图形设置,并且共用相同的自动化层。

设计人员可以自行定制 xDx 图形界面,从而方便地控制自己工作区的外观和风格

图 6:设计人员可以自行定制 xDx 图形界面,从而方便地控制自己工作区的外观和风格。

流程引导

设计流程中的每一步都会提示用户相关的选项和后续步骤,将易用性扩展到包含设计创建任务和与 PCB Layout 集成的整个流程。

■ 经过优化的用户界面可帮助用户完成流程中的所有步骤,从项目管理到约束输入和PCB的集成状态。 ■ 教程、在线帮助及其他资源均可随时从起始页获取,并且提供可转至应用说明和技术说明的快速链接。

起始页提供有快速访问教程、文档、新闻及其他资源的链接

图 7:起始页提供有快速访问教程、文档、新闻及其他资源的链接。

无缝集成

约束管理已内置到设计创建工具集中,能够将工程设计意图无缝地传递到 Layout 中,并能管理双向变更。 只要将网络添加到原理图,用户便可添加约束,同时为多用户并行输入提供全面支持。

■ 利用交通灯系统,可根据需要将变更传递到PCBLayout中。可以选择将设计变更与约束变更一起传递, 也可以选择仅传递约束变更,如此一来,大大提高了设计流程的灵活性。用户还可以将复杂的 FPGA 快速集成到设计中,并根据电路板环境优化布线。
■ 内置的向导可协助元件和封装的选择以及 HDL 接口的导入,因此只需点击几下鼠标,便可将 FPGA包括在设计中。双向接口可确保任何设计变更都会反馈到 FPGA 流程。

约束管理易于访问,可增强对设计流程的控制

图 8:约束管理易于访问,可增强对设计流程的控制。

结论

在打造 Xpedition 设计创建工具的过程中,Mentor Graphics 始终坚持贯彻六大易用原则。凭借简约、清晰 且行为符合预期的界面,并与高度自动化和流程引导相结合,Mentor Graphics 让高产、高效的设计流程变 得简单易行。利用 Xpedition,工程师可以将时间和精力集中在手里的设计任务上。

本文来自:mentor.

围观 353



就高速ADC PCB的布局布线技巧,之前我们分享过如何实现裸露焊盘的最佳连接。除了需要注意裸露焊盘,小编还要和大家唠唠去耦和层电容~

有时我们会忽略使用去耦的目的,仅仅在电路板上分散大小不同的许多电容,使较低阻抗电源连接到地。但问题依旧:需要多少电容?许多相关文献表明,必须使用大小不同的许多电容来降低功率传输系统(PDS)的阻抗,但这并不完全正确。相反,仅需选择正确大小和正确种类的电容就能降低PDS阻抗。

举个栗子
考虑设计一个10 mΩ参考层,如图1所示。如红色曲线所示,系统电路板上使用许多不同值的电容,0.001 μF、0.01 μF、0.1 μF等等。这当然可以降低500 MHz频率范围内的阻抗,但是,请看绿色曲线,同样的设计仅使用0.1 μF和10 μF电容。这证明,如果使用正确的电容,则不需要如此多的电容。这也有助于节省空间和物料(BOM)成本。

“”

注意,并非所有电容“生而平等”,即使同一供应商,工艺、尺寸和样式也有差别。如果未使用正确的电容,不论是多个电容还是几个不同类型,都会给PDS带来反作用。结果可能是形成电感环路。电容放置不当或者使用不同工艺和型号的电容(因而对系统内的频率做出不同响应),彼此之间可能会发生谐振,见图2。

“”

所以,了解系统所用电容类型的频率响应很重要。随便选用电容,会让设计低阻抗PDS系统的努力付之东流。

如何设计出合格的PDS
要设计出合格的PDS,需要使用各种电容(见图1)。PCB上使用的典型电容值只能将直流或接近直流频率至约500 MHz范围的阻抗降低。高于500 MHz频率时,电容取决于PCB形成的内部电容。注意,电源层和接地层紧密叠置会有帮助。

应当设计一个支持较大层电容的PCB层叠结构。例如,六层堆叠可能包含顶部信号层、第一接地层、第一电源层、第二电源层、第二接地层和底部信号层。规定第一接地层和第一电源层在层叠结构中彼此靠近,这两层间距为2到4密尔,形成一个固有高频层电容。此电容的最大优点是它是免费的,只需在PCB制造笔记中注明。如果必须分割电源层,同一层上有多个VDD电源轨,则应使用尽可能大的电源层。不要留下空洞,同时应注意敏感电路。这将使该VDD层的电容最大。

如果设计允许存在额外的层(上例中,从六层变为八层),则应将两个额外的接地层放在第一和第二电源层之间。在核心间距同样为2到3密尔的情况下,此时层叠结构的固有电容将加倍,示例见图3。

“”

与添加更多分立高频电容以在高频时保持低阻抗相比,此结构更易于设计。

PDS的任务是将响应电源电流需求而产生的电压纹波降至最低,这点很重要但常被忽略。所有电路都需要电流,有些电路需求量较大,有些电路则需要以较快的速率提供电流。采用充分去耦的低阻抗电源层或接地层以及良好的PCB层叠,有助于将因电路的电流需求而产生的电压纹波降至最低。例如,根据所用的去耦策略,如果系统设计的开关电流为1 A,PDS的阻抗为10 mΩ,则最大电压纹波为10 mV。计算很简单:V = IR。

凭借完美的PCB堆叠,可覆盖高频范围,同时在电源层起始入口点和高功率或浪涌电流器件周围使用传统去耦,可覆盖低频范围(

来源:贸泽电子

围观 352

页面

订阅 RSS - PCB