PCB设计

来源:ZLG致远电子

PCB设计对电源的参数有重要的影响。一个差的PCB,EMC性能差、输出噪声大、抗干扰能力弱,甚至基本功能都可能有缺陷。本文结合开关电源的特点及工程经验,简述开关电源PCB一些最基本的原则。

1、间距

对于高电压产品必须要考虑到线间距。能满足相应安规要求的间距当然最好,但很多时候对于不需要认证,或没法满足认证的产品,间距就由经验决定了。多宽的间距合适?必须考虑生产能否保证板面清洁、环境湿度、其他污染等情况如何。

对于市电输入,即使能保证板面清洁、密封,MOS管漏源极间接近600V,小于1mm事实上也比较危险了!

2、板边缘的元器件

在PCB边沿的贴片电容或其他易损坏的器件,在放置时必须考虑PCB分板方向,如图是各种放置方法时,器件受到的应力大小对比。


图1 分板时器件受到的应力对比

由此可以看出,器件应远离并平行于分板边缘,否则可能因为PCB分板导致元器件受损。

3、环路面积

无论是输入或是输出、功率环路或信号环路,应尽可能的小。功率环路发射电磁场,将导致较差的EMI特性或较大的输出噪声;同时,若被控制环接收,很可能引起异常。

另一方面,若功率环路面积较大,其等效寄生电感也会增大,可能增加漏极噪声尖峰。

4、关键走线

因di/dt作用,必须减小动态节点处电感,否则会产生较强的电磁场。若要减小电感,主要是要减少布线的长度,增加宽度作用较小。

5、信号线

对于整个控制部分,布线时应考虑将其远离功率部分。若因其他限制两者靠得较近,不应将控制线与功率线并行,否则可能导致电源工作异常、震荡。

另外若控制线很长,应该将来回的一对线的靠近,或将二者置于PCB的两个面上并正对着,从而减小其环路面积,避免被功率部分的电磁场干扰。如图2说明了A、B两点间,正确与错误的信号线布线方法。


图2 正确与错误的信号线布线方法

当然,信号线上应尽量减少用于连接的过孔!

6、铺铜

有的时候铺铜是完全没有必要的,甚至应该避免。若铜面积足够大且其电压不断变化,一方面它可能作为天线,向周围辐射电磁波;另一方面它又很容易拾起噪声。

通常只允许在静态节点铺铜,例如对输出端“地”节点铺铜,可以等效增加输出电容,滤除一些噪声信号。

7、映射

对于一个回路,可以在PCB的一面进行铺铜,它会根据PCB另一面的布线自动映射,使这个回路的阻抗最小。这就好像一组不同阻抗值的阻抗并联,电流会自动选择阻抗最小的路径流过一样。

事实上可以在控制部分电路的一面进行连线,而在另一面对“地”节点铺铜,两个面间通过过孔连接。

8、输出整流二极管

输出整流二极管若离输出端比较近,不应将其与输出平行放置。否则二极管处产生的电磁场将穿入电源输出与外接负载形成的环路,使测得的输出噪声增大。


图3 正确与错误的二极管放置方向

9、地线

地线的布线必须非常小心,否则可能引起EMS、EMI性能和其他性能变差。对于开关电源PCB的“地”,至少做到以下两点:

功率地和信号地,应单点连接;
不应有存在地环路。

10、Y电

输入输出经常会接入Y电容,有时因某些原因,可能无法将其挂在输入电容地上,此时切记,一定要接在静态节点,如高压端。

11、其他

实际电源PCB设计时,可能还要考虑其他一些问题,例如“压敏电阻应紧靠被保护电路”、“共模电感应增加放电齿”、“芯片VCC供电处应增加瓷片电容”等等。另外,是否需特殊处理,如铜箔、屏蔽等,在PCB设计阶段也是需要考虑的。

有时往往会遇到多个原则相互冲突的情况,满足其中一个就满足不了其他的,这是需要工程师应用已有的经验,根据实际项目需求,确定最合适的布线了!

围观 560

作为一个电子工程师设计电路是一项必备的硬功夫,但是原理设计再完美,如果电路板设计不合理性能将大打折扣,严重时甚至不能正常工作。根据我的经验,我总结出以下一些PCB设计中应该注意的地方,希望能对您有所启示。

不管用什么软件,PCB设计有个大致的程序,按顺序来会省时省力,因此我将按制作流程来介绍一下。(由于protel界面风格与windows视窗接近,操作习惯也相近,且有强大的仿真功能,使用的人比较多,将以此软件作说明。)

原理图设计是前期准备工作,经常见到初学者为了省事直接就去画PCB板了,这样将得不偿失,对简单的板子,如果熟练流程,不妨可以跳过。但是对于初学者一定要按流程来,这样一方面可以养成良好的习惯,另一方面对复杂的电路也只有这样才能避免出错。

在画原理图时,层次设计时要注意各个文件最后要连接为一个整体,这同样对以后的工作有重要意义。由于,软件的差别有些软件会出现看似相连实际未连(电气性能上)的情况。如果不用相关检测工具检测,万一出了问题,等板子做好了才发现就晚了。因此一再强调按顺序来做的重要性,希望引起大家的注意。

原理图是根据设计的项目来的,只要电性连接正确没什么好说的。下面我们重点讨论一下具体的制板程序中的问题。

1、制作物理边框

封闭的物理边框对以后的元件布局、走线来说是个基本平台,也对自动布局起着约束作用,否则,从原理图过来的元件会不知所措的。但这里一定要注意精确,否则以后出现安装问题麻烦可就大了。还有就是拐角地方最好用圆弧,一方面可以避免尖角划伤工人,同时又可以减轻应力作用。以前我的一个产品老是在运输过程中有个别机器出现面壳PCB板断裂的情况,改用圆弧后就好了。

2、元件和网络的引入

把元件和网络引人画好的边框中应该很简单,但是这里往往会出问题,一定要细心地按提示的错误逐个解决,不然后面要费更大的力气。这里的问题一般来说有以下一些:

元件的封装形式找不到,元件网络问题,有未使用的元件或管脚,对照提示这些问题可以很快搞定的。

3、元件的布局

元件的布局与走线对产品的寿命、稳定性、电磁兼容都有很大的影响,是应该特别注意的地方。一般来说应该有以下一些原则:

3.1放置顺序

先放置与结构有关的固定位置的元器件,如电源插座、指示灯、开关、连接件之类,这些器件放置好后用软件的Lock功能将其锁定,使之以后不会被误移动。再放置线路上的特殊元件和大的元器件,如发热元件、变压器、IC等。最后放置小器件。

3.2注意散热

元件布局还要特别注意散热问题。对于大功率电路,应该将那些发热元件如功率管、变压器等尽量靠边分散布局放置,便于热量散发,不要集中在一个地方,也不要高电容太近以免使电解液过早老化。

4、布线

布线原则

走线的学问是非常高深的,每人都会有自己的体会,但还是有些通行的原则的。

高频数字电路走线细一些、短一些好;

大电流信号、高电压信号与小信号之间应该注意隔离(隔离距离与要承受的耐压有关,通常情况下在2KV时板上要距离2mm,在此之上以比例算还要加大,例如若要承受3KV的耐压测试,则高低压线路之间的距离应在3.5mm以上,许多情况下为避免爬电,还在印制线路板上的高低压之间开槽。);

两面板布线时,两面的导线宜相互垂直、斜交、或弯曲走线,避免相互平行,以减小寄生耦合;作为电路的输人及输出用的印制导线应尽量避兔相邻平行,以免发生回授,在这些导线之间最好加接地线。

走线拐角尽可能大于90度,杜绝90度以下的拐角,也尽量少用90度拐角;

同是地址线或者数据线,走线长度差异不要太大,否则短线部分要人为走弯线作补偿;

走线尽量走在焊接面,特别是通孔工艺的pcb;

尽量少用过孔、跳线;

单面板焊盘必须要大,焊盘相连的线一定要粗,能放泪滴就放泪滴,一般的单面板厂家质量不会很好,否则对焊接和RE-WORK都会有问题;

大面积敷铜要用网格状的,以防止波焊时板子产生气泡和因为热应力作用而弯曲,但在特殊场合下要考虑GND的流向,大小,不能简单的用铜箔填充了事,而是需要去走线;

元器件和走线不能太靠边放,一般的单面板多为纸质板,受力后容易断裂,如果在边缘连线或放元器件就会受到影响;

必须考虑生产、调试、维修的方便性。

对模拟电路来说处理地的问题是很重要的,地上产生的噪声往往不便预料,可是一旦产生将会带来极大的麻烦,应该未雨绸缎。对于功放电路,极微小的地噪声都会因为后级的放大对音质产生明显的影响;在高精度A/D转换电路中,如果地线上有高频分量存在将会产生一定的温漂,影响放大器的工作。这时可以在板子的4角加退藕电容,一脚和板子上的地连,一脚连到安装孔上去(通过螺钉和机壳连),这样可将此分量虑去,放大器及A/D也就稳定了。

另外,电磁兼容问题在目前人们对环保产品倍加关注的情况下显得更加重要了。一般来说电磁信号的来源有3个:信号源,辐射,传输线。晶振是常见的一种高频信号源,在功率谱上晶振的各次谐波能量值会明显高出平均值。可行的做法是控制信号的幅度,晶振外壳接地,对干扰信号进行屏蔽,采用特殊的滤波电路及器件等。

需要特别说明的是蛇形走线,因为应用场合不同其作用也是不同的,在电脑的主板中用在一些时钟信号上,如 PCICLK、AGP-CLK,它的作用有两点:1、阻抗匹配 2、滤波电感。

对一些重要信号,如 INTELHUB架构中的HUBLink,一共13根,频率可达233MHZ,要求必须严格等长,以消除时滞造成的隐患,这时,蛇形走线是唯一的解决办法。

一般来讲,蛇形走线的线距>=2倍的线宽;若在普通PCB板中,除了具有滤波电感的作用外,还可作为收音机天线的电感线圈等等。

5、调整完善

完成布线后,要做的就是对文字、个别元件、走线做些调整以及敷铜(这项工作不宜太早,否则会影响速度,又给布线带来麻烦),同样是为了便于进行生产、调试、维修。

敷铜通常指以大面积的铜箔去填充布线后留下的空白区,可以铺GND的铜箔,也可以铺VCC的铜箔(但这样一旦短路容易烧毁器件,最好接地,除非不得已用来加大电源的导通面积,以承受较大的电流才接VCC)。包地则通常指用两根地线(TRAC)包住一撮有特殊要求的信号线,防止它被别人干扰或干扰别人。

如果用敷铜代替地线一定要注意整个地是否连通,电流大小、流向与有无特殊要求,以确保减少不必要的失误。

6、检查核对网络

有时候会因为误操作或疏忽造成所画的板子的网络关系与原理图不同,这时检察核对是很有必要的。所以画完以后切不可急于交给制版厂家,应该先做核对,后再进行后续工作。

7、使用仿真功能

完成这些工作后,如果时间允许还可以进行软件仿真。特别是高频数字电路,这样可以提前发现一些问题,大大减少以后的调试工作量。

来源:网络(本文仅供学习参考使用,版权归原作者所有)

围观 291

实际上印刷线路板(PCB)是由电气线性材料构成的,也即其阻抗应是恒定的。那么,PCB为什么会将非线性引入信号内呢?答案在于:相对于电流流过的地方来说,PCB布局是“空间非线性”的。

放大器是从这个电源还是从另外一个电源获取电流,取决于加负载上的信号瞬间极性。电流从电源流出,经过旁路电容,通过放大器进入负载。然后,电流从负载接地端(或PCB输出连接器的屏蔽)回到地平面,经过旁路电容,回到最初提供该电流的电源。

电流流过阻抗最小路径的概念是不正确的。电流在全部不同阻抗路径的多少与其电导率成比例。在一个地平面,常常有不止一个大比例地电流流经的低阻抗路径:一个路径直接连至旁路电容;另一个在达到旁路电容前,对输入电阻形成激励。图1示意了这两个路径。地回流电流才是真正引发问题的原因。

当旁路电容放在PCB的不同位置时,地电流通过不同路径流至各自的旁路电容,即“空间非线性”所代表的含义。若地电流某一极性的分量的很大部分流过输入电路的地,则只扰动信号的这一极性的分量电压。而若地电流的另一极性并没施扰,则输入信号电压以一种非线性方式发生变化。当一个极性分量发生改变而另一个极性没改动时,就会产生失真,并表现为输出信号的二次谐波失真。图2以夸张的形式显示这种失真效果。

当只有正弦波的一个极性分量受到扰动时,产生的波形就不再是正弦波。用一个100Ω负载模拟理想放大器,使负载电流通过一个1Ω电阻,仅在信号的一个极性上耦合输入地电压,则得到图3所示的结果。傅立叶变换显示,失真波形几乎全是-68dBc处的二次谐波。当频率很高时,很容易在PCB上生成这种程度的耦合,它无需借助太多PCB特殊的非线性效应,就可毁掉放大器优异的防失真特性。当单个运算放大器的输出由于地电流路径而失真时,通过重新安排旁路回路可调节地电流流动,并保持与输入器件的距离,如图4所示。


多放大器芯片

多放大器芯片(两个、三个或者四个放大器)的问题更加复杂,因为它无法使旁路电容的地连接远离全部输入端。对四放大器来说更是如此。四放大器芯片的每一边都有输入端,所以没有空间放置可减轻对输入通道扰动的旁路电路。

图5给出了四放大器布局的简单方法。大多器件直接连至四放大器管脚。一个电源的地电流可扰动另一个通道电源的输入地电压和地电流,从而导致失真。例如,四放大器通道1上的(+Vs)旁路电容可直接放在临近其输入的地方;而(-Vs)旁路电容可放在封装的另一侧。(+Vs)地电流可扰动通道1,而(-Vs)地电流则可能不会。

为避免这种问题,可让地电流扰动输入,但让PCB电流以一种空间线性方式流动。为实现此目的,可以采用下方式在PCB上布局旁路电容:使(+Vs)和(–Vs)地电流流经同一路径。若正/负电流对输入信号的扰动相等,则将不会产生失真。因此,使两个旁路电容紧挨着排列,以使它们共享一个接地点。因为地电流的两个极性分量来自同一个点(输出连接器屏蔽或负载地),并都回流至同一个点(旁路电容的公共地连接),所以正/负电流都流经同一路径。若一个通道的输入电阻被(+Vs)电流扰动,则(–Vs)电流对其有相同影响。因为无论极性是怎样的,产生的扰动都相同,所以不会产生失真,但将使该通道增益发生小的变化,如图6所示。

为验证如上推断,采用两个不同的PCB布局:简易布局(图5)和低失真布局(图6)。采用飞兆半导体的FHP3450四运算放大器所产生的失真如表1所示,FHP3450的典型带宽是210MHz,斜率是1100V/us,输入偏置电流是100nA,每通道的工作电流是3.6mA。从表1可看出,失真越严重的通道,改进的效果越好,从而使4个通道在性能上接近相等。


若在PCB上没有一个理想的四放大器,则测量单一放大器通道的效应会很困难。显然,一个给定的放大器通道不仅扰动其本身输入,还会扰动其它通道的输入。地电流流经全部不同的通道输入,且产生不同效果,但又都受每个输出的影响,这种影响是可测量的。

表2给出了当只驱动一个通道时,在其它未受驱动的通道上测量到的谐波。未驱动通道在基本频率上显示出一个小信号(串扰),但在没有任何显著基本信号的情况下,也产生由地电流直接引入的失真。图6的低失真布局显示:因为几乎消除了地电流效应,二次谐波和总体谐波失真(THD)特性有很大改进。

本文小结

简单地说,在PCB上,地回流电流流经不同的旁路电容(用于不同的电源)及电源本身,其大小与其电导率成比例。高频信号电流流回小旁路电容。低频电流(如音频信号的电流)可能主要流经更大的旁路电容。即使频率更低的电流也可能“漠视”全部旁路电容的存在,直接流回电源引线。具体的应用将决定哪个电流路径最关键。幸运的是,通过采用公共接地点及输出侧的地旁路电容,可以容易地保护全部地电流路径。

高频PCB布局的金科玉律是将高频旁路电容尽可能靠近封装的电源管脚,但比较图5和图6可以看出,为改进失真特性而修改该规则不会带来太大改变。改进失真特性是以增加约0.15英寸长的高频旁路电容走线为代价的,但这对FHP3450的AC响应性能影响很小。PCB布局对充分发挥一款高质量放大器的性能很重要,这里讨论的问题绝非仅限于高频放大器。类似音频等频率更低的信号对失真的要求要严格得多。地电流效应在低频下要小一些,但若要求相应改进所需的失真指标,地电流仍可能是一个重要的问题。

文章来源:博客园

(直接点击图片可进入调查页面)

开发板测评图片
围观 378

页面

订阅 RSS - PCB设计