PCB设计

PCB设计中数字地、模拟地、数字电源、模拟电源的处理方式

AVCC:模拟部分电源供电;AGND:模拟地
DVCC:数字部分电源供电;DGND:数字地

电源模块的PCB设计

电源电路是一个电子产品的重要组成部分,电源电路设计的好坏,直接牵连产品性能的好坏。我们电子产品的电源电路主要有线性电源和高频开关电源。从理论上讲,线性电源是用户需要多少电流,输入端就要提供多少电流;开关电源是用户需要多少功率,输入端就提供多少功率。

线性电源

混合信号PCB设计中单点接地技术的研究

随着计算机技术的不断提高,高性能的模拟输/输出系统越来越受到重视。无论在模拟输入系统还是在模拟输出系统中,都存在着数字信号与模拟信号共存的问题。尤其是对于一块混合信号的PCB(印刷电路板),模拟电路和数字电路交错混杂。同数字信号相比,模拟信号由于其噪声免疫能力差,容易受到数字部分的高频信号的影响,更容易遭受干扰。

PCB设计中的电源信号完整性的考虑

在电路设计中,一般我们很关心信号的质量问题,但有时我们往往局限在信号线上进行研究,而把电源和地当成理想的情况来处理,虽然这样做能使问题简化,但在高速设计中,这种简化已经是行不通的了。尽管电路设计比较直接的结果是从信号完整性上表现出来的,但我们绝不能因此忽略了电源完整性设计。因为电源完整性直接影响最终PCB板的信号完整性。

PCB设计中对差分走线的几个误区

差分信号

差分信号(Differential Signal)在高速电路设计中的应用越来越广泛,电路中最关键的信号往往都要采用差分结构设计,什么令它这么倍受青睐呢?在 PCB 设计中又如何能保证其良好的性能呢?

PCB设计中高速信号的通常优化方法

以LVDS信号为例,说明PCB设计中高速信号的通常优化方法:

LVDS(Low Voltage Differential Signaling,低电压差分信号)是一种低摆幅的差分信号技术,它使得信号能在差分PCB线对或平衡电缆上以几百Mbps的速率传输,其低压幅和低电流驱动输出实现了低噪声和低功耗。

电子电路的心脏-晶振的应用与合理的PCB设计

我们常把晶振比喻为数字电路的心脏,这是因为,数字电路的所有工作都离不开时钟信号,晶振直接控制着整个系统,若晶振不运作那么整个系统也就瘫痪了,所以晶振是决定了数字电路开始工作的先决条件。

PCB设计中,主板各种类型信号的基本走线要求

首先,在PCB设计做图之前,应对一些重要信号进行Space设置和一些线宽设置,如果没有Layoutguaid,这就要求我们自已要有这方面的经验,一般情况下我们要注意以下信号的基本走线规则:

1、CPU的走线:

PCB设计中处理信号完整性的常见问题及解决方案

在电子设计领域,高性能设计有其独特挑战。

高速设计的诞生

可穿戴PCB设计要求关注基础材料

可穿戴设备要求很高的可靠性,因此当PCB设计师面临着使用FR4(具有最高性价比的PCB制造材料)或更先进更昂贵材料的选择时,这将成为一个问题。