电机控制

电机控制是指通过各种方式控制电机的运行,以实现所需的运动、速度、位置和扭矩等特性。电机控制可以应用于各种不同类型的电机,包括直流电机、交流电机、步进电机和伺服电机等。

电机控制是工程和自动化领域中的关键技术,它使各种机械系统和自动化过程得以实现。通过合适的电机控制方法,可以提高系统的精度、效率和可靠性,从而满足不同应用的要求。

在汽车电子领域,电机控制的应用极为广泛,面对不同的电机类型和应用场景,快速开发出电机控制解决方案显得尤为关键。恩智浦推出的基于S32K344的电机控制套件,就能很好地满足这样的设计需求!

恩智浦推出的MCSPTE1AK344是一款专为无刷直流 (BLDC) 电机控制和三相永磁同步电机 (PMSM) 控制而设计的开发套件。该开发套件基于32位Arm Cortex-M7 S32K3微控制器和GD3000预驱动器,可快速实现高达ISO 26262 ASIL D级的BLDC和PMSM控制应用的原型设计和评估。 

1.jpg

该开发套件的其它特性包括:

  • FS26:低功耗系统基础芯片,可达到ASIL D级标准

  • DEVKIT-MOTORGD:高达12V/5A三相功率板,基于SMART MOSTM GD3000预驱动器,具有状态监测和故障检测功能 

  • S32K3X4EVB-Q172:S32K344评估板,支持以太网、LIN和CAN通信 

资料下载

3.jpg

S32K344电机控制套件简介及技术资源,点击下载>>

支持多样性的目标应用

MCSPTE1AK344开发套件可以满足汽车电子领域多样性的电机控制开发所需。

BLDC

- 暖通空调 (HVAC) 

- 电子泵

PMSM

- 主动悬架

- 电气传动系统

- 电子涡轮增压机

- 皮带传动一体机

丰富的软件使能工具

除了提供完备的硬件资源,该开发套件还提供丰富的软件使能工具,包括:

  • 汽车数学和电机控制库(AMMCLib) 

  • FreeMASTER调试工具

  • 电机控制应用优化(MCAT)工具

  • 基于模型的设计工具箱(MBDT) 

  • 实时驱动(RTD)

  • S32 Design Studio IDE for S32 Platform和EB Tresos Studio / AUTOSAR配置工具  

独特的价值主张

对于开发者来说,S32K344电机控制套件可以为开发工作提供全新的体验和附加价值:

满足电机控制开发所需

  • 低压三相永磁电机 (BLDC或PMSM)

  • 10-18V,高达100W电流传感器:单、双、三分流电流传感器

  • 位置传感器:霍尔/编码器/无传感器

缩短设计开发周期

  • 带弱磁功能的磁场定向控制 (FOC) (PMSM) 

  • 6步换向控制 (BLDC)

  • 在S32K3 RTD上构建的S32DS示例软件

  • 基于RTD高级API  (AUTOSAR和非AUTOSAR应用程序) 构建的示例

提供完整的开箱即用体验

  • S32K实时驱动

  • 汽车数学和电机控制库 (AMMCLib) 

  • FreeMASTER和电机控制应用优化

     (MCAT) 工具

  • 基于模型的设计工具箱 (MBDT) 

全面的技术资源支持

与S32K344电机控制开发套件相关的技术资源,我们整理如下,供大家参考:

相关资料

  • 使用RTD底层API开发基于S32K344的3相无传感PMSM电机控制套件及相应应用笔记,点击下载>>

支持论坛

在线培训

  • 使用Simulink在恩智浦S32K上开发电机控制算法培训,点击观看>>

  • 用于电机控制算法开发的基于模型的设计(MBDT)环境培训,点击观看>>

  • 在电机控制应用中使用恩智浦最新的汽车节点MCU (S32K3) 系列培训讲义,点击观看>>

开发资源

总之,基于S32K3进行车用电机控制开发,选这款MCSPTE1AK344开发套件就对了!下载该开发套件的产品介绍白皮书,点击这里>>

来源:NXP客栈

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 68

本文导读

汽车热管理系统就是对汽车进行温控和冷却,用来保证汽车各零部件以及驾驶舱内处于适宜的温度范围。在新能源汽车上主要表现在电池系统、电驱系统和空调系统的温度控制上,而各回路系统的水泵作为能量流动的重要角色,因此,做到对三个水泵的灵活控制显得尤为重要。

随着低碳经济的提出和节能减排的号召,“新能源”已经成为当今社会的热点话题,在新能源汽车上更是对车内能源利用率提出了更高的要求,主要体现在实现各回路热量与冷量需求的内部匹配。新能源电动汽车热管理已成为保障车辆宽温域环境适应能力、电池热安全和乘员舱热舒适性等方面的关键技术,同时也对电动汽车的能耗,特别是高低温环境下的整车能耗有着显著影响。随着车辆电气化和智能化的快速发展,与传统汽车相比,电动汽车热管理技术和发展路线在动力系统、空调系统等子热力系统和整车层面都呈现出了明显的差异和巨大的进步。

1.png


新能源汽车热管理系统

汽车在行驶工作时,其内部会产生大量的热量,而热管理系统便是负责汽车内部热量的产生和传输等问题,将车内热量控制在合适的范围内,防止高温引起汽车故障。

2.jpg

图1 汽车热管理构成

传统燃油汽车的热管理系统,基本围绕其动力系统展开,主要包括发动机冷却系统以及主要利用发动机余热和动力进行制热/制冷的空调系统。

对于新能源的热管理系统,需要具备更复杂的系统,更高的成本,比如相较传统燃油车,多了电池、电驱电器件,就要多一套的电池冷却系统,以及增加电动电器件的冷却系统。新能源汽车热管理系统包括电池热管理、电机电控热管理和空调热管理。

电池热管理

动力电池能完全发挥性能的温度范围通常为 0℃~40℃。温度过低,电池充放电功率性能下降,整车表现出动力不足、续航缩减;温度过高会产生电池热失控风险,威胁整车安全。电池的散热方式主要有风冷式、液冷式和直冷式。随电池的能量密度提升,直冷已经满足不了散热需求了,而液体的比热容比空气高,液冷式比风冷式散热效果更佳,使得液冷成为主流趋势。

电机电控热管理

电机和电控是新能源汽车一大发热源。温度控制带来最佳性能体验,电机电控零部件产生高温影响性能,需通过冷却循环及时散热,电机电控零部件工作时产生的热量若不及时散去会使其性能和寿命下降。

空调热管理

电动汽车空调系统主要负责汽车乘员舱的热管理,从而为司乘人员提供舒适的驾驶乘坐环境,进而保障驾驶员的安全驾驶。
当前电动汽车主要采用的空调系统为压缩式单冷空调和电加热器的组合,这种空调系统技术成熟,与燃油车差别不大。目前主要使用的是PTC空调和热泵空调。

集成式热管理系统成为发展趋势

目前传统车热管理方案已经较为成熟,传统内燃机汽车可以利用发动机的余热进行采暖。在电动汽车发展的初期,各系统的热管理功能独立,纯电动汽车的空调系统工作所需能量均来自动力电池,无法利用内燃机余热进行乘员舱的加热,主要依靠高压 PTC 进行供暖,在冬季环境中,会大量消耗电池电量,缩短续驶里程。这样的分散式热管理系统部件众多,体积及质量大,缺乏对整车热量的统一管理,热管理效率较低,系统成本高,但结构简单,系统控制简单。

在电动汽车续驶和整车能耗的压力下,随着电动汽车开发技术的进化,具备更低热管理能耗、更宽工作温域、更低系统成本和更紧凑的系统结构的一体化集成热管理系统成为电动汽车的大势所趋。该设计对三大系统产生的热量进行统一的管理,从而大幅提高车辆整车的热管理效率,采用更高效的热泵空调代替PTC作为主要热源,并采用电机余热回收或电机发热等作为补充热源来拓展工作温域。将各系统的加热功能、冷却功能集成化,而非分散式热源。将冷却管路、控制阀、水泵、膨胀壶等辅助系统部件集成使结构更紧凑。与零散的系统相比可以显著降低热管理系统整体所占用的空间和重量。

集成式管理系统可大幅度降低能量损耗,直接提升续航里程,国外厂商已经有6年的验证搭载周期,目前装载率仅10%,产业升级趋势明确。

助力集成式热管理系统

新能源汽车热管理系统核心零部件:换热器 Chiller、电池冷却板、电子膨胀阀、电子水泵、水暖 PTC、电动压缩机、冷凝器、风扇、电子膨胀阀、蒸发器等。其中水泵是整套系统的心脏,驱动液体在三个系统中流动、交换能量。

3.jpg

图2 新能源车热管理构成

在这套系统中,水泵几乎是一直在工作的,因其工作特性,需要工作寿命长且兼顾效率高、噪音低、振动小、质量小等特点。使用FOC算法控制无刷电机,能满足市场需求。在这套系统中,为确保各个系统的液体流通,需要三个水泵,分别负责每一路液体传输的动力来源。对于水泵的驱动和控制,早期方案是单个MCU驱动一个水泵,各个水泵控制是独立分开的,机车控制中心需要对三个MCU进行数据交互,才能完成对水泵的有效控制,导致对整个热管理系统数据管理是十分复杂的,并且其后期OTA也是复杂的。

现在推出S32K3多电机控制方案,单个S32K3 MCU就可控制3个水泵,更方便对其进行管理,后期OTA也更加简单,同时S32K3在安全方面的性能比S32K1更加可靠。

立功科技 S32K3多电机控制方案

有效系统控制框图如图3所示。

4.jpg图3 系统控制框图

功能特性:

  • 支持三个PMSM的无感FOC控制

  • 单板设计,优化的电流采样、方便调试

  • 支持3个PMSM的单、双电阻FOC

  • PMSM的功率可达350W

  • FreeMASTER调试工具已适配三电机方案

  • 支持多路阀门控制

  • 支持多路步进电机控制

  • 支持多路有刷电机控制

只要用户对新能源汽车还有电池续航、舒适度、电池快充等需求,集成式热管理的重要性进一步强化,是未来新能源汽车热管理的关键趋势。立功科技可提供多电机控制方案,助力集成式热管理系统开发。

来源:立功科技

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 115

电机(Electric machinery,俗称“马达”)是依据电磁感应定律,实现电能转换或传递的一种电磁装置,其主要作用是产生驱动转矩,为用电器或各类机械提供动力。

电机作为工业世界的动力之源,几乎用于所有电子设备。据不完全统计,全球电力消耗的50%来自电机,尤其是工业用电中,约60%的电力被电机消耗。

电机种类繁多,应用纷繁复杂。电机与人们生活息息相关,广泛应用到吹风机、扫地机、吸尘器、冰箱、空调、洗衣机等大小家电,以及电动自行车、电动滑板、平衡车等骑行车辆。同时覆盖发电、制造和运输等工业领域,包括泵、机床、压缩机等应用场景。而在车用电机领域,从电动车窗、天窗、后备箱,到水泵、油泵、HVAC,EV主电机,电机都发挥着重要作用。

1.png

作为动力源,电机的工作环境非常恶劣,常常需要经受热应力、机械应力、电流偏差、环境变化、自然老化等因素侵蚀而造成故障,严重甚至影响安全使用。因此,为了提升电机的性能和使用安全、延长使用寿命,人们需要不断提高对电机控制芯片的性能和品质要求。

长期以来,国内电机控制芯片市场由欧美国际大厂主导,国内企业起步较晚,市占率较低。近年来,随着国产MCU不断崛起,众多国产厂商快速成长,在电机驱动控制芯片细分领域的技术积累已颇具竞争优势。

芯海科技(股票代码:688595)作为一家专注模拟IC的半导体设计公司,凭藉“高性能ADC+高可靠性MCU”双平台驱动,持续深耕智能家居、高端消费电子、工业控制、汽车电子等应用领域,为通用市场及垂直细分应用市场提供独具竞争力的产品和解决方案。

当前,随着芯海在电机驱动控制领域的技术研发积累,持续推出基于32位MCU的电机控制应用方案,在精度、可靠性、集成度等关键技术指标上媲美业界一流厂商,且为客户提供稳定供货及本土化服务。

以下将分享几个典型的芯海科技电机控制的应用方案。

应用一、车载水泵

2.png

随着新能源汽车的蓬勃发展,采用车载电子水泵成为大势所趋。车载电子水泵通过带有电子控制驱动单元的水泵,为汽车发动机冷却系统提供智能调节散热功能,满足车辆在任何工况下的温度需求和工作性能。

一般来说,车载电子水泵的控制应用要在具备控制水泵开关、流量控制、压力控制、运转保护等功能集成上,满足汽车的高集成设计、超长续航的稳定性需求。

芯海科技CS32F036Q是一款车规级高可靠性的32位MCU,采用Arm® Cortex®-M0内核,工作频率48MHz,集成多达32K字节Flash和4K字节SRAM,一个I2C/SPI、两个USART(支持Software LIN)、专为电机控制设计的12位高速ADC和增强型定时器、六个16位通用定时器、一个32位定时器、最多支持17路PWM输出。

CS32F036Q通过AEC-Q100认证,满足车规级产品工作环境恶劣的要求,可实现单电阻无传感器FOC控制,同时提供整套FOC控制算法支持,帮助客户快速实现方案开发、产品量产。

3.png

CS32F036Q车载水泵系统框图

CS32F036Q的产品特点:

  • 更宽的工作温度(-40~105℃)

  • 更宽的工作电压2.0~5.5V

  • 12bit 1M SPS采样频率的高速、高精度ADC,有效精度≥10bit

  • ADC工作范围:2.4~5.5V,-40~105℃

  • ±1%精度的低温漂时钟

  • 低漂移基准电压及±2℃的温度传感器

4.png

CS32F036Q系统框图

应用二、电动自行车

5.png

近年来,随着“新国标”的落地,双轮电动车在智能化、强性能、安全性等方面不断演进,带动了新一轮的换车高峰。电动车控制器作为双轮电动车的核心部件,迎来新的增长。

芯海科技32位MCU CS32F031与CS32F103,作为电动车控制器的主控MCU芯片,很好地满足了双轮电动车、电动三轮、共享电单车的高温宽、高耐潮的应用环境,以及PWM、ADC等高可靠性的功能要求。

CS32F031采用Arm® Cortex®-M0内核,主频高达48MHz,内置1个功能丰富的高级定时器、1个10通道1Msps采样率的高精度ADC、6个16-bit定时器(支持霍尔捕获)。CS32F031采用5V供电,抗干扰能力强,成本更优。

CS32F103采用ARM-Cortex M3内核,主频高达72MHz, 支持单周期乘法和多周期硬件除法运算, 内置1个功能丰富的高级定时器、2个共计16通道1Msps采样率的高精度ADC、3个16-bit定时器(支持霍尔捕获),支持7通道DMA传输,提供LQFP48/64/100等主流封装形态。

CS32F031与CS32F103两款产品均可满足有感FOC控制的所有需求。

6.png

芯海科技CS32F031电动自行车系统框图

CS32F031的产品特点:

  • 最高48MHz工作频率

  • 32K/64 Kbytes的flash 存储器, 192B Flash 数据存储, 4K/8Kbytes的SRAM,带硬件奇偶校验

  • VDD 电压: 2.0 to 5.5V

  • 内部8MHz/14MHz RC高速振荡器,典型情况下1%精度,内嵌PLL

  • 1路16bit高级控制定时器(TIM1),每路有6个带死区控制的PWM输出通道

  • 5个16位通用定时器,支持脉冲宽度测量和PWM波生成

  • 1路12-Bit高精度ADC,采样率高达1Msps,10个输入通道

  • 2个 USART, 支持: ISO7816接口, LIN主从功能, IrDA传输编解码; 2个I2C; 2个SPI

  • 多达39个GPIO


7.png

CS32F031系统框图

应用三、变频冰箱

1675665436481380.jpg

近年来,随着国家能耗标准的不断提高,高能效变频家电成为主流应用。变频冰箱作为大白电的旗舰应用,其市场占比不断提升。随着变频控制技术的持续发展,高性价比的32位MCU芯片作为变频冰箱的核心控制器件,其市场渗透率也随之稳步上升。

芯海科技CS32F030系列MCU,可实现单电阻无传感器FOC控制,同时提供整套FOC控制算法支持,帮助客户快速实现方案开发、产品量产。该系列提供LQFP32封装,可大大提供产品良率。

9.png

CS32F030变频冰箱系统框图

芯海科技基于CS32F030K6T6设计的变频冰箱应用方案具备如下特性:

  • 单电阻无感矢量控制

  • 驱动算法成熟,电机适配性强,匹配过主流压缩机平台(东贝、加西贝拉、恩布拉科)

  • 启动算法成功率100%

  • 支持过流、过压、缺相、堵转等保护,延长产品使用寿命

  • 高级控制算法支持:谐波抑制、转矩补偿等

应用四、变频高速风筒

1675665561207039.png

变频高速风筒以转矩脉动小、效率高、噪声小、动态响应快而受到市场的广泛认可。

面对新的市场趋势,芯海科技推出高达12万转的高速风筒应用方案。方案采用Arm® Cortex®-M3内核的MCU主控芯片CS32F103,搭配芯海自研的智能IPM模块CSPM405。在软件方面,采用无传感器FOC矢量控制,搭配公司最新电机控制算法,可实现速度扭矩双闭环控制。

基于芯海科技“CS32F103+CSPM405+最新算法”的高速风筒方案具备如下特征:

  • 三电阻无感FOC控制

  • 最高转速12万转

  • 支持速度转矩双闭环控制

  • 支持过流,过压,短路保护

  • 良好的EMI/EMC性能

11.png

芯海科技CS32F103高速风筒系统框图

CS32F103的产品特点:

  • 最高72MHz工作频率

  • 支持单周期乘法和硬件除法

  • 64K/128KBytes的Flash存储器,20KBytes的SRAM

  • 内部8MHz RC高速振荡器,内部40kHzRC低速振荡器,支持4~16MHz晶体振荡器

  • 锁相环(PLL),最高支持72MHz

  • 3个16位定时器,每个定时器有多达4个用于输入捕获/输出比较/PWM或脉冲计数的通道和增量编码器输入

  • 1个16位带死区控制和紧急刹车,用于电机控制的PWM高级控制定时器

  • 2路12-Bit高精度ADC,采样率高达1Msps,16个输入通道

  • 7通道DMA控制器, 支持的外设包括:SPIx,I2Cx,USARTx,TIMx,ADC

  • 3个USART,2个I2C接口,2个SPI接口,1个CAN 2.0B接口,1个USB2.0接口

  • 丰富的GPIO(LQFP48:37个,LQFP64:51个,LQFP100: 80个)

12.png

CS32F103系统框图

目前,芯海科技“电机控制及驱动应用”仍在持续丰富和完善。相关产品及应用方案,敬请关注公司官网“应用方案—电机控制及驱动”模块,期待为终端客户带来更有价值的产品和服务(点击此处可直接跳转)。

13.png

来源:芯海科技

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 40

近日,全国产32位MCU领军企业爱普特微电子,针对电机控制、变频等应用市场,发布了一款最强全国产、高可靠32位MCU—APT32F171。该系列产品是采用全国产RISC内核,具有加强模拟性能,1.8V ~ 5.5V工作电压范围,48MHz CPU主频。支持硬件CRC,独立除法器,内嵌多达6个独立模拟比较器,2个运算放大器,15路12位高速ADC,多达30个GPIO,均支持外部中断,最多8个大电流驱动管脚;支持3组6路互补带死区模式的PWM输出等。

具备高可靠性、高集成、低功耗、易开发和价格优惠等优势于一体的全国产32位MCU APT32F171,为家电设备、工业设备、逆变等市场领域提供了最优国产芯选择。

1.jpg

APT32F171主要性能优势:

48MHz的32位高性能CPU

  • 16个32位通用寄存器

  • 高效的2级执行流水线

  • 中断控制器:支持动态配置的可嵌套中断(NVIC)

  • 增强的时钟和功耗控制器(SYSCON)

  • 硬件除法器(HWDIV)

  • 灵活的事件触发选择控制器(ETCB)

  • CRC控制器(CRC)

存储器资源

  • 64KBytes程序存储,2KBytes数据存储

  • 8KBytes SRAM

通讯接口

  • 1 x UART/1 x USART

强大的定时器资源

  • 1 x 独立看门狗定时器(IWDT)

  • 1 x 8位窗口看门狗定时器(WWDT)

  • 1 x 16位2路同步定时器/计数器,支持PWM功能(GPT)

  • 4 x 16位基本计时TIMER(Basic Timer)

  • 1 x 16位增强型计数器,3组6路PWM输出,支持死区、互补、比较器联动(EPT)

模拟外设

  • 15路12位ADC,最大转换速度1MSPS

  • 6路独立比较器,每个比较器,可独立选择内部126个参考电压可对外输出的电压基准源

  • 2路可调增益的运算放大器

特色功能

  • 8个大电流驱动管脚,每个管脚支持灌入最大电流为120mA

APT32F171在电机应用中的实例:

模块框图:

2.png

使用APT32F171系列产品高速风筒方案框图

应用特点:

  • 电压范围:AC160V~220V,功率范围:50W~150W

  • 闭环方式:速度闭环 功率闭环

  • 控制方式:双电阻无感FOC控制

  • 功率闭环:波动小于0.5%(50W~150W)

  • 速度闭环:波动小于0.4%(10000RPM~80000RPM)

  • 电机从静止到最高转速只需0.5s,启动平稳不抖动

  • 精准恒温控制

  • 硬件PID温度控制,可实现300次/s温度检测,温度控制精度小于1°

  • 通过匹配吸入功率,实时检测电机运行状态,实现堵风口精确报警

  • 过欠压保护,过流保护,堵转保护,缺相保护,功率保护,启动保护

  • 控制板电路简单,元器件少,降低成本,提高系统可靠性

  • 使用内部集成的运算放大器,减少外围器件,增益可配置,降低成本,灵活性高

  • 最快转换速率1MSPS的12位ADC,内部高精度电压参考源,保证精准的ADC采集,采样精准,控制更稳定,安全性提高

3.jpg

APT32F171电机评估板示意图

APT32F171不仅性能优越,还具备超高可靠性。APT32F171系列产品均经过严苛的产品测试验证和工业级的可靠性测试,以确保产品的高品质交付。目前APT32F171系列可提供5种封装10个型号。另外,爱普特还可提供从芯片到程序代码库、开发套件、量产烧录、设计方案等完整成熟的工具链支持,致力于为用户打造易开发的产品生态,帮助客户快速提升产品竞争力。

目前APT32F171已正式量产出货,并可提供样品,更多数据资料或样品申请,可联系爱普特微电子获取。

来源:爱普特微电子
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 19

不管是工业自动化领域,还是汽车领域,抑或是生活家电领域,各个终端市场对电机性能都提出了更高的要求。它们不仅需要电机能够做到高效率和多功能控制,还需要电机在追求高转速的同时实现低噪音低振动的控制效果。在与日俱增的高标准性能要求下,高性能成了电机芯片竞争的关键。

纵观整个电机控制芯片市场,从低成本通用伺服驱控到中高性能通用伺服驱控,长于控制的MCU单芯片方案都是最常见且最受欢迎的,而且现在VC/FOC功能几乎已成为电机MCU的标配,是体现控制能力的核心竞争力。虽然严格来说,VC和FOC二者概念上是有差异的,但在大多数场景里,二者指的是同一种控制方法。VC矢量控制(Vector Control)将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,是目前无刷直流电机(BLDC)和永磁同步电机(PMSM)高效控制的最优方法之一。VC矢量控制不仅解决了自然坐标系上实现电机速度、电流闭环负反馈控制难的问题,而且保证了优良的速度、转矩输出性能,在工控、汽车、家用、3D打印等行业得到了迅速的发展,成为主流电机控制的基本架构,其控制原理如下图所示:

1.png

图1 VC原理

如上图所示,VC矢量控制的核心源自于闭环负反馈,因此其带宽是电机控制产品最重要的衡量指标之一。具体来说,高带宽能够带来更快的指令响应时间和更优异的高频扰动抑制能力,这种能力最终体现在电机层面上的是更高的控制精度、更高的控制效率、更低的噪音和电机抖动。

而代码执行时间决定了带宽,是电机控制产品不可逾越的指标之一,这也造成了目前市场上电机控制产品性能输出有差异的现象。归根结底,电机控制的差异取决于芯片性能。其限制因素特别体现在以下三个方面:

  • 主控芯片主频限制:芯片主频不够高,无法做到高速运算,以及提升带宽;

  • 外环代码执行限制:内环代码通过原厂提供的硬件化方法可以执行很快,但是外环代码执行依旧不够快;

  • 代码硬件化限制:芯片所有代码硬件化,却产生了开发难以及无法做一些常见电机控制算法等问题。

因此想要实现更优秀的控制性能,电机控制MCU的选择非常关键。上海先楫半导体已经量产的RISC-V内核HPM6700/6400系列芯片抓住了上述主要矛盾,通过提升主频来解决电机控制行业的痛点,得益于RISC-V本身的简洁性和模块化设计,CPU能运行在更高的频率,带来更高的性能。以HPM6700/6400系列芯片为例,参数如下图所示:

2.png

图2 先楫HPM6700/6400系列芯片

HPM6700/6400系列高性能MCU展示了先楫半导体高性能芯片的研发实力,HPM6700/6400系列主频高达816MHz,不仅能够解决上文提到的电机控制性能的三大限制,而且契合现在电机多核驱控一体的发展趋势。HPM6700/6400系列还为电机系统提供了精度达2.5ns的4组共32路PWM输出以及4个正交编码器接口和4个霍尔传感器接口,完美适配高性能电机控制和数字电源运动控制系统。

< 解决方案分享>

先楫HPM6000系列芯片的1us电流环 3.png

图3 案例时序

案例使用先楫HPM6000系列芯片—HPM6400系列与HPM6300系列,采用图3所示的电流环时序,分别使用HPM6400系列与HPM6300系列芯片实测VC矢量控制中的电流环执行时间。具体而言:从提升电流内环带宽的角度出发,将图1中的VC结构划分为外环(位置速度环)、内环(电流环),如图4所示:

4.png

图4 等效VC结构

在VC矢量控制中,由于采用了坐标变换,dq轴电流在稳态情况下都是直流给定,而只在加减速或者突加减负载的时候,速度环会等效输出一个阶跃指令,电流环的带宽就是电流环能够以多快的速度去响应这个指令,带宽越大响应越快。所以说电流环执行时间直接决定了电流环的带宽,是电机控制产品必须考量的指标。

结果,先楫半导体已量产系列芯片实测的电流环执行时间如下图所示: 5.png

图5 HPM6400、6300系列芯片电流环执行时间实测数据

如图5所示,HPM6300系列芯片的电流环执行时间接近1us,HPM6400系列电流环执行时间更是控制在1us以内,该优势不仅能够提升带宽,更是说明了先楫高性能芯片能够带来高速运算能力,实现复杂电机控制算法(如多电机同步、参数辨识、SVC(Senseless Vector Control)、谐波注入等)与电流环的同步,甚至是以更高的频率执行。在高性能先楫HPM6000系列芯片的加持下,电机产品能够不失精度地展现出更优异的控制性能。

高性能电机控制 

HPM6000系列芯片介绍

HPM6700/6400系列为HPM6000系列的旗舰产品,采用RISC-V内核(*67为双核,64为单核),主频达816MHz,凭借先楫半导体的创新总线架构、高效的L1缓存和本地存储器,创下了高达9220CoreMark和高达4651 DMIPS 的MCU性能新纪录。

除了高算力RISC-V CPU,HPM6700/6400系列产品还创造性地整合了一系列高性能外设,包括支持2D图形加速的显示系统、高速USB、千兆以太网、CAN FD等通讯接口,高速12位和高精度16位模数转换器,面向高性能电机控制和数字电源的运动控制系统。

HPM6300系列是HPM6000系列的另一款力作,采用单核32位RISC-V处理器,主频超过600 MHz,性能超过3390CoreMark和1710 DMIPS。同时,HPM6300系列支持双精度浮点运算,模拟模块包括16位模数转换器,12位数模转换器和模拟比较器,配以多组纳秒级高分辨率PWM,为电机控制和数字电源应用提供强大硬件支持。

来源:先楫半导体HPMicro

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 126

本文导读

NXP推出的S32K3XX系列微控制器在电机控制方面具有丰富的外设资源,相比较上个系列S32K1xx来说,控制方式有明显的不同。S32K3xx微控制器通过eMIOS、LCU、BCTU和ADC等硬件外设对电机实现控制,显得更加灵活和方便。

NXP S32K3xx系列微控制器,相比较上个系列S32K1xx来说存在着诸多亮点,从主频,外设资源、安全等级以及安全加密等都有很大的提升。虽然S32K3是S32K1的升级版,但是很多外设以及功能实现方式却完全不同。单纯从电机控制方面来说,S32K3xx硬件外设eMIOS、LCU、BCTU和ADC的组合方式,相比较S32K1xx的FTM、PDB和ADC明显不同,对电机的控制更加灵活方便。

S32K3xx系列微控制器具有生成PWM、输入捕获和输出比较功能的eMIOS、可以自由灵活配置的小型FPGA外设LCU、专门为了方便控制ADC触发的BCTU和多路ADC通道。S32K3这些硬件资源足以对PMSM、BLDC和ACIM等电机进行控制。下面一起来了解S32K3xx eMIOS、LCU、BCTU和ADC外设的功能介绍。

eMIOS

eMIOS(Enhanced Modular IO Subsystem,增强型模块化IO子系统),该外设主要用于生成PWM、捕获外部信号和输出比较。eMIOS内部有计数总线机制,可以支持各通道使用不同的时钟频率计数,且每个通道都是独立,可以自由配置各种模式。
eMIOS通道可以配置的模式按照功能可以分类如下:

1.png

以S32K344举例,其具有3个eMIOS实例,每个emios实例具有24个通道,每个通道有四种通道类型(X、Y、G和H)区分,比如Y类型通道就只支持SAIC\ SAOC\ OPWMB\ OPWMT功能,其他通道类型支持的模式可以在用户手册自行查找。
但并不是所有模式只要一个通道配置成该模式,该模式功能就可以实现的。有些模式是需要用另一个通道配置成计数总线模式,用另一个通道给该模式提供时钟频率,该模式才可以正常工作。比如以OPWMT模式为例,手册规定OPWMT模式时钟必须是由MC或者MCB模式通道提供,所以就需要将一个通道配置成MC或者MCB模式去提供时钟,另一个通道配置成OPWMT模式才能起作用。

LCU

LCU(Logic Control Unit,逻辑控制单元), LCU用于创建小型组合时序逻辑电路,该外设主要是与eMIOS或者SIUL2外设组合使用,将eMIOS生成的PWM或者SIUL2输入的电平经过LCU进行查表操作,从而输出对应的PWM或者电平。因为LCU可以理解为一个FPGA,其实现逻辑电路的灵活性也给电机控制提供了更多可能性。
一个LCU内部由3个LC组成,一个LC具有4个输入和4个输出,同时还具有强制控制功能,如图1所示。LC将输入的信号,通过查找表(LUT)产生输出信号,可以通过TRGMUX给到对应的外设,而查找表(LUT)就是LCU的核心内容,可由软件自由设置。用户可以使用LCU编程为与或非和异或等逻辑器件,也可以编程为S-R触发器,D触发器,JK触发器,增量编码器以及ACIM、PMSM和BLDC电机控制器。

2.jpg

图1  LCU内部框图

eMIOS+LCU组合使用

eMIOS和LCU的组合使用需要借助TRGMUX进行连接。以产生互补的PWM为例,如图2所示,eMIOS产生的PWM,通过TRGMUX连接到LCU其中一个LC的输入,LC内部进行查表,从而在LC的输出端产生一对互补的PWM波形。

3.jpg图2 eMIOS和LCU组合使用

这上面只是eMIOS+LCU的一个应用,还可以有其他的应用方式,具体要根据实际场景进行使用。

ADC

S32K3XX系列微控制器ADC具有可选分辨率:8/10/12/14 bit,转化结果始终为15bit宽;在80MHz转化时钟下采样和转化时间约为1us,即高达1M samples/sec,且转化精度为+/-6LSB。

S32K3XX系列微控制器最多有3个ADC,每个ADC具有8个精密通道,16个标准通道,和最多支持32路外部通道,这三种通道的转化优先级顺序为:精密通道>标准通道>外部通道。其中精密通道和标准通道是实实在在可以在芯片引脚上可以找到复用引脚的,但外部通道却不一样,看手册描述一个ADC支持32路外部通道ADC,但看说手册发现一个ADC的外部通道输入引脚就只有4个,那么怎么支持32路外部通道呢?
每个ADC提供三个外部解码信号(“MA”),用于从外部多路选择器选择一个通道(最多八个)输入到ADC的外部通道引脚,如图3所示。因为一个ADC有4个外部通道输入引脚,就可以有四个8通道数据选择器,所以最多连接32个外部通道。需要注意的是,ADCx_MA是格雷编码的,因此它不会从0到7连续计数,它计数顺序为0、1,3,2,6,7,5,4。

4.jpg

图3  ADC外部通道硬件实现框图

ADC支持三种转化模式:

  • 正常转换:支持一次转换和连续转换。

  • 注入转换:仅支持单次转换。注入转换可以在一组输入通道已经开始转化的过程中,注入另一组输入通道进行转换。

  • BCTU转换:由BCTU外设触发ADC,每次触发运行一次转换,转化支持单一和列表转化。

BCTU

BCTU(Body Cross-triggering Unit),BCTU外设可以理解就是为了方便控制ADC触发的外设。BCTU用于接收ADC转化请求触发输入,将请求路由到一个或多个ADC。BCUT触发源有三种方式:eMIOS定时器通道;TRGMUX输入和软件触发。BCTU具有多个并行转换功能,可以同时触发3个ADC同时进行转化,使用eMIOS同时触发ADC的框图如图4所示:

5.jpg图4 BCTU同时触发多个ADC

并且,BCTU还具有对ADC通道有重复触发的功能,支持单个通道转化多次、单个触发产生一连串的转化、以及转化过程中暂停,等另一个触发过来再转化等功能,同时每个ADC具有两个FIFO来缓存ADC转化结果。

应用场景

如图5所示是S32K3xx外设硬件对带霍尔传感器的无刷直流电机BLDC的控制框图。

6.jpg图5 S32K3xx对BLDC的控制框图

图中①路径是通过“eMIOS-TRGMUX-LCU”输出六路三相PWM,从而给到三相无刷电机预驱动器对电机进行控制;

图中②路径是通过“TRGMUX-LCU-TRGMUX-eMIOS”获取霍尔传感器的速度,通过TRGMUX和LCU结合,实现了根据霍尔信号硬件自动换向的,无需内核的干预。
图中③路径是通过“eMIOS-BCTU-ADC”或者eMIOS重装载时通过“EMIOS-TRGMUX-BCTU-ADC”触发ADC采集外部电压。

来源:立功科技

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 1028

随着科技的发展,越来越多的领域需要用到双电机,然而,在市场上为双电机设计的控制芯片大多为M4内核,成本为比较高,得益于灵动微电子为电机控制设计的SPIN0280的超高性能,我们可以用M0内核来实现双电机的控制。

来源:灵动微电子
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 52

RX66T作为RX62T/RX62G/RX63T的后续产品于2018年11月推出,是一款适用于逆变器控制的产品。以RX66T为代表的RX-T系列主要用于空调外机和工业逆变器,在逆变器控制领域享有较高的评价。近年来,还广泛用于UPS、太阳能逆变器和EV充电器等电源控制应用中。——Kohei Aida(Senior Manager, Product Marketing)

瑞萨通过不断向社会推出符合客户需求的优质产品,为客户的创新做出了贡献。

这一次,某RX长期客户要求我们为高性能单电机控制提供最佳器件方案,用于下一代平台。从高性能和高功能的角度来看,RX66T是非常理想的候选方案,但本项目需要小型封装(48pin),以便将部件布置到现有的有限空间中,而RX66T最小的封装阵容只能达到64pin。因此,在客户需求的推动下,我们开发了RX66T的48pin产品。

关于RX-T系列的更多资料请复制以下链接到浏览器中打开查看:

https://www2.renesas.cn/cn/zh/products/microcontrollers-microprocessors/rx-32-bit-performance-efficiency-mcus/getting-started/applications/motor-control

RX66T拥有最多可同时控制4个电机的三相互补PWM输出资源,升级到48pin时,专门针对单电机控制进行了输入输出配置。48pin封装主体宽度为7mm×7mm,不仅可以保持和使用传统低端/中端产品一样节省空间,还可以提高系统的性能。

此外,RX66T是一款支持5V的抗噪单片机,RX家族独有的RXv3 CPU核在160MHz主频下拥有943CoreMark的出色性能。在48pin封装下,电机控制所需的模数转换单元由于配备了3ch同时采样和保持电路,可以同时对三相电机电流进行采样。

它不仅具有高性能的优势,还可以利用可编程增益放大器(PGA)和比较器等内置功能减少外围部件,并通过可信安全IP实现固件安全升级和加密通信等扩展能力。

RX66T 48pin产品系列已经开始发样和批量生产,预计将于今年秋季正式在市场上销售。

“工程师说

RX66T封装型号一览(左起)

  • 48-pin LFQFP 0.5mm pitch

  • 64-pin LFQFP 0.5mm pitch

  • 80-pin LFQFP 0.5mm pitch

  • 100-pin LFQFP 0.5mm pitch

  • 80-pin LQFP 0.65mm pitch

  • 144-pin LFQFP 0.5mm pitch

  • 112-pin LQFP 0.65mm pitch

这不仅帮助客户构建了下一代平台,还扩充了RX-T产品组合。我们将继续推出符合客户需求的优质产品,为客户的创新做出贡献。敬请期待瑞萨RX家族的进一步发展。

有关RX66T的更多信息,请点击链接:原文查看RX66T产品页。

围观 24

作者:Bhushan Patel(Sr Staff Product Marketing Specialist)

随着新冠肺炎疫情的流行,对消费电子产品和用品的需求不断增加,这对制造业的效率和可靠性提出了更高的要求。为了在面临劳动力短缺的同时高效利用工厂资源,制造商正在引入智能工厂实践,从而产生了对设备监控和多用途设备的需求。我认为,与高效利用工厂资源相关的技术创新将助推下一波工厂自动化浪潮。暂时的劳动力短缺增加了对商品的需求。

我们为迫切需要提高工厂效率的客户提供低成本的集成选择。我们提供支持EtherCAT从站的微控制器,以在工厂内执行机器人、AC伺服和AD驱动应用中的监控任务,并实现自主化、高效化的制造过程。

“工程师说

“工程师说

1、带与电机RSSK兼容的RDC-IC RX72M CPU板

  • 适用于BLDC电机的评估系统

  • 带解析器的步进电机评估系统

2、符合CiA402协议规范的示例代码(基于RX72M)

3、应用笔记和用户手册

● RX72M Group Encoder BLDC motor control using EtherCAT Communications

复制以下链接到浏览器中查看:

https://www2.renesas.cn/cn/zh/document/apn/rx72m-group-encoder-bldc-motor-control-using-ethercat-communications

“工程师说

“工程师说

● RX72M Group Resolver stepping motor control using EtherCAT Communications

复制以下链接到浏览器中查看:

https://www2.renesas.cn/cn/zh/document/apn/rx72m-group-resolver-stepping...

“工程师说

“工程师说

结合使用EtherCAT的电机控制时,这套解决方案极为高效。

来源:瑞萨电子
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 196

恩智浦新推出的LPC553x作为基于Arm Cortex-M33技术的LPC5500系列MCU的全新成员,具有高精度模拟外设和电机控制外设。LPC553x片内集成高达256KB的闪存、带奇偶校验和纠错码 (ECC) 的128KB的RAM、外部串行/四路/八路内存控制器,以及支持内存扩展的FlexSPI (具有即时加密和解密功能)。

这些细节令人耳目一新,同时该MCU集成多达8个Flexcomm (可任意配置为串行I2C/UART/SPI)、1个专用50MHz SPI、FS USB主/从设备和CAN FD。LPC553x集成的4个单端 (或2个差分) 16位ADC支持在12位模式下以2MSPS或3.3MSPS速度同时进行两次独立转换,并且最多有23个ADC输入通道。另外,LPC553x还提供带5个输入引脚的4个比较器、3个12位DAC、3个带可编程增益放大器设置的高精度运算放大器和1个高精度内部参考电平。

“LPC553x结构框图"
LPC553x结构框图

LPC553x的电机控制子系统有两个灵活的脉宽调制 (PWM) 模块,提供多达12个PWM输出、2个正交编解码器输入和2个AOI (And/Or/Invert,与或非) 模块,可直接馈入外设以实现快速响应。此外,MCU集成紧密耦合的数字信号处理器 (DSP) 和数学运算加速器 (PowerQuad),支持电机控制算法中使用的三角函数和CORDIC函数。

使用LPC553x实现电机控制

使用Arm Cortex-M33和PowerQuad实现的复杂电机控制算法优于使用传统的通用微控制器软件接口标准(CMSIS)DSP库的算法。下面的例子展示了AOI模块如何实现外设和输入/输出引脚之间的直接连接,从而完成电机控制子系统。

观看LPCXpresso55S36的MCUXpresso SDK电机控制示例,点击https://www.nxp.com.cn/video/mcuxpresso-sdk-motor-control-example-for-lpcxpresso55s36:LPC55S36-SDK-MC-EXAMPLE?cid=wechat_iot_205151

利用PowerQuad支持电机控制应用

LPC553x增加了8KB LP缓存,可加速对片上闪存的访问。LP高速缓存是一种8路、4路组关联的直写设计。对于32位宽的缓存数据路径,MCU支持总计8KB的缓存,并针对运行电源操作进行了优化。有了这个缓存,从闪存执行时Coremark性能可达到>4/MHz (迭代次数/秒)。

Clarke变换,根据以下公式将磁通、电压、电流等值从三相坐标系转换为两相(α-β)正交坐标系:

“LPC553x系列MCU正式量产!为电机控制提供更强算力,更先进模拟特性"

从两轴正交静止坐标系到三相定子静止坐标系的变换是使用Clarke逆变换完成的。Clarke逆变换由以下公式表示:

“LPC553x系列MCU正式量产!为电机控制提供更强算力,更先进模拟特性"

Park变换,根据以下公式将磁通、电压、电流等值从静止两相(α-β)正交坐标系转换为旋转两相(d-q)正交坐标系:

“LPC553x系列MCU正式量产!为电机控制提供更强算力,更先进模拟特性"

逆Park变换,根据以下公式将磁通、电压、电流等值从旋转两相(d-q)正交坐标系转换到静止两相(α-β)坐标系:

“LPC553x系列MCU正式量产!为电机控制提供更强算力,更先进模拟特性"

查阅参考文件:GMCLIB用户指南Arm Cortex-M33F,点击https://www.nxp.com.cn/docs/en/user-guide/CM33FGMCLIBUG.pdf?cid=wechat_iot_205152

使用恩智浦实时控制嵌入式软件电机控制和功率转换库RTCESL软件支持上述电机控制算法,可以通过标准CMSIS DSP库和/或LPC553x中的PowerQuad (PQ) DSP加速器来实现。

PQ性能与标准CM33 CMSIS DSP库的对比如下所示:

“图表表明,在CM33没有对应指令的函数中,采用PQ实现时具有明显的优势"
图表表明,在CM33没有对应指令的函数中,采用PQ实现时具有明显的优势

使用AOI和交叉开关模块快速响应事件

为了快速响应特殊/时间关键事件,LPC553x配备了两个交叉开关和AOI模块。任何输入引脚和外设输入/输出都可以通过组合逻辑AOI模块连接到两个交叉开关XBARA和XBARB。概述如下:

“LPC553x系列MCU正式量产!为电机控制提供更强算力,更先进模拟特性"

XBARA的20个输入 (与XBARB共用) 允许从外设或专用引脚中进行选择。XBARA最多可将16个输出连接到AOI的输入,形成组合逻辑。AOI的4个输出也可以添加到XBARB上,形成32个总输出。

AOI控制器是一个外设模块,连接来自各种设备模块的事件输入指示器,并生成可路由到外设间交叉开关或其他外设的事件输出信号。其编程模型通过标准的IPS(天蓝色)接口访问。

AOI模块的每个EVENTn输出是其四个专用输入(An、Bn、Cn和Dn)的组合函数。通过AOI和任何相关的外设交叉开关模块的传播时间为一个总线时钟周期。

以下是使用XBAR和GPIO模块实现电机控制的示例:

“LPC553x系列MCU正式量产!为电机控制提供更强算力,更先进模拟特性"

通过XBARA和GPIO模块的编程,可以立即处理对过流和电压等故障事件的特定响应(一个总线时钟周期)。

更高的模拟集成和更高的系统可靠性

随着LPC5500 MCU系列不断发展壮大,LPC553x不仅具备多种新特性,而且在许多方面提升了系列表现。LP553x系列提供了多方面的升级,例如增加了存储器容量、额外的输出和更快的输入/输出响应时间。

本文作者

“LPC553x系列MCU正式量产!为电机控制提供更强算力,更先进模拟特性"

CK Phua,恩智浦半导体微控制器产品经理。CK于1993年加入飞利浦半导体公司,曾担任质量、应用工程、产品工程和技术营销等多个职位。继飞利浦之后,CK在2012年加入飞思卡尔,飞思卡尔合并后加入恩智浦。CK现任边缘处理业务部微控制器的产品经理。

来源:NXP客栈(作者:CK Phua)
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 141

页面

订阅 RSS - 电机控制