嵌入式

本文将详细分析单片机、ARM、FPGA嵌入式几者之间的特点及区别。

单片机的特点:

(1)受集成度限制,片内存储器容量较小,一般内ROM:8KB以下;

(2)内RAM:256KB以内。

(3)可靠性高

(4)易扩展

(5)控制功能强

(6)易于开发

ARM的特点:

(1) 自带廉价的程序存储器(FLASH)和非易失的数据存储器(EEPROM)。这些存储器可多次电擦写,使程序开发实验更加方便,工作更可靠。

(2) 高速度,低功耗。在和M51单片机外接相同晶振条件下,AVR单片机的工作速度是M51单片机的30-40倍;并且增加了休眠功能及CMOS技术,使其功耗远低于M51单片机。

(3) 工业级产品。具有大电流输出可直接驱动SSR和继电器,有看门狗定时器,防止程序走飞,从而提高了产品的抗干扰能力。

(4) 超功能精简指令,具有32个通用工作寄存器,相当于M51单片机中32个累加器!从而克服了单一累加器工作的瓶颈效应。

(5) 程序下载方便。AVR单片机即可并行下载也可串行下载,无需昂贵的编程器。此外,还可以在线下载!也就是说可以直接在电路板上进行程序修改和烧录。

(6) 具有模拟比较器、脉宽调制器、模数转换功能。使得工业控制中的模拟信号处理更为简单方便。

(7) 并行口、定时计数器、中断系统等单片机内部重要资源的功能进行了大幅度提升,使之更适合工业生产过程的实时控制。

(8) 其时钟频率既可外接也可使用单片机内部自带的振荡器,其频率可在1MHz-8MHz内设置,使得硬件开发制作更为简洁。

(9) 强大的通讯功能,内置了同步串行接口SPI、通用串行接口UAST、两线串行总线接口TWI(I2C ),使网络控制、数据传送更为方便。

(10) 超级保密功能,应用程序可采用多重保护锁功能。可低价快速完成厂家产品商品化等等。 除上述特点外“零外设”也是AVR嵌入式单片机的重要特征。由于该芯片已内置了程序存储器、晶振并增加了在线汇编功能。

所以AVR单片机芯片接上直流电源,下载个程序就可以独立工作。无需附加外部设备,无需使用昂贵的编程器和仿真装置。这给我们学习和开发带来了便利条件。

FPGA的特点:

(1)采用FPGA设计ASIC电路(专用集成电路),用户不需要投片生产,就能得到合用的芯片。

(2)FPGA可做其它全定制或半定制ASIC电路的中试样片。

(3)FPGA内部有丰富的触发器和I/O引脚。

(4)FPGA是ASIC电路中设计周期最短、开发费用最低、风险最小的器件之一。

(5)FPGA采用高速CMOS工艺,功耗低,可以与CMOS、TTL电平兼容。

可以说,FPGA芯片是小批量系统提高系统集成度、可靠性的最佳选择之一。

FPGA是由存放在片内RAM中的程序来设置其工作状态的,因此,工作时需要对片内的RAM进行编程。用户可以根据不同的配置模式,采用不同的编程方式。

加电时,FPGA芯片将EPROM中数据读入片内编程RAM中,配置完成后,FPGA进入工作状态。掉电后,FPGA恢复成白片,内部逻辑关系消失,因此,FPGA能够反复使用。FPGA的编程无须专用的FPGA编程器,只须用通用的EPROM、PROM编程器即可。当需要修改FPGA功能时,只需换一片EPROM即可。这样,同一片FPGA,不同的编程数据,可以产生不同的电路功能。因此,FPGA的使用非常灵活。

嵌入式系统的特点:

1、系统内核小

由于嵌入式系统一般是应用于小型电子装置的,系统资源相对有限,所以内核较之传统的操作系统要小得多。

2、专用性强

嵌入式系统的个性化很强,其中的软件系统和硬件的结合非常 紧密,一般要针对硬件进行系统的移植,即使在同一品牌、同一系列的产品中也 需要根据系统硬件的变化和增减不断进行修改。同时针对不同的任务,往往需要 对系统进行较大更改,程序的编译下载要和系统相结合,这种修改和通用软件的 “升级”是完全两个概念。

3、系统精简

嵌入式系统一般没有系统软件和应用软件的明显区分,不要求 其功能设计及实现上过于复杂,这样一方面利于控制系统成本,同时也利于实现系统安全。

4、高实时性的系统软件

OS是嵌入式软件的基本要求。而且软件要求固态存储,以提高速度;软件代码要求高质量和高可靠性。

5、嵌入式软件开发要想走向标准化,就必须使用多任务的操作系统

嵌入式系统的应用程序可以没有操作系统直接在芯片上运行;但是为了合理地调度多任 务、利用系统资源、系统函数以及和专家库函数接口,用户必须自行选配RTOS (Real-Time Operating System)开发平台,这样才能保证程序执行的实时性、 可靠性,并减少开发时间,保障软件质量。

6、嵌入式系统开发需要开发工具和环境

由于其本身不具备自举开发能力, 即使设计完成以后用户通常也是不能对其中的程序功能进行修改的,必须有一套 开发工具和环境才能进行开发,这些工具和环境一般是基于通用计算机上的软硬 件设备以及各种逻辑分析仪、混合信号示波器等。开发时往往有主机和目标机的 概念,主机用于程序的开发,目标机作为最后的执行机,开发时需要交替结合进行。

来源:网络(版权归原著作者所有)

围观 373

引言

在嵌入式实时操作系统(RTOS)中,任务可通过调用延时函数(比如μC/OS中的OSTimeDly() 函数)将自己延时挂起一段时间。任务在延时的过程中会释放CPU使用权,也就是说,延时的任务不占用宝贵的CPU资源。延时的任务由时钟节拍服务跟踪管理。当任务延时结束并准备运行时,时钟节拍服务会使该任务恢复运行。时钟节拍服务定期运行,其运行由周期的时钟节拍中断触发,而时钟节拍中断可由硬件定时器产生。

在μC/OS—III中,时钟节拍服务是在时钟节拍中断服务程序中完成的,每次时钟节拍服务都会遍历整个任务链表,递减所有延时任务的延时计数器。当任务数目较多时,时钟节拍服务处理时间很长,会造成中断延迟时间和任务延迟时间都变得很长,影响系统的实时性。

在μC/OS—III中,时钟节拍服务不再在时钟节拍中断服务程序中完成,而是放到一个时钟节拍任务中完成。而且,通过采用啥希散列表机制来管理延时任务,每次时钟节拍服务只需要处理极少数的延时任务,从而大大减少了时钟节拍服务花费的时间,提高了系统的实时性。

另外,在μC/OS系列RTOS中,时钟节拍服务除了会跟踪延时的任务,还会跟踪那些指定了超时时限的等待任务。也就是说,当指定的超时时限结束时,即使任务等待的事件没有发生,时钟节拍服务也会使该任务恢复运行。

1、 μC/OS—II中的时钟节拍管理机制

在 μC/OS—II中,每次时钟节拍服务都会遍历整个任务链表,依次处理各个任务。如果当前处理的任务的延时计数为0,那么跳过该任务,继续处理下一个任务;否则,把当前任务的延时计数减1,然后,判断减1后的延时计数是否为0。如果为0,表示任务延时结束了或等待超时了。由于μC/OS-Ⅱ允许其他任务调用OSTaskSuspend()函数强制挂起正在延时的任务,在这种情况下,不仅需要等到任务延时结束,还需要由其他任务调用 OSTaskResume()函数解除该任务的强制挂起状态,该任务才能进入就绪态。因此,在延时计数递减为0的时候,还需要判断任务是否被强制挂起。只有任务没有被强制挂起,才能使该任务进入就绪态;否则,把延时计数设置为1,保持任务的延时状态。μC/OS—II时钟节拍服务函数的主要代码和注释如下:

在μC/OS—II中,由于每次时钟节拍服务都要遍历所有任务,因此,在任务数目较多时,其执行时间可能很长。另外,由于时钟节拍服务函数OSTimeTick()由时钟节拍中断服务程序OSTicidSR()调用执行,因此当OSTimeTick()执行时间很长时,时钟节拍中断服务程序的执行时间也很长。在中断服务程序执行时,所有任务都无法执行,在这种情况下,系统的实时性会很差。

2、 μC/OS-III中的时钟节拍管理机制

针对μC/OS—II时钟节拍服务的问题,μC/OS—III主要做了两点改进:①用时钟节拍任务来做时钟节拍处理;②用时钟节拍轮盘来分类管理延时任务以及指定超时时限的等待任务。

2.1 时钟节拍任务

在 μC/OS—III中,增加了一个系统任务,即时钟节拍任务OS_TickTask()。该任务是μC/OS-III中两个总是会创建的系统任务之一。时钟节拍任务负责处理延时任务和指定超时时限的等待任务,这样,μC/OS—III就把时钟节拍的处理工作放到任务级代码中完成了。时钟节拍中断服务程序和时钟节拍任务之间的关系如图1所示。

不论在μC/OS—II还是在μC/OS—III中,都需要一个硬件定时器(或其他能产生周期性中断的外设)来产生几十到上千赫兹的时钟节拍中断。时钟节拍中断的具体频率取决于所用的处理器的性能以及应用需求。时钟节拍中断频率越高,系统的延时精度越高,对处理器的处理能力要求也越高。

每次产生时钟节拍中断,CPU都会跳转到时钟节拍中断服务程序(ISR)中执行。时钟节拍ISR会调用 OSTimeTick()函数。前面提到过,μC /OS—II的时钟节拍ISR也会调用OSTimeTick()函数,在这一点上μC/OS—II和μC/OS—III看起来没有区别,但实际上 μC/OS—III中的OS TimeTick()函数与μC/OS—II中的OSTimeTick()函数有很大区别。μC/OS—III中的OSTimeTick()函数主要完成如下操作:向时钟节拍任务发信号、调用OS_SchedRoundRobin()函数,以及向定时器任务发信号等。其中,后两点与时钟节拍的管理无关,这里不详细介绍。精简的OSTimeTick()函数如下面这段代码所示,其中只保留与时钟节拍管理相关的代码。
在 μC/OS—III中,OSTimeTick()函数不需要遍历任务链表,只是通过OSTaskSemPost()函数向时钟节拍任务发信号。而时钟节拍任务绝大部分时间内都处于等待该信号的状态,每次收到该信号时,时钟节拍任务会恢复运行,调用OS_TiekListUpdate()函数处理延时的任务,然后再次进入等待该信号的状态,其代码如下:

相比μC/OS—II的时钟节拍管理方式,μC/OS—III使用了专门的时钟节拍任务来处理时钟节拍,可大大减少时钟节拍中断服务程序的执行时间。

2.2 延时任务管理

μC/OS—III为了提高时钟节拍的处理速度,采用了哈希散列表机制来管理所有正在延时的任务和指定了超时时限的等待任务。这些任务都记录在时钟节拍列表(Tick List)中。时钟节拍列表包含两部分:一个称为时钟节拍轮盘的数组(OSCfg_TickWheel[])和一个时钟节拍计数器 (OSTickCtr),如图2所示。

时钟节拍列表中的每个任务都有一个延时结束时刻或等待超时时限,假设为TM。比如,一个任务在时钟节拍计数器数值为OSTickCtr时调用OSTimeDly()延时dly个时钟节拍,那么该任务的延时结束时刻TM就等于OSTickCtr+dly。然后,用 TM和时钟节拍轮盘的表项个数(OS_CFG_TI CK_WHEEL_SIZE)做取模运算,就可以得到一个余数I(I=TM%OS_CFG_TICK_WHEEL_SIZE)。那么,该延时任务就会放到时钟节拍轮盘第1个表项指向的任务链表中。

时钟节拍轮盘的每个表项都有3个成员:“.NbrEntriesMax”、“.NbrEntries” 和“.FirstPtr”。其中,“.FirstPtr”指向该表项对应的任务链表,所有分配到该表项的延时任务或指定超时时限的等待任务都会放到该任务链表中。“.NbrEntries”和“.NbrEntries Max”分别记录任务链表中的当前任务数目和历史最大任务数目。在任务链表中,任务按照延时结束时刻或超时时限排序,结束时刻早的任务排在链表的前面。

通过采用哈希散列表机制,在每次时钟节拍服务时,只需要处理时钟节拍轮盘的某个特定表项所指向的任务链表,因为恰好在该时钟节拍服务时延时结束或等待超时的任务都一定处于该表项所指向的任务链表中,而该表项的索引号就等于OSTickCtr%OS_CFG_TICK_WHEEL_SIZ E。另外,由于各个表项指向的任务链表中的任务是按照延时结束时刻和等待超时时限的顺序进行排序的,这样,在处理当前任务链表时,就可以从位于链表头部的任务开始判断任务延时结束时刻或等待超时时限是否等于OSTickCtr的当前值。如果等于,说明该任务延时结束或等待超时了,然后,再判断下一个任务;如果不等于,说明该任务延时没有结束或等待没有超时,同时也说明,排在链表后面的任务都不可能延时结束或等待超时,因此,可以立即结束对任务链表的处理。

由于采用了哈希散列表机制,μC/OS—III中的时钟节拍服务在大部分情况下只需要判断极少数任务的延时结束时刻或超时时限,看其是否等于时钟节拍计数器的当前值,这相比μC/OS—II中需要遍历整个任务链表的时钟节拍服务,显然效率要高很多。

结语

μC/OS —II中的时钟节拍服务有两个不足之处:一是需要遍历整个任务链表,二是需要在时钟节拍中断服务程序中进行时钟节拍的处理工作。当系统中任务数目较多时,会影响系统的实时性,这对于一个实时嵌入式操作系统来说是不完善的地方。在μC/OS—III中,通过增加一个时钟节拍系统任务并采用哈希散列表机制,很好地解决了这两点问题,即使在系统任务数目很多的时候,也可以确保系统的实时性。

围观 297

最近经常有用人单位打来电话,问有没有嵌入式Linux方面的开发人员,他们说他们单位急需要懂得在嵌入式linux环境下的软件开发人员。现在每年毕业的大学生那么多,还招不到合适的软件开发人员吗?他说,毕业大学生虽然多,但大部分都能力不够,不能达到他们的工作的要求。

该公司HR的一句话说出来我们现在的大学教学和大学生就业的现状:一方面每年那么多大学生毕业找不到合适的工作,另一方面很多用人单位和企业又找不到合适的人才。造成这种现象最基本的原因是学校教育和社会需求的严重节。很多嵌入式专业的学生在毕业后,还是很难达到用人单位的要求最主要的原因在于高校在嵌入式教学方面重理论和轻实践,很多嵌入式专业的老师也没有实际的工作经验,这样培养出的学生可能让他讲起来头头是道,但是让他去真正编写,调试一个应用程序就傻眼了,不知道从何下手,因为他们在学校的学习可能从来就没有老师带着他们实际调试过嵌入式程序,也没有机会让你去调试嵌入式应用程序,那些看起来非常不错的嵌入式实验箱大部分时间都躺在实验室睡大觉,只有在上实验课的时候搬出来让大家看2眼,摸2下,还没有弄明白怎么回事,又要收到实验室睡大觉去了。这样的教学模式,如何能培养出一名合格的嵌入式工程师呢?出现企业找不到合适的人,大学毕业生找不到合适的工作也就不奇怪了。

嵌入式专业是一门实践性非常强的学科,只有多动手,多实践,多编程,多调试,多看书,多思考才能真正掌握好嵌入式开发技术。

现在很多同学也意识到了学校培养模式和社会需求脱节问题,有一部分同学也先行行动起来,开始注重培养自己的实际动手能力,培养自己实际分析问题,解决问题的问题,培养自己在嵌入式专业实际编程,和调试程序的能力。但是嵌入式专业不同于其他学科,嵌入式专业是一门综合性非常强,涉及知识面非常广的学科,对于初学者来说,面对那么多教程,课本,那么多知识点,往往不知道从何处下手,不知道哪些是重点,哪些不是重点,这些知识点之间有什么关联,一脸的茫然,然后东一榔头,西一棒子,折腾了几个月甚至大半年后,还是找不着学习嵌入式的方向,还徘徊在嵌入式开发的大门之外。

那么,如何从零开始学习嵌入式开发技术,进入嵌入式开发大门呢,笔者根据自己的嵌入式学习经历和多年的嵌入式linux教学经验,谈谈自己对嵌入式学习的一些想法和意见,希望对大家有所帮助。

一、练好基本功

嵌入式系统专业是综合了计算机硬件技术,计算机软件技术以及电子电路技术的一门综合学科,所涉及的内涵和知识非常广泛,包括:数字电路,模拟电路,计算机组成原理,单片机基础,C语言基础,操作系统,数据结构,编译原理,计算机控制,计算机网络等知识。

在真正学习嵌入式开发之前,首先要打好基础。其中最重要的是C语言基础、数字电路、计算机组成原理三门课程。对于C语言,至少能单独编写调试一个3 ~ 500行的程序,能够了解C语言的基本语法规则,基本语句的使用,理解指针概念并能灵活使用各种指针。

计算机组成原理要能理解组成一个计算机系统的几大部件,计算机系统的结构,理解系统总线,理解处理器和计算机外部设备的关系,处理器和计算机外设是如何协调工作完成某一项功能的,计算机软件和硬件是如何分工协作完成某一项任务的,理解软件是通过寄存器来控制硬件的。

数字电路,模拟电路要了解其基本原理个概念,能看懂简单模拟、数字电路原理图。理解数字电路中的寄存器,时序的概念,能看懂芯片手册和时序图。对于其他基础课程,重点要理解其中的一些基本概念,如何使用等等。

对于电子,自动化,通信,计算机类专业的学生,在大二、大三开设的专业基础或专业课程中基本包含了以上的大部分课程。因为缺乏实践,可能学得不
是很深入,但是一些基本的概念和基本知识应该还是有所了解,针对一些薄弱环节,自己稍微加强学习一下,基本上已经具备了学习嵌入式开发的基础。在嵌入式基本功学习阶段,最重要的是C语言和单片机基础,最好是能用C语言开发一个小的单片机程序,例如用C语言实现单片机和PC的串口通信,用C语言控制LED等显示,用C语言控制数码管显示等小程序。在这个期间需要的学习工具就是单片机51学习开发板。

二、嵌入式Linux应用开发

嵌入式开发基础知识学习完后,这时候你已经有了一定的嵌入式开发基础了,可以进行基于单片机的嵌入式系统设计了。单片机编程本身也是属于嵌入式编程,但是在这里我们只是把单片机开发当作嵌入式系统开发的基础,不把单片机开发作为真正的嵌入式系统开发,在这里我们的嵌入式系统开发是指在带有操作系统的嵌入式平台上的应用和驱动开发,特别指在嵌入式linux平台上的开发。

单片机开发在很早以前是非常热门的,现在在一些比较简单的系统上单片机也用的非常广泛,随着硬件的成本不断降低,在一些比较复杂的嵌入式设备一般都采用嵌入式linux操作系统,在嵌入式linux平台上进行开发,这样可以极大的提高嵌入式开发效率,提高系统的稳定性和可靠性,降低开发成本。由于linux是一个开源的操作系统,你可以通过阅读linux内核来理解内核的实现机制,如果有需要,你甚至可以通过修改内核源码来提高系统的性能;同时,全球参与linux开发的队伍非常庞大,网上有大量的嵌入式linux开发资料和源代码,很多你需要实现的功能在网上基本都能找到相关源码,参考一下别人写的源码,这样可以极大的提高自己的工作效率和技术能力,近几年,随着参与linux开发的人越来越多,linux系统的稳定性、实时性有了很大的提高,linux系统无论在服务器上还是嵌入式设备平台上都应用越来越广泛,现在包括华为、中兴、朗讯的各大通信巨头都开始把自己设备的底层平台从vxworks操作系统迁移到linux系统,可以说嵌入式linux是嵌入式技术发展一个方向,是嵌入式技术的一面旗帜。基于以上原因,我的建议是学嵌入式开发,就学嵌入式linux开发,相对于wince等其他的嵌入式平台,你可以真正学到更多的东西,学到嵌入式技术的精髓,同时他又符合嵌入式产业发展的方向,不容易被日新月异的技术发展所淘汰。

有了嵌入式开发的基础,又知道了我们为什么要学习嵌入式linux开发,那我们就要开始动手开始学习了,那如何开始学习嵌入式linux开发,从哪里开始着手呢?

很多同学这时候就开始买linux书籍,从图书馆借了一大堆关于linux的书:什么《linux使用基础教程》、《linux源码深度分析》、《linux情景分析等》、 《linux高级使用指南》等等。结果抱着这些图书看了10天半个月还是不知所云,当初学习的激情慢慢就消退了,最后不了了之,终究没有进入嵌入式开发大门。究其原因,是因为没有找到合适学习嵌入式开发的方法,做任何事情都有方法可循,找对了学习方法往往就能事半功倍;否则就可能是事倍功半,甚至劳而无功。接下来我先分析一下同学们的几种常见的嵌入式linux学习误区,然后提出一种比较合适的嵌入式linux学习方法。

误区一、全身投入学习桌面或服务器版本linux系统

很多想学嵌入式linux 的同学经常问我,我不会linux系统,怎么学习嵌入式linux开发,于是他们就花费了大量的精力和时间去研究学习桌面版本linux系统的使用,什么redhat 、federo,、ubuntu等等都用过,如何配置linux,linux的各种使用命令都背的滚瓜烂熟,linux各种服务器的配置,还原备份各种操作非常熟悉,以为这样就学会了嵌入式linux开发。其实这是一个学习嵌入式Linux开发的误区。

Linux桌面环境只是嵌入式linux的一个开发工具,开发环境而已。我们的目标不是学习linux服务器的配置和使用,linux服务器的高级配置和使用那是另外一个领域,不属于嵌入式linux讨论的范畴。我们进行嵌入式linux开发,只是把linux桌面环境当作一个工具,在linux桌面环境下运行嵌入式linux开发工具,例如gcc 编译器,make工具来开发我们的嵌入式linux应用程序而已,对于嵌入式开发工程师来说,没有必要花费那么多的精力和时间去研究linux桌面版和服务器的应用,只要能了解最基本的操作即可。现在的桌面linux系统的图形化界面做的也相当好,跟window具有相同的易用性能,例如ubuntu很多操作都可以在图形界面下完成,就没有必要去记每个linux命令了。熟悉linux桌面系统的使用和基本操作命令,安排1~2天时间学习基本就可以掌握了。

误区二、直接阅读linux内核源代码

很多想学linux,在连linux是什么东西,一点都还不会使用的情况下去就阅读linux内核源代码,花了大量时间去阅读《linux源码深度分析》、《linux情景分析等》等书。这样的结果很可能就是看的头昏眼花,不知所云,最后只能放弃了。这也是同学们学习嵌入式linux的一个误区,在有一定嵌入式linux开发基础后,带着一定的目的去阅读linux源代码,这样可以极大的提高你的技术能力,但是你在没有任何基础,对linux一点都不了解的情况下就去阅读linux内核源代码,无异于以卵击石,最后只能是撞个头破血流。

以上分析了同学们学习嵌入式linux 开发的2个误区,那么如何正确的嵌入式linux开发呢?

做任何事情都有一个循序渐进的过程,学习嵌入式linux也一样。在有了一定的嵌入式开发基础后,学习嵌入式linux开发比较适合的切入点是从嵌入式linux应用程序开发开始,即暂时先不去关心嵌入式硬件平台,不去关心linux的底层驱动,先把精力集中在现有的嵌入式linux平台上进行嵌入式linux应用程序设计开发。学习嵌入式linux开发绝不是看看书就可以学好的,需要多实践,编程调试;因为嵌入式开发不同于普通的基于PC机或服务器的应用程序开发,嵌入式开发的应用程序是要烧写到嵌入式板卡或开发板上运行的,所以首先你要给自己购买一块开发板,现在普遍流行的嵌入式开发板都是基于三星的ARM9 CPU S3C2440,性价比极高,在这里我推荐使用灵动微电子的高性价比MM32F103开发板学习,不仅资源丰富,稳定,同时配有大量的实验源码,视频教程和实验指导书。

有了开发板后,先后开始学习嵌入式linux开发环境搭建、嵌入式linux开发模型、linux内核移植和文件系统、嵌入式linux应用程序移植、嵌入式linux多进程,多线程应用程序设计、嵌入式linux网络编程,如果对嵌入式数据库或图形软件开发有兴趣的,可以进一步学习嵌入式linux数据库开发或基于QT的嵌入式linux图形应用软件设计。每学一章节都要通过相关实验来来验证你从书上学到的东西,同时提高自己编写代码,调试程序的能力。这个过程根据不同学员的基础不同,大概要花上1 ~ 2个月时间。学完这些课程后,你就有了再现有的嵌入式linux平台上进行应用程式设计开发的能力,到一些嵌入式软件公司去,能够胜任在现有的嵌入式linux平台上进行上层的应用程序开发工作。但是目前你还不能进行嵌入式linux系统和驱动的开发,也就是说,你现在只能在一个已经构建好的嵌入式 linux平台上进行应用程序开发,而自己还没有能力根据实际需要去重新构建一个嵌入式linux平台。要让自己有能力根据实际需要重新构建一个嵌入式linux软硬件平台,这时候就需要进行下一阶段的学习了,即嵌入式linux系统和驱动开发。

三、嵌入式Linux系统和驱动开发

有了嵌入式linux平台上开发应用程序的基础,你已经对linux的功能、linux对应用程序提供的接口和系统调用有了一定的了解,知道如何利用linux提供的功能来进行应用程序开发,知道如何来使用设备驱动来进行应用程序设计,有了这些知识后,你就可以更深入的去学习Linux系统原理和基于Linux驱动的开发,Linux内核的裁剪,文件系统构,bootloader等等底层的知识了。

想要更深入学习嵌入式Linux系统和驱动开发,要学的内容非常多包括计算机软件、硬件、操作系统知识。这时候你可以参照以下的学习思路,因为嵌入式Linux系统和驱动的开发,和底层硬件联系非常紧密,所以首先我们从学习了解嵌入式硬件开始,包括:ARM体系架构、S3C2440微处理器接口设计、时钟系统、LCD屏接口、存储控制器及系统的存储空间分配、NAND FLASH接口和NOR FLASH接口等。对嵌入式系统硬件有了一定的了解后,接下来就可以开始学习bootloader了,理解bootloader的概念,功能,和原理,重点掌握U-BOOT的使用和移植。接下来就开始学习嵌入式linux内核机制,分析嵌入式Linux源码组成、内核的模块机制、内核进程管理、内存管理机制、linux的中断系统、Linux内核的移植等。有了内核的基础,就可以学习嵌入式Linux设备驱动开发了,重点掌握字符设备驱动开发,LCD屏设备驱动开发、触摸屏设备驱动开发、USB设备驱动开发,网卡设备驱动开发。学完这些知识点并通过相关实验验证后,嵌入式Linux系统和驱动的开发就算掌握了差不多了,能够胜任绝大部分基于linux平台的驱动开发工作了。学完这些知识点,根据学员的不同情况,一般需要花三个月到半年时间。通过这一阶段的学习,你在嵌入式Linux开发领域已经算是有了一定的功底,已经不再被人称为菜鸟了,已经进入嵌入式linux开发高手行列了。

四、更上一层楼

深入理解了嵌入式内核和驱动开发,这时候写个什么驱动对你已经没有什么问题了,开发过程中一些基本问题都难不倒你了。这是你可能想优化一下系统的性能,比如实时性,提高系统的启动速度,或者优化系统的内存管理机制,要达到修改内核核心机制的境界,你就需要去深入去研读linux内核源码了,参考《linux源码深度分析》、《linux情景分析等》等linux源码分析的书籍,深入理解linux各部分的实现机制和原理,以及可能存在的问题。你只有在深入理解现有代码和实现机制的基础上,才能提出更好的改进方案。如果你能达到这个境界,那你已经是高手中的高手,可以笑傲群雄了。

以上是笔者结合自己的嵌入式学习经历和嵌入式培训经验总结的一些嵌入式学习方法和步骤,这只是笔者对嵌入式学习的一些看法,希望对那些有兴趣学习嵌入式linux又不知道从哪开始学的同学们有所帮助。当然,每个人,每个同学的基础,各方面的情况都不一样,每个人都有自己适合的学习方式,本文章总结的一些学习方法和思路仅供参考,希望大家能找到适合自己的学习嵌入式开发的方式,早日进入嵌入式开发大门。

万丈高楼平地起,成功还得靠自己。有志从事嵌入式开发的同学不要再犹豫了,赶紧拿出实际行动,好好学习,为实现自己的伟大梦想而努力奋斗吧。

围观 369

通过实践、整理、分析,将自己在学习嵌入式开发过程中所总结的一些嵌入式法则、整理如下以供大家参考:

1、资源有限性法则

嵌入式计算不仅需要网络快速、一致的计算,而且也要求系统能够井然有序地将其执行代码和数据,存储在一个“ 共同” 的“ 狭小” 的空间内。

2、鲁棒性法则

嵌入式计算不仅要求系统迅速而有效的计算,而且还要求在某些计算单元出现错误的时候,系统仍然能够继续正常运行工作。

3、实时性法则

嵌入式系统的计算结果,不仅依赖于系统的逻辑运算之正确性,而且也依赖于这个运算结果的计算时间。

4、 冗余度法则

在嵌入式系统具有足够的冗余度之后,系统的“ 初始敏感性” 对于其“ 最终计算结果” 的影响就变得微乎其微了。

5、 结构性法则

对于嵌入式系统而言,其结构复杂性的趋势表明:a 系统结构越简单越有效(The[已过滤]st is the best);b系统结构越复杂越稳定(More complex is more stable) 。

6、 简约性法则

当简约一个嵌入式系统时,系统剩下的功能之间的互动关系就会变得越来越强; 当系统的功能被简约之后,外来的入侵者之成功的概率就会变得越来越大。

7、 保育性法则

如果在嵌入式系统中要想保留某个系统功能,最好是将所有的其他功能都看成是 “ 神圣不可侵 犯的 ” ;系统的功能被移出(灭绝)或者生成(入 侵),一定会造成整体(群集)结构及其动态 性能上的重大转变。

8 、组织性法则

嵌入式互联网(embedded Internet)最重要的往往不是网络中个体设备的特质,而是存在于网络中的整体秩序,即 网络秩序 。 在一个高冗余度网络中,设备的单一作用已经不再能够构成影响到系统整体性能的主要因素 了,而起主要作用的是所有结点及其所构成的连结特征。

9、 网络性法则

由一群设备相互作用的嵌入式Internet 结点所构成的网络,其整体所表现出的性质,往往与个别结点的性质没有重大关系。

10、 消息性法则

保证查寻消息:它具有严格的时间敏感或者基本常态 系统*作要求,这类消息要求一个来自系统的时间保 证。即一旦由这类消息引起的活动或者任务被执行,那么在确定的时间间隔内,它们的时间限定性必将被 系统所保证。 最佳效果消息:它具有典型的软时间限定性,即其时间限定是由活动或者任务本身的时间序列所规定,无需系统保证就能满足其时间限定性的要求。

11、 免疫性法则

嵌入式互联网(embedded Internet) 的免疫系统应当是一个仿生命体机 制,免疫功能是一个“前馈”系统,所以要求系统应具有预见能力,从而可以“以(小)毒攻(大)毒”。

12、 融合性法则

嵌入式Internet 是一个复杂网络,将复杂网络结构用简单的“组成”来解析,让系统可以由孤立的“组成”来诠释“整体”,或者让系统可以由“结点”来表达“全局”。

13、性价比法则

如果系统A是系统B地嵌入式系统,即B(a),那么 系统A 的成本应不超过系统B 成本的10 %,而系统B(a)的成本应大于系统A和系统B成本之和,系统B(a)的性价比应提高30 %。

来源:网络(版权归原著作者所有)

围观 196

首先,如果你有幸看到这篇文章,千万不要试图在2个小时内阅读完,就算你2个小时阅读完,我相信你也不会理解里面讲解的精华之处,我相信,你应该将此文章慢慢品尝,这绝对是一篇需要品尝2~3天,再结合自己过往的经验,加上自己的思考,我相信会对你不仅仅是技术能力,甚至包括整体的思维方式都会有一个非常大的提高。
  
我写这篇文章的目的,是用本人20年的嵌入式经验呈现给大家一副完整的产品,项目开发蓝图,用本人多年的经历总结了一些教训,无私的分享给各位,希望各位今后能站在本人的肩膀之上,少走弯路,多为公司,为个人多做贡献,那我的愿望就达到了,也同时希望能看到大家反馈和回复,留个脚印,留下你的见解和智慧,为后人乘凉打点基础,先在这谢谢各位了。
  
那么由此开始我们充满知识的旅程吧,最重要的一点,就是在一个产品或项目的开发过程中,如果没有明确的目标,那么成功将无从谈起,做任何事的第一步必须明确目标。
  
与日常生活中的大多数事务一样,设计一个嵌入式产品的过程也必须从确定目标开始,对生产的产品进行明确定义。对产品进行定义主要是对产品是什么和能有什么功能进行描述,其次是在我们的整个开发过程中,应该要撰写一些开发文档,大概的框架的如下:

1)产品需求文档:描述产品的特性

2)功能需求文档:描述产品必须具备的功能

3)工程说明文档:描述系统实现的方法和满足需求的手段

4)硬件说明文档:对有关硬件进行描述

5)软件或固件说明文档:描述特定处理器下设计微程序以及固件的方法

6)测试说明文档:描述必须测试的项目和验证系统正常运行的方法

一、需求定义

需求定义用来描述产品的基本功能,对于公司来说,需求一般由该公司的市场销售部门或该公司的主要客户来制定;而对小公司或爱好者,技术人员可以自己负责定义需求,并撰写成文档。

通常需求定义是围绕以下几个因素而来:

1)系统的用途(定义需要系统实现的各种功能)

2)实际输入输出是何种方式实现的(为元器件的选型做参考)

3)系统是否需要操作界面(涉及软件层操作系统的选型)

其实对小型的嵌入式产品来说,定义需求是非常关键的,因为需求清楚了,就可以避免后续开发过程中出现的诸如随机存储器(RAM)容量不足或所选的CPU速度不能满足处理的需要等一系列问题。

下面举个简单的实际例子,供大家来参考:

系统描述:用于从化温泉的水泵换水系统

电源输入:使用来自于变压器的9V~12V直流电

水泵功率:375W

1)使用单相交流电机,由机械电气进行控制

2)如果温泉池处于低水位,则输入开关闭合信号,以禁止水泵继续运行

3)用户可以自由设置水泵运行或关闭的时间长度

4)除了自动设置控制外,还需要提供一种人工装置来允许维护人员灵活控制水泵进行维修

5)水泵开启/关闭/人工干预的时间可以30分钟为单位,在30分钟到23小时的范围内进行调节

6)显示设备可以指示水泵的开关状态,剩余时间,以及水泵是否处于人工干预模式

7)具备监视低水位的功能,并显示在屏幕上

如果需要商用,那么除了上面给出的功能要求外,其设计文档中还要包括电磁干扰(EMI)和电磁兼容性(EMC)认证、安全认证以及使用环境(包括环境温度、湿度、盐雾腐蚀等)等方面的需求。

实际上,以上的需求确定之后,接下来就是要考虑选择一款合适的CPU来满足和实现系统的功能,那么我们就要将上述7点用户能够理解的需求转化成我们专业领域的需求,转化如下,大家可以参考一下:

a、处理或更新输入输出信号的速率究竟需要多快?

解释:目前嵌入式处理器的主频一般都在几十兆到几百兆不等,单片机的主频一般是几十兆,ARM处理器可以到几百兆;我们主要看这个产品是否需要对大量数据进行处理,或是否需要对缓冲区进行频繁操作,是否有类似的占用CPU资料的工作要做,这就决定我们要选择一款合适的处理器来让该产品得到最佳的性能。

b、是否可使用单片集成电路(专用IC)或FPGA来完成数据处理?

解释:如果可以的话,就不一定要选择处理器来做,用这些专业芯片就能替代

c、系统是否有大量的用户输入输出操作(如对开关和显示设备进行频繁操作)?

解释:如果有的话,要在处理器选型的时候考虑这些因素,选择一款能够满足以上要求的CPU

d.系统与其他外部设备之间需要使用何种接口?

解释:这也是需要评估处理器的一个关键问题,选择具备这些接口功能的处理器会方便于我们的电路设计以及软件编程

e、设计完成后是否有可能需要进行改动,或在设计过程中系统需求是否可能出现变化?我们的设计是否能适应系统需求的变化?

解释:要避免选择的处理器刚好满足当前要求,这样当以后事务要求逐渐提高,处理器性能如果还有一定空间的话,那么就可以重用目前的产品;第二个就是要选择不 会即将停产的芯片,很多处理器用得很广乏,可以借鉴的资料也很多,但是很可能这款芯片已经在市场上流行很长时间了,芯片厂商已经推出更新换代的替代品了, 如果你选择了这款芯片,很可能1,2年后就买不到这款处理器芯片了,导致不得不重新选择新的处理器,重新设计产品,这样的既耗费时间,金钱,更消耗人力, 延误市场的战机。

二、处理器的选择

2.1.需要使用的I/O管脚数量

多数处理器都是使用内存和外部管脚来控制输入输出设备的,通常处理器都会有内置ROM和RAM的,如果内置的内存就已经满足需要,那么处理器就可以节省产生引用外部存储器信号的引脚,这样处理器可为输入输出提供较多的设备管脚(某些处理器支持外部RAM或ROM的使用,但对外部存储器进行访问时,处理器一般需要占用8条到10条I/O管脚)。

还有,有些处理器带有专用的内部定时时钟,这类时钟也需要使用一个端口管脚来实现某些定时功能;某些处理器中还具有漏极输出和高电流输出能力,可以方便的直接驱动继电器或电磁铁线圈,而不再需要额外驱动硬件的支持。

当对处理器I/O管脚进行计数时,我们一定要把使用处理器内部功能(如串行接口和定时器等)时限制使用的某些管脚考虑在内。

2.2.需要使用的接口数量

嵌入式处理器的主要功能是与应用环境中的硬件进行交互操作,这不仅需要外部硬件对接口具有实时处理能力,而且还要求处理器必须以足够快的速度对接口数据进行有效处理,以更方便地利用这些接口开发出嵌入式产品。

需要注意的是,由于许多处理器具有的局限性没有在处理器技术资料中给予足够的说明,因此一定要仔细阅读处理器的指标说明。例如,在阅读资料的过程中发现,该资料可能会说明其串行接口可以在最高波特率下工作,但仔细研究该处理器的指标数据时,可能会发现并非该串口接口的所有操作模式都可以在最大波特率下运行。

深入了解并明确接口要求的方法:可以自己动手编写一些程序来对接口进行实际测试,以确认某种处理器是否可以满足应用的要求;因为,确认某个处理器是否可以满足接口要求并非是一件简单的任务。

2.3.需要使用的内存容量

决定内存容量的大小是嵌入式产品设计过程中的一个基本步骤,如果对所需内存容量估计过高,那么我们就有可能会选择成本较高的解决方案;反之,如果低估了所需内存容量,就有可能因系统需要重新设计而导致项目不能按时完工。

a、RAM 和ROM的区别:存储器分为随机存储器(RAM)和只读存储器(ROM)两种。其中ROM通常用来固化存储一些生产厂家写入的程序或数据,用于启动电脑和控制电脑的工作方式。而RAM则用来存取各种动态的输入输出数据、中间计算结果以及与外部存储器交换的数据和暂存数据。设备断电后,RAM中存储的数据就会丢失。

b、随即存储器(RAM)的选择:RAM容量的预测是比较直观的,我们只需把所有变量数目与所有内部缓冲区的容量以及先入先出(FIFO)队列长度和堆栈长度直接相加,就能得到所需RAM容量的总数。
如果所需内存容量超出这类处理器的寻址范围,那么只能通过增加外部RAM来满足需求;然而,增加外部RAM的同时将会占用一定数量的I/O管脚来对扩展内存进行寻址,这种扩展往往会影响到处理器来实现应用的初衷。
需要注意的一个问题是,某些微处理器限制RAM的使用,这种限制的目的是为了借用部分内存存储器作为内部寄存器组使用。除了以上因素外,所使用的开发语言也对所需RAM容量有一定的影响,某些效率较低的编译程序可能会占用大量宝贵的RAM空间。

c、只读存储器(ROM)的选择:系统所需ROM的大小应该是系统程序代码与所有基于ROM的数据表容量之和。预测所需ROM空间容量比较困难的部分是预测程序代码的长度,解决这类问题的方法只能是随着经验的逐步积累来提高预测精度。

然而,最重要的并不是精确计算程序的代码长度,而是要清楚地估算代码长度的上限。根据经验,如果80%的ROM空间被代码占用的话,那么就太拥挤了,除非能确保系统需求不会有任何变化,否则至少要为可能发生的变化保留足够的备用ROM空间。

在多数情况下,我们可以试着在ROM中写入一部分程序代码,以便观察代码占用空间的情况,对于带有内部ROM的微处理器系统来说,系统程序都只能占用有限的程序存储器空间。

d、经验之谈:ROM与RAM使用情况相类似,程序代码长度与所选用的开发语言有关。举例来说,使用汇编语言编制的程序要比使用C语言编制的程序占用少得多的空间。

对于追求低成本的小型系统来说,一般不提倡使用高级程序设计语言;这是因为虽然高级语言在使用、调试以及维护方面来的比较容易,但同时这类语言需要占用更多的内存空间和大量的处理器时钟周期。

如果开发语言选择不当,其后果可能是把一个简单、低成本的单片机系统变为一个需要使用配置若干兆字节RAM空间的64位嵌入式处理器系统。

2.4.需要使用的中断数量

中断的主要用途是向中央处理器通报当前发生的某类特殊事件,这类事件包括诸如定时器超时事件、硬件引发的事件等。

需要强调的是,多数系统设计师经常过多地使用中断功能,实际上,中断的主要作用只是中断现行程序的执行,中断最适用于必须要求中央处理器立即提供服务的事件。

在需要设计和使用中断的情况下,一定要首先确认实际需要的中断数量,然后必须考虑到系统内部占用的中断资源,如果需要使用的中断资源超出了处理器可以接收的中断数量,我们就应借助于某些特殊手段来减少所需中断信号的数量。

2.5.实时处理方面的考虑

实时处理是一个涉及范围很广的题目,其主要内容与系统的处理速度有密切联系,实时事件是嵌入式微处理器需要关注的主要任务。

例如:处理器跟串口进行通信时,通常通过上层软件(为了保证实时性,进行任务切换的时间足够短),然后再占用处理器去执行从串口拿数据的任务,并且要保证处理器的速率比串口速率快,那么处理器可以以最快的速度反应并处理串口的相关的任务,这样就可以达到最大的实时性;

另一方面,如果处理器本身就内置了串口控制器、或DMA、或LCD的控制器等,那么它就可以保证直接使用这些处理器内置的接口去控制串口、液晶屏等对象,以达到最大的实时性能。

2.6.该厂商是否提供好的开发工具和环境

选择一款新的处理器,很可能就要使用一个新的开发工具和开发环境,包括软件的编译环境等;对于开发日程安排比较紧张的项目来说,开发人员往往无法抽出专门的时间来研究,熟悉新的开发工具,从而也无法全面掌握开发工具的使用技巧。

并且,有的开发工具价格也比较昂贵,而且很可能只能从制造商那里购买,还有仿真工具也是需要付费的,这些对我们在选择一款处理器的时候,是都应该考虑进去的成本因素。

2.7.处理器速度方面的考虑

主要考虑几个细节问题:

1)处理器速度与处理器时钟之间的关系

例:单片机8031为例,由该处理器可以适应12MHz频率的输入时钟,因此就可以认为它是一个速度为12MHz的处理器了吗?不是,实际上,由于该处理器内部逻辑电路执行每条指令需要多种不同频率的时钟脉冲,因此该处理器内部时钟电路要对输入的12MHz时钟12分频处理;最终为处理器提供的只是 1MHz主频。

有的时候,80MHz主频的处理器(80MHz输入时钟,80MHz执行速度)要比200MHz主频的处理器(200MHz输入时钟,50MHz执行速度)执行速度要快得多。

2)处理器指令系统

如果不需要执行复杂数学运算的应用,那么RISC指令集的处理器要快;如果执行比较复杂的操作,则CISC指令集的处理器速度要更快。

3)芯片结构体系

现在有的芯片是将多个不同功能的核封装到一个芯片IC中,定制某种特定的功能,比如DSP,其中包括用于实现数字解码、乘法运算的硬件乘法器和移相器等; 然而,这类处理器也由其自身局限,往往在执行某些普通操作之前必须要使用额外的指令来把RAM中的数据放入内部寄存器,相比之下,一般处理器只允许对 RAM中的数据进行直接访问。

2.8.只读存储器(ROM)的选择

多数工程项目在其开发阶段一般使用可擦写可编程只读存储器(EPROM)或快速存储器(Flash Memory);这类可擦写可重复写入存储器的主要优点是可多次使用。一旦产品研制完毕,就可以用一次写入设备(OTP)来取代EPROM存储器,一次性写入器件的外观与封装几乎与EPROM完全一样,惟一不同之处就是其表面没有擦出窗口,并且价格要比EPROM低很多。

但是,另外一种情况,如果该产品今后需要升级固件,或在线编程,那么我们还是应该选择可擦写可编程的存储器。

还有一种是非易失的存储器,例如制造一台电视机,就有可能需要该设备具有记忆上次观看最后一个频道的功能,即使在切断电源后,该频道信息也不会丢失。

总结:所以,根据不同的产品选择不同的存储器也是一门很讲究的学问。

2.9.电源的要求

在某些设计中方案中,电源根本不存在问题,对电源唯一的要求就是可以为电路正常供电;实际上,选择电源主要要考虑三个方面的问题:

1)要注意设计方案中是否对电源的供电方式有所限制,例如,是否像大多数家用电器那样需要使用屋内墙上的电源插座供电,或是是使用USB接口供电

2)看系统是否需要使用电池供电方式,如果这样,我们就要考虑选择那种对驱动电流要求不高的处理器,然后再为其选择合适的电池。

3) 休眠电流:许多微处理器都支持低功率运行模式,在这种模式下,系统的CPU处理器将处于休眠状态,同时所有外部设备的电源供电都被暂时切断,以便减少系统的电能消耗;某些微处理器在这种方式下需要的维持电流极小,但也有一些微处理器在这种方式下并不能节省多少功率;不管怎样,我们都要对系统在节点模式下的工作时间有一个估测,以便对具体情况选择使用的电池。

总之,无论哪种情况,我们都要对系统需要的供电总功率做到心中有数。

2.10.设备工作环境的要求

环境要求主要内容是考虑温度,湿度等;如果系统必须在温度范围较大的环境下运行,诸如用于军事设备或汽车的控制系统,那么处理器可选择的范围就要小得多;

并且由于大范围温度变化的设备通常比较昂贵,因此在设计过程中就不能再根据一般工业级器件的价格来制定预算。

2.11.使用周期成本

如果我们的产品是mp3,在一般情况下,可以不必考虑在用户现场对mp3程序进行修改的问题,也不用为是否可以得到设备备件而着急,这是因为mp3是一种消费产品;

换句话说,如果我们的产品是价值几万块的工业设备并且需要常年不断地运行,那么我们在产品设计过程中就必须从长计议了:

a、首先,我们需要选择一种处理器或存储体系结构都可以升级的器件

b、考虑到程序升级的可能,我们还要选择较大容量的内存

c、最后要注意的则是所选处理器是否可以长期供货,这一点的重要性远远大于处理器的价格

除了上面的考虑之外,使用周期成本也是在设计之初要考虑的因素。总的来说,生产的部件越多,则可以接受的前期开发成本也就越大。

但如果我们的产品是价格昂贵的工业用设备,那么在产品的使用期内,该设备的销售量将只有几百台,毫无疑问,开发这种产品最重要的就是降低开发成本(降低开发成本而不是硬件成本!!!);除此之外,工业产品的成本也不像家用电器或消费电子产品那么敏感。综上所述,开发工业产品当然要选择一种便于进行开发并且有助于缩短开发过程的处理器。

2.12.处理器相关资料是否丰富

如果该款处理器在市场上已经用得很广了,那么我们可以获取更多的相关资料,观察人家的产品是如何使用处理器的,也能在网络上找到不少的相关的设计资料以及相关技术主题,这样就进一步降低了技术门槛,确保了使用该处理器做产品可行性,减低了风险;

反之,如果是厂商全新推出的处理器,因为市场上还没有可以借鉴的产品,我们就只能从全英文的芯片手册开始阅读,了解这款芯片,这样开发周期不仅变长,而且不可预知的风险也很大。

三、开发成本的预测和估计<、strong>

大多数项目或产品都有专人负责预测整个过程的开发成本,对于任何项目来说,其开发成本主要包括人力和材料开销。

预测开发成本在很大程度上需要根据经验,这也是为什么大型公司一般指定有经验的高级工程师来完成这一任务的原因,除了人力和材料的开销之外,总结下来,还有以下的开销:

1)人力成本(开发人员、管理人员、销售人员、其他行政等辅助人员)的开销

2)材料(硬件物料和损耗,有时候需要投几次PCB版才把产品稳定下来)的开销

3)开发系统和开发工具软件的开销

4)硬件工具的开销(例如示波器、仿真器等)

对于整个项目来说,上述的开销将直接可能导致产品成本增加,其中人力成本最为关键,尤其是在中国,呵呵

四、产品开发设计文档(需要包括硬件和软件两个方面)

4.1 硬件文档撰写思路

1)首先是需求定义或产品规格:

如果这些是产品最终目标的话,那么产品对硬件和软件的要求就是技术方案的最终目标;对硬件和软件的要求是从定义用户界面和系统功能开始的。

2)其次,根据需求,系统整体定义文档中给出硬件接口的具体定义:

定义硬件最有效的方法是从需求开始描述,由于硬件必须支持系统定义的所有功能,因此硬件定义是与系统说明不可分割的;

例如,我们设计一个定时器(事先需求说明定时器不能与个人电脑连接,故无法使用CRT显示时间),我们只有两种选择:一种是使用发光二极管(LED),另 一种是使用液晶显示器件(LCD);尽管LCD的显示效果比较好,但考虑到定时器要常年位于户外,并且早期LCD显示器不能在低温下工作,最终还是选择 LED设备(这整个过程描述了我们硬件选型时的一个思路,这个是密切跟需求挂钩的)

3)一旦完成了系统整体说明文档,就开始进行系统设计:

首先要对硬件说明的内容进行细化,包括添加能让工程师理解的设计意图,以及软件工程师围绕硬件进行程序设计时需要使用的硬件信息等。

完成硬件电路板说明文档后,我们还要在该文档中增加一个用来描述系统的原始要求的前言部分,包括说明方案的设计思路和方法,除此之外,还要附上软件工程师用来对硬件进行控制所需的各类信息,这类信息主要包括如下内容(软件工程所需信息):

-----内存和I/O端口地址(如果需要,还可以提供内存映射图)

-----可用内存容量

-----状态寄存器每一位的定义

-----每个端口管脚的用途

-----外部设备的驱动方法(例如,说明输入定时器电路的时钟频率等)

-----其他有管软件人员设计程序需要了解的信息

对于比较复杂的系统来说,硬件文档中经常使用两个独立的部分来进行说明;其第一部分用来描述硬件指标和工作原理,第二部分则主要为软件人员提供程序设计需要的信息。

4.2 软件文档撰写思路

1) 软件文档与硬件文档的组织方法类似,软件要求文档的主要内容则是定义软件要实现的功能;一种是在简单项目设计过程中,软件定义也可以只对一种电路板使用的 软件给予描述;对较复杂的项目来说,由于参与这种项目的软件人员分别负责设计驱动不同硬件部分的代码(同一电路板),因此每个软件人员可能会为自己的设计 代码指定不同的定义,这类软件说明需要提供下列的内容:

-----论述包括需求定义、工程指标、硬件参数等实施项目需要的内容

-----说明软件之间、处理器之间或处理器与其内部器件之间使用的通信协议:其内容应包括对缓冲区接口机制、命令/应答协议、信号控制等协议的具体说明。

-----借助流程图、伪代码或者其他可能的方法来描述软件的实现方法和过程

2) 软件与硬件所考虑的不同之处(此经验方便技术总监或其他相关管理者参考,因为无论是多高深的技术管理者,要么是硬件出身,要么是软件出身,要么就是非技术出身)

a、软件的灵活性远远大于硬件,要让软件人员搞清楚某个软件的内部格式是非常困难的任务,解决的办法:详细定义其他程序员需要了解的编程接口具体内容,以及其他工程人员在实施开发项目过程中需要使用的技术细节信息。

b、软件工程师只有在收到硬件说明文档后,才有可能知道如何对系统硬件进行操作;而硬件人员一般不需要了解软件程序的技术细节。

c、由于软件易于更改,因此程序内容经常会按销售人员提供的要求发生变更,在某些情况下,软件文档的内容无法及时反映程序的最新变化。

d、软件经常是工程项目最后完成的部分,因此其文档也经常因时间不够而欠缺完整。实际上,软件文档是否详细、完整,在某种程度上是与公司或客户的要求有关的。例如,军事或国家工程一般要求开发商就其所有软件实现的功能提供全面详细的文档

e、有个潜规则,对软件的要求越复杂,则需求的正确可能性就越小,这个是经验之谈了,我们需要把准需求这个准绳来做文章,而不是陷入个人主义以及对软件要求而凭空发挥自己不切实际的想象。

f、我们可以先硬件设计,接着围绕该硬件编制软件。虽然实际系统的实现过程可能是软硬件并行开发,但软件人员基本上也是围绕着已经实现的硬件来进行程序设计的;对于更为复杂的系统来说,开发过程可能会出现重复。

例如,某个项目的硬件工程师和软件工程师可能会坐下来开会,共同决定使用哪种硬件来实现某种功能;软件人员可能提出需要为数据缓冲区口冲内存容量,也可能要求提供某种外部设备接口,以便充分利用现成接口程序提供的各种驱动代码。

总的来说,必须在提高软件开发效率与硬件系统的复杂性与成本之间进行权衡.

五、嵌入式高手对技术的理解(含辛茹苦这么多年的精华体验)

有很多人认为:嵌入式系统性能的核心因素是软件功能,其实,如果按照这种逻辑,系统设计中存在的问题就应由软件人员来负责;其实这个观点实际上反映了设计嵌入式产品时如何考虑划分硬件和软件各自应实现的功能,也就是这个功能是软件实现,还是考虑用硬件来实现(硬件实现:需要购买处理该功能的硬件芯片,从而增加成本;软件实现:无需增加硬件成本,但会占用处理器以及内存的资源)。

例如:我们在这里设计的基于ARM的mp3嵌入式产品,我们可以使用专业的解码芯片来负责mp3音乐文件的解码和播放功能,也可以使用另一种方法来解码mp3语音文件,让ARM处理器利用软件控制寄存器来驱动耳机或音响,处理器通过对mp3语音文件解码之后再将解码后的数据流按照一定协议格式送给音频输出的硬件接口进行播放。

优点:这种方案在硬件方面节省了一个器件,降低了成本,并且该功能还方便调试(因为是软件实现的)。

缺点:从另一个角度来看,虽然节省了一块语音解码芯片,但同时要在三个方面增加成本。

首先,要在程序中增加语音协议解码的代码;

其次,可能要把增加ROM来存放语音解码的协议,这样可以增加速度;

最后,运行该程序将占用处理器的时间和资源。

其实,话又说回来,对于本案例来说,上述成本的节约并不会引发任何问题,包括驱动程序增加也只需少量的,我们讨论这个mp3产品的案例的目的在于说明如何对软件硬件的功能进行合理划分。

总的来说,交给软件实现的功能越多,则产品的成本就越低,当然这就要处理器必须有足够的处理速度和内存空间来实现设计指定的功能;常言说得好,天下没有免费的午餐;把功能分配给软件来实现,会增加软件的复杂性、开发时间、以及程序的调试时间;然而,随着处理器的处理能力的不断提高,可以预见,越来越多的功能将会由软件来实现。

虽然在软件中实现各种功能会增加开发成本,但如果把功能移植到硬件中实现,则会增加产品的成本,这类开销是在构造每个系统组件时不可避免的。在低成本设计方案中,增加任何额外的硬件都会对产品成本产生显著的影响,因此软硬件功能划分就是一个决定产品成本的大问题。在诸如大众消费产品这一类对成本非常敏感的设计方案中,一般都会把无法通过软件实现的功能排除在外的。



围观 451

越来越多的人选择从事嵌入式开发工作,伴随而来的便是各种对硬件和寄存器的抓耳挠腮。你真的认为你现在的调试方式就是最合适的吗?先看看小粥为你带来的嵌入式调试实用秘籍!

使用集成开发环境开发基于ARM 的应用软件,包括编辑、编译、汇编、链接等工作全部在PC机上即可完成,调试工作则需要配合其他的模块或产品方可完成,目前常见的调试方法有以下几种:

1、指令集模拟器

优点:部分集成开发环境提供了指令集模拟器,可方便用户在 PC 机上完成一部分简单的调试工作。

缺点:由于指令集模拟器与真实的硬件环境相差很大,因此即使用户使用指令集模拟器调试通过的程序也有可能无法在真实的硬件环境下运行,用户最终必须在硬件平台上完成整个应用的开发。

2、驻留监控软件

优点:驻留监控软件( Resident Monitors )是一段运行在目标板上的程序,集成开发环境中的调试软件通过以太网口、并行端口、串行端口等通讯 端口与驻留监控软件进行交互,由调试软件发布命令通知驻留监控软件控制程序的执行、读写存储器、读写寄存器、设置断点等。

缺点:驻留监控软件的不便之处在于它对硬件设备的要求比较高,一般在硬件稳定之后才能进行应用软件的开发,同时它占用目标板上的一部分资 源,而且不能对程序的全速运行进行完全仿真,所以对一些要求严格的情况不是很适合。

3、JTAG 仿真器

优点:JTAG仿真器也称为JTAG调试器,是通过 ARM 芯片的JTAG边界扫描口进行调试的设备。 JTAG 仿真器比较便宜,连接比较方便,通过现 有的JTAG边界扫描口与ARM CPU 核通信,属于完全非插入式 ( 即不使用片上资源 ) 调试,它无需目标存储器,不占用目标系统的任何端 口,而这些是驻留监控软件所必需的。

缺点:由于 JTAG 调试的目标程序是在目标板上执行,仿真更接近于目标硬件,因此,许多接口问题 ,如高频操作限制、 AC 和 DC 参数不匹配,电线长度的限制等被最小化了。

使用集成开发环境配合 JTAG 仿真器进行开发是目前采用最多的一种调试方式。

4、在线仿真器

优点:在线仿真器使用仿真头完全取代目标板上的 CPU,可以完全仿真 ARM 芯片的行为,提供更加深入的调试功能。

缺点:这类仿真器为了能够全速仿真时钟速度高于100MHz的处理器,通常必须采用极其复杂的设计和工艺,因而其价格比较昂贵。

在线仿真器通常用在ARM的硬件开发中,在软件的开发中较少使用,其价格高昂也是在线仿真器难以普及的因素。

看了这么多种调试方法,哪种适合你呢?

文章来源:周立功单片机

围观 595

1、概述:

WATCHDOG对于没有底层开发经验的开发人员来说,可能比较陌生,但是它在系统起到非常重要的作用,相当于系统警察,当系统发生严重错误(如程序进入死循环等)不能恢复的时候,WATCHDOG能够让系统重启。WATCHDOG的应用主要是在嵌入式操作系统中,避免了系统在无人干预时长时间挂起的情况。

2、WATCHDOG模块

在比较高档的嵌入式硬件芯片中,都有一个WATCHDOG模块,如果在MCU/MPU中没有集成WATCHDOG,一般会在此嵌入式系统中加一个专门的WATCHDOG芯片来实现WATCHDOG机制。此模块主要的功能包括:

(1)提供WATCHDOG控制寄存器和配置寄存器,供软件开发人员根据系统需要进行灵活配置。

(2)提供一接口,使应用软件能够定时给WATCHDOG“喂狗”。

(3)提供WATCHDOG机制,当系统进入不可恢复错误时,能产生一个不可屏蔽中断来通知系统自动重启(一般这样,也有改变为其他处理方式的),只有相应的复位信号才能清除它。

3、WATCHDOG的实现方式:

对于WATCHDOG模块的实现,不同的硬件芯片有不同的方式,这里介绍2中工作方式:

(1)利用系统操作系统时钟来实现WATCHDOG

在Intel XScale系列中,利用了操作系统时钟的比较寄存器3(OSMR3)做为WATCHDOG的运行主体,当系统的WATCHDOG激活后,软件就必须在一定时间内从OSMR3读出当前的计数,然后加上一定的计数值(下一次到期的计数值),再写回到OSMR3中,软件一直周期性的重复这个过程,如果软件没有重新写入新的计数使定时器到期,此OSMR3会利用一个GPIO触发系统复位。

(2)芯片的专门WATCHDOG模块

对于现在的很多芯片,已经集成了专门的WATCHDOG模块,比如ARM11的芯片,WATCHDOG模块中,提供了比较灵活的配置和控制机制:

A、宽范围设置过期时间间隔,从0。5秒到128秒可以用户配置

B、可以灵活配置在低功耗下,使用或者停止WATCHDOG功能

C、可以灵活配置在DEBUG等状态下,使用或者停止WATCHDOG功能

根据不同的系统,设置好相应的寄存器,激活WATCHDOG后,需要应用程序周期性的服务WATCHDOG,即我们所说的“喂狗”,对于WATCHDOG模块,需要定时向Watchdog Service Register按顺序写入0x5555、0xaaaa。一般在WATCHDOG模块中还会提供Watchdog Reset Status Register,从中可以找到复位的具体原因。

3、单片机的WATCHDOG实现

许多单片机片内自带看门狗电路,单片机复位时将片内自带看门狗电路禁止,只有当程序访问该电路时,电路启动。如51系列单片机对SFR中的0A6H地址顺序写入#01EH、#0E1H;而96系列单片机则对SFR中的0A6H地址顺序写入#1EH、#0E1H;工控主机板上看门狗电路本身并不要求复位后重新启动,但BIOS在复位后将板上看门狗禁止,启动和喂狗方法与单片机相同。通常在WatchDog编程状态,只要执行如下两条指令:

outportb(0x2e,0xf6);

outportb(0x2f,TIME-OUT-VALUE);

可实现WatchDog的启停,其中TIME-OUT-VALUE ≠0启动;TIME-OUT-VALUE =0停止[2]。能够用指令禁止看门狗是为了适应用户程序开发阶段的需要,这同时给看门狗启动和运行失败留下了后门,在看门狗启动时或启动前遇干扰而使程序跑飞,则看门狗启动失败,无法行使监控职能。

4、结论

WATCHDOG在嵌入式系统中发挥着非常重要的作用,其实现方式也千差万别,根据不同的硬件设计,可以选用不同的WATCHDOG,但它们的作用是一样的:保证系统在出现不可恢复错误时,能够自动让系统重启。

围观 1281

作者:何立民

“思考”与“行为”是人类智能的两种类型。“思考”是大脑独立的思维方式,“行为”是作用于客体的智力表现。

两种不同的智能类型决定了人工智能两种形式、两条道、两种工具、两个领域。人工智能源自图灵机模型,图灵机在实现了人工智能的实用化智力内核(微处理器)后,迅速分化成两种不同的智力内核(通用微处理器与嵌入式微控制器),以满足人工智能两个领域的全面需求。

人类智能的两种表现

思维与智力行为是人类智能的两种表现方式,人类思考方式是思维,人类的行为方式是智力。无论是思维还是智力,都是知识基础上的能力与行为。动物没有知识,人们很难窥见动物思考,只能从动物的行为中了解它们的智力。人们常常喜欢将某些宠物的智力与人类相比,殊不知两者有本质不同:马戏团的小狗会数数,只是条件反射的训练结果,没有任何知识内涵。因此,人类智能是知识基础上的行为与能力。

人类智能与动物智力的本质差异是人类几百万年演化的结果。人类与动物的根本差异在于:动物们在自然竞争中演化,人类摆脱了自然竞争,进入到“认识世界、改造世界”的特殊演化道路。认识世界的思考与改造世界的行为能力构成了人类特殊智能。人们可以从人类大脑的特殊进化中,了解到这种特殊智能的演化结果。

首先是大脑容量的异常进化。百万年来,人类相对于其他物种,唯一明显的进化特征,是脑容量的急剧增长。

据人类学家统计,几百万年前,黑猩猩的脑量平均为400毫升,作为人类祖先的“南方古猿”,脑量为400~770毫升,其后进化的“爪哇人”为775~900毫升、“北京人”为850~1300毫升,现代人脑量平均为1400毫升。与此同时演化的黑猩猩,其脑容量却没有明显变化。现代神经医学研究指出,人类大脑容量的增加,主要是大脑皮层的异常发育所致。大脑皮层主管高级神经活动,体现了人类感知、认知、思维、思考的知识效应,充分表明人类智能的基础是知识。

其次,是人类左大脑的异常进化。20世纪60年代,美国心理生物学家斯佩里博士发现了人类左右大脑的割裂现象,提出了大脑不对称性的“左、右脑分工理论”,荣获1981年诺贝尔生理学或医学奖。人类左右大脑不同功能的分工现象表现在:左半脑主要负责逻辑、理解、记忆、时间、语言、判断、排列、分类、逻辑、分析、书写、推理、抑制、感觉(视、听、嗅、触、味觉)等,其思维方式具有连续性、延续性和分析性,因此左脑可以称作“意识脑”、“学术脑”、“语言脑”。右半脑主要负责空间形象记忆、直觉、情感、身体协调、视知觉、美术、音乐节奏、想象、灵感、顿悟等,思维方式具有无序性、跳跃性、直觉性等,因此右脑又可以称作“本能脑”、“潜意识脑”、“创造脑”、“音乐脑”、“艺术脑”。

百万年来,在认识世界、改造世界中演化,为了生存成为人类进化的主旋律,人类的智能最终形成了以左脑为主的思维、行为方式。可以看出,人类智能主要是知识基础上左大脑的思维(思考)与行为(智力)能力。现阶段,人工智能也将沿着这两种能力表现进行探索与实践。

一个源头的两个分支

1956年夏天,一批有远见卓识的年轻科学家聚在一起,共同研究和探讨用机器模拟人类智能的一系列有关问题,并首次提出了“人工智能”这一概念,人们认为它标志着“人工智能”这门新兴学科的正式诞生。

人工智能,除了理论研究,还必须有能实现人工智能的先进技术与工具,这就是现代计算机。因此,不少人把人工智能看成是计算机的一个分支,其源头则是图灵学者们对“可计算原理”的开创性研究成果。

图灵学者们提出“万物皆可为函数”的可计算原理,1936年5月,图灵发表了著名论文《论可计算数及其在判定问题上的应用》,并提出了图灵机概念。1946年,在图灵机思想影响下,第一台数字计算机“ENIAC”在美国宾夕法尼亚大学诞生,但体积庞大、造价高昂,与图灵理想的人工智能机相距甚远,“ENIAC”的实用化发展也受到诸多限制,直到半导体微处理器诞生,情况才得到根本的转变。

人工智能之父图灵

20世纪60年代半导体集成电路诞生后,Intel于1971年、1972年相继推出了第一代4位微处理器4004与第一代8位微处理器8008。紧随其后的是微处理器的不断改进与微处理器基础上现代计算机的快速发展。在嵌入式系统领域,1974年仙童半导体公司推出了第一个微控制器系列F8,随后微控制器开始了爆发式的创新热潮。

1976年Intel公司开始了MCS 48探索,1980年又完善成经典的8位微控制器MCS 51系列。在通用计算机领域,1981年IBM 公司在8088微处理器基础上,创建了通用计算机IBMPC。

从上面的追溯中可以看出,20世纪30年代,一批图灵学者们以“一切皆可计算”的理论与模型,成为人工智能的源头;1955年,由约翰·麦卡锡(John McCarthy)等人发起的达特茅斯会议上正式定义“人工智能”,催生了人工智能革命;20世纪70年代微处理器诞生,开启了人工智能的实践时代,其后“人工智能”大行其道,成为20世纪与空间技术、能源技术并列的三大尖端科技,又与基因工程、纳米科学一起成为21世纪三大前沿技术。

两个并行发展的人工智能领域

与人类智能的两个领域(思维与行为)相对应,微处理器诞生后,也迅速分化为通用微处理器与嵌入式微处理器,这是一个十分有趣的科技现象。“思考”是大脑在知识基础上的“思维能力”;“行为能力”是人类个体与客观世界的交互状态,除知识以外,还必须有对外部世界的感知与控制。微处理器诞生后,现代计算机智力革命就是沿着这两个领域并行发展。通用微处理器基础上的通用计算机用于实现人类大脑思维能力仿真;嵌入式微处理器基础上的嵌入式系统用于实现人类智力行为替代的智能化工具。

早期,人们以为人工智能就是对人类思维信息过程的模拟,它包括人脑的结构机制模拟与制造“类人脑”的功能模拟。微处理器诞生后,通用计算机承担了思维信息过程模拟的重任;嵌入式系统以智能化工具来替代人类智力行为,这无疑将早先人工智能的“思维仿真”进一步扩大到“行为替代”的广义领域,从此掀开了人工智能历史的新篇章。对此,有人用“强人工智能”与“弱人工智能”来区别这两种不同的人工智能领域。

“强人工智能”,是研究人类大脑及大脑思维仿真的人工智能领域。1980年,美国加州大学伯克利分校哲学教授约翰·罗杰斯·希尔勒(JohnRogersSearle)认为:“计算机不仅是用来研究人的思维的一种工具,而且,只要运行适当的程序,计算机本身就是有思维的。”因此,强人工智能领域有两类,即类人的人工智能与非类人的人工智能。类人的人工智能目标是实现人造大脑,使机器能像人类一样思考和推理,是人工智能的顶级工程,也有人称它为超强人工智能。非类人的人工智能,即机器对人脑功能的仿真。深蓝计算机“国际象棋大师”、沃森计算机“智力竞赛”、AlphaGo“围棋大师”都是机器对人脑的功能仿真,它们起源于20世纪70年代计算机的专家系统研究。

“弱人工智能”,是指用机器实现人类的智能行为,用于代替人类个体的脑力劳动。由于现代计算机的完善与广泛应用,用专家系统及智能化工具形式实现的人工智能比比皆是,充斥在人们周围,人们却视而不见。约翰·麦卡锡这位在20世纪50年代提出人工智能概念的学者也感叹于我们日常生活中每天都在使用人工智能,同时也抱怨于“一旦一样东西用人工智能实现了,人们就不再叫它人工智能了”。另外,不要一提到人工智能就想着机器人,所有内部嵌有微控制器的工具,或在计算机上实现人类思维能力的计算机软件,都是人工智能的表现形式。

全方位渗透的人工智能革命

结合现代人工智能学者温斯顿教授的简明观点—人工智能就是研究如何使计算机去做过去只有人才能做的智能工作,可以看出,20世纪50年代人工智能诞生后,由于计算机工具的滞后,人工智能领域一直没有实质性的进展。20世纪70年代半导体微处理器诞生后,微处理器基础上的现代计算机才成为实现人工智能应用的有力武器,从此开始了以人工智能为中心的现代计算机智力革命。由此构成形形色色、用于替代人类智能的工具,如集成电路芯片、通用计算智力仿真的专家系统和嵌入式系统的智能化工具。

许多业内人士都知道,半导体集成电路可以替代电子工程师的部分智力工作。过去设计一个电子时钟要了解计时原理、设计与调试计时电路,有了集成电路时钟芯片后,电子工程师只要在时钟芯片基础上添加人机交互界面即可。16位模/数转换曾经是国家级科研项目,有了16位模/数转换芯片之后,再也无人从事模/数转换的科学研究。最具说服力的是目前工科院校中模拟电路、数字电路课程内容的不断萎缩,以及大量模拟电路、数字电路专家岗位的丧失现象。

在通用计算智力仿真领域,20世纪70年代兴起了专家系统热潮,随后是形形色色的商品化软件(办公软件、科学计算/分析软件、管理软件、工程设计软件等)问世。这些商品化软件渗透到各行各业,代替人们的脑力劳动。当这些智力仿真成果铺天盖地而来时,人们不以为然。幸好有深蓝计算机“国际象棋大师”、沃森计算机“智力竞赛”、AlphaGo的“围棋大师”对人工智能的普及,让人们对人工智能有了初步的认识。

在嵌入式系统领域,微控制器以智力内核角色嵌入到工具中,实现人类工具的智能化革命。早期的工具智能化是传统电子系统的智能化改造,改造后的智能化工具代替了使用者的智力劳动。自动洗衣机代替了洗衣工的智力劳动,汽车故障自动检测系统免除了维修技师的智力劳动,智能手机多方面代替了人们生活中的智力劳动。在前沿科技领域,众多的智能化设备代替了科学家的智力劳动。

如今,在AlphaGo掀起的这股人工智能热潮中,引发了人们对机器人的众多遐想与议论。在这些遐想与议论中,人们应该意识到,我们已沉浸在一个人工智能的汪洋大海之中。多年来,人工智能彻底改变了我们的生活方式,改变了我们的世界观,只是我们往往浑然不知。

文章来源: 嵌入式资讯精选

围观 377

本文主要介绍嵌入式系统的一些基础知识,希望对各位有帮助。

嵌入式系统基础

1、嵌入式系统的定义

(1)定义:以应用为中心,以计算机技术为基础,软硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。

(2)嵌入式系统发展的4个阶段:无操作系统阶段、简单操作系统阶段、实时操作系统阶段、面向Internet阶段。

(3)知识产权核(IP核):具有知识产权的、功能具体、接口规范、可在多个集成电路设计中重复使用的功能模块,是实现系统芯片(SOC)的基本构件。

(4)IP核模块有行为、结构和物理3级不同程度的设计,对应描述功能行为的不同可以分为三类:软核、固核、硬核。

2、嵌入式系统的组成

包含:硬件层、中间层、系统软件层和应用软件层

(1)硬件层:嵌入式微处理器、存储器、通用设备接口和I/O接口。

嵌入式核心模块=微处理器+电源电路+时钟电路+存储器

Cache:位于主存和嵌入式微处理器内核之间,存放的是最近一段时间微处理器使用最多的程序代码和数据。它的主要目标是减小存储器给微处理器内核造成的存储器访问瓶颈,使处理速度更快。

(2)中间层(也称为硬件抽象层HAL或者板级支持包BSP).

它将系统上层软件和底层硬件分离开来,使系统上层软件开发人员无需关系底层硬件的具体情况,根据BSP层提供的接口开发即可。

BSP有两个特点:硬件相关性和操作系统相关性。

设计一个完整的BSP需要完成两部分工作:

A、 嵌入式系统的硬件初始化和BSP功能。

片级初始化:纯硬件的初始化过程,把嵌入式微处理器从上电的默认状态逐步设置成系统所要求的工作状态。

板级初始化:包含软硬件两部分在内的初始化过程,为随后的系统初始化和应用程序建立硬件和软件的运行环境。

系统级初始化:以软件为主的初始化过程,进行操作系统的初始化。

B、 设计硬件相关的设备驱动。

(3)系统软件层:由RTOS、文件系统、GUI、网络系统及通用组件模块组成。

RTOS是嵌入式应用软件的基础和开发平台。

(4)应用软件:由基于实时系统开发的应用程序组成。

3、实时系统

(1)定义:能在指定或确定的时间内完成系统功能和对外部或内部、同步或异步时间做出响应的系统。

(2)区别:通用系统一般追求的是系统的平均响应时间和用户的使用方便;而实时系统主要考虑的是在最坏情况下的系统行为。

(3)特点:时间约束性、可预测性、可靠性、与外部环境的交互性。

(4)硬实时(强实时):指应用的时间需求应能够得到完全满足,否则就造成重大安全事故,甚至造成重大的生命财产损失和生态破坏,如:航天、军事。

(5)软实时(弱实时):指某些应用虽然提出了时间的要求,但实时任务偶尔违反这种需求对系统运行及环境不会造成严重影响,如:监控系统、实时信息采集系统。

(6)任务的约束包括:时间约束、资源约束、执行顺序约束和性能约束。

4、实时系统的调度

(1)调度:给定一组实时任务和系统资源,确定每个任务何时何地执行的整个过程。

(2)抢占式调度:通常是优先级驱动的调度,如uCOS。优点是实时性好、反应快,调度算法相对简单,可以保证高优先级任务的时间约束;缺点是上下文切换多。

(3)非抢占式调度:通常是按时间片分配的调度,不允许任务在执行期间被中断,任务一旦占用处理器就必须执行完毕或自愿放弃,如WinCE。优点是上下文切换少;缺点是处理器有效资源利用率低,可调度性不好。

(4)静态表驱动策略:系统在运行前根据各任务的时间约束及关联关系,采用某种搜索策略生成一张运行时刻表,指明各任务的起始运行时刻及运行时间。

(5)优先级驱动策略:按照任务优先级的高低确定任务的执行顺序。

(6)实时任务分类:周期任务、偶发任务、非周期任务。

(7)实时系统的通用结构模型:数据采集任务实现传感器数据的采集,数据处理任务处理采集的数据、并将加工后的数据送到执行机构管理任务控制机构执行。

5、嵌入式微处理器体系结构

(1)冯诺依曼结构:程序和数据共用一个存储空间,程序指令存储地址和数据存储地址指向同一个存储器的不同物理位置,采用单一的地址及数据总线,程序和数据的宽度相同。例如:8086、ARM7、MIPS…

(2)哈佛结构:程序和数据是两个相互独立的存储器,每个存储器独立编址、独立访问,是一种将程序存储和数据存储分开的存储器结构。例如:AVR、ARM9、ARM10…

(3)CISC与RISC的特点比较。

计算机执行程序所需要的时间P可以用下面公式计算:

P=I×CPI×T

I:高级语言程序编译后在机器上运行的指令数。

CPI:为执行每条指令所需要的平均周期数。

T:每个机器周期的时间。

(4)流水线的思想:在CPU中把一条指令的串行执行过程变为若干指令的子过程在CPU中重叠执行。

(5)流水线的指标:

吞吐率:单位时间里流水线处理机流出的结果数。如果流水线的子过程所用时间不一样长,则吞吐率应为最长子过程的倒数。

建立时间:流水线开始工作到达最大吞吐率的时间。若m个子过程所用时间一样,均为t,则建立时间T=mt。

(6)信息存储的字节顺序

A、存储器单位:字节(8位)

B、字长决定了微处理器的寻址能力,即虚拟地址空间的大小。

C、32位微处理器的虚拟地址空间位232,即4GB。

D、小端字节顺序:低字节在内存低地址处,高字节在内存高地址处。

E、大端字节顺序:高字节在内存低地址处,低字节在内存高地址处。

F、网络设备的存储顺序问题取决于OSI模型底层中的数据链路层。

6、逻辑电路基础

(1)根据电路是否具有存储功能,将逻辑电路划分为:组合逻辑电路和时序逻辑电路。

(2)组合逻辑电路:电路在任一时刻的输出,仅取决于该时刻的输入信号,而与输入信号作用前电路的状态无关。常用的逻辑电路有译码器和多路选择器等。

(3)时序逻辑电路:电路任一时刻的输出不仅与该时刻的输入有关,而且还与该时刻电路的状态有关。因此,时序电路中必须包含记忆元件。触发器是构成时序逻辑电路的基础。常用的时序逻辑电路有寄存器和计数器等。

(4)真值表、布尔代数、摩根定律、门电路的概念。

(5)NOR(或非)和NAND(与非)的门电路称为全能门电路,可以实现任何一种逻辑函数。

(6)译码器:多输入多输出的组合逻辑网络。

每输入一个n位的二进制代码,在m个输出端中最多有一个有效。

当m=2n是,为全译码;当m<2n时,为部分译码。

(7)由于集成电路的高电平输出电流小,而低电平输出电流相对比较大,采用集成门电路直接驱动LED时,较多采用低电平驱动方式。液晶七段字符显示器LCD利用液晶有外加电场和无外加电场时不同的光学特性来显示字符。

(8)时钟信号是时序逻辑的基础,它用于决定逻辑单元中的状态合适更新。同步是时钟控制系统中的主要制约条件。

(9)在选用触发器的时候,触发方式是必须考虑的因素。触发方式有两种:

电平触发方式:具有结构简单的有点,常用来组成暂存器。

边沿触发方式:具有很强的抗数据端干扰能力,常用来组成寄存器、计数器等。

7、总线电路及信号驱动

(1)总线是各种信号线的集合,是嵌入式系统中各部件之间传送数据、地址和控制信息的公共通路。在同一时刻,每条通路线路上能够传输一位二进制信号。按照总线所传送的信息类型,可以分为:数据总线(DB)、地址总线(AB)和控制总线(CB)。

(2)总线的主要参数:

总线带宽:一定时间内总线上可以传送的数据量,一般用MByte/s表示。

总线宽度:总线能同时传送的数据位数(bit),即人们常说的32位、64位等总线宽度的概念,也叫总线位宽。总线的位宽越宽,总线每秒数据传输率越大,也就是总线带宽越宽。

总线频率:工作时钟频率以MHz为单位,工作频率越高,则总线工作速度越快,也即总线带宽越宽。

总线带宽 = 总线位宽×总线频率/8, 单位是MBps。

常用总线:ISA总线、PCI总线、IIC总线、SPI总线、PC104总线和CAN总线等。

(3)只有具有三态输出的设备才能够连接到数据总线上,常用的三态门为输出缓冲器。

(4)当总线上所接的负载超过总线的负载能力时,必须在总线和负载之间加接缓冲器或驱动器,最常用的是三态缓冲器,其作用是驱动和隔离。

(5)采用总线复用技术可以实现数据总线和地址总线的共用。但会带来两个问题:

A、需要增加外部电路对总线信号进行复用解耦,例如:地址锁存器。

B、总线速度相对非复用总线系统低。

(6)两类总线通信协议:同步方式、异步方式。

(7)对总线仲裁问题的解决是以优先级(优先权)的概念为基础。

8、电平转换电路

(1)数字集成电路可以分为两大类:双极型集成电路(TTL)、金属氧化物半导体(MOS)。

(2)CMOS电路由于其静态功耗极低,工作速度较高,抗干扰能力较强,被广泛使用。

(3)解决TTL与CMOS电路接口困难的办法是在TTL电路输出端与电源之间接一上拉电阻R,上拉电阻R的取值由TTL的高电平输出漏电流IOH来决定,不同系列的TTL应选用不同的R值。

9、可编程逻辑器件基础

这方面的内容,从总体上有个概念性的认识应该就可以了。

10、嵌入式系统中信息表示与运算基础

(1)进位计数制与转换:这样比较简单,也应该掌握怎么样进行换算,有出题的可能。

(2)计算机中数的表示:源码、反码与补码。

正数的反码与源码相同,负数的反码为该数的源码除符号位外按位取反。

正数的补码与源码相同,负数的补码为该数的反码加一。

例如-98的源码:11100010B

反码:10011101B

补码:10011110B

(3)定点表示法:数的小数点的位置人为约定固定不变。

浮点表示法:数的小数点位置是浮动的,它由尾数部分和阶数部分组成。

任意一个二进制N总可以写成:N=2P×S。S为尾数,P为阶数。

(4)汉字表示法,搞清楚GB2318-80中国标码和机内码的变换。

(5)语音编码中波形量化参数(可能会出简单的计算题目哦)

采样频率:一秒内采样的次数,反映了采样点之间的间隔大小。

人耳的听觉上限是20kHz,因此40kHz以上的采样频率足以使人满意。

CD唱片采用的采样频率是44.1kHz。

测量精度:样本的量化等级,目前标准采样量级有8位和16位两种。
声道数:单声道和立体声双道。立体声需要两倍的存储空间。

11、差错控制编码

(1)根据码组的功能,可以分为检错码和纠错码两类。检错码是指能自动发现差错的码,例如奇偶检验码;纠错码是指不仅能发现差错而且能自动纠正差错的码,例如循环冗余校验码。

(2)奇偶检验码、海明码、循环冗余校验码(CRC)。

12、嵌入式系统的度量项目

(1)性能指标:分为部件性能指标和综合性能指标,主要包括:吞吐率、实时性和各种利用率。

(2)可靠性与安全性

可靠性是嵌入式系统最重要、最突出的基本要求,是一个嵌入式系统能正常工作的保证,一般用平均故障间隔时间MTBF来度量。

(3)可维护性:一般用平均修复时间MTTR表示。

(4)可用性

(5)功耗

(6)环境适应性

(7)通用性

(8)安全性

(9)保密性

(10)可扩展性

性价比中的价格,除了直接购买嵌入式系统的价格外,还应包含安装费用、若干年的运行维修费用和软件租用费。

13、嵌入式系统的评价方法:测量法和模型法

(1)测量法是最直接最基本的方法,需要解决两个问题:

A、根据研究的目的,确定要测量的系统参数。

B、选择测量的工具和方式。

(2)测量的方式有两种:采样方式和事件跟踪方式。

(3)模型法分为分析模型法和模拟模型法。分析模型法是用一些数学方程去刻画系统的模型,而模拟模型法是用模拟程序的运行去动态表达嵌入式系统的状态,而进行系统统计分析,得出性能指标。

(4)分析模型法中使用最多的是排队模型,它包括三个部分:输入流、排队规则和服务机构。

(5)使用模型对系统进行评价需要解决3个问题:设计模型、解模型、校准和证实模型。

接口技术

1. Flash存储器

(1)Flash存储器是一种非易失性存储器,根据结构的不同可以将其分为NOR Flash和NAND Flash两种。

(2)Flash存储器的特点:

A、区块结构:在物理上分成若干个区块,区块之间相互独立。

B、先擦后写:Flash的写操作只能将数据位从1写成0,不能从0写成1,所以在对存储器进行写入之前必须先执行擦除操作,将预写入的数据位初始化为1。擦除操作的最小单位是一个区块,而不是单个字节。

C、操作指令:执行写操作,它必须输入一串特殊指令(NOR Flash)或者完成一段时序(NAND Flash)才能将数据写入。

D、位反转:由于Flash的固有特性,在读写过程中偶尔会产生一位或几位的数据错误。位反转无法避免,只能通过其他手段对结果进行事后处理。

E、坏块:区块一旦损坏,将无法进行修复。对已损坏的区块操作其结果不可预测。

(3)NOR Flash的特点:

应用程序可以直接在闪存内运行,不需要再把代码读到系统RAM中运行。NOR Flash的传输效率很高,在1MB~4MB的小容量时具有很高的成本效益,但是很低的写入和擦除速度大大影响了它的性能。

(4)NAND Flash的特点

能够提高极高的密度单元,可以达到高存储密度,并且写入和擦除的速度也很快,这也是为何所有的U盘都使用NAND Flash作为存储介质的原因。应用NAND Flash的困难在于闪存需要特殊的系统接口。

(5)NOR Flash与NAND Flash的区别:

A、NOR Flash的读速度比NAND Flash稍快一些。

B、NAND Flash的擦除和写入速度比NOR Flash快很多

C、NAND Flash的随机读取能力差,适合大量数据的连续读取。

D、NOR Flash带有SRAM接口,有足够的地址引进来寻址,可以很容易地存取其内部的每一个字节。NAND Flash的地址、数据和命令共用8位总线(有写公司的产品使用16位),每次读写都要使用复杂的I/O接口串行地存取数据。

E、NOR Flash的容量一般较小,通常在1MB~8MB之间;NAND Flash只用在8MB以上的产品中。因此,NOR Flash只要应用在代码存储介质中,NAND Flash适用于资料存储。

F、NAND Flash中每个块的最大擦写次数是一百万次,而NOR Flash是十万次。

G、NOR Flash可以像其他内存那样连接,非常直接地使用,并可以在上面直接运行代码;NAND Flash需要特殊的I/O接口,在使用的时候,必须先写入驱动程序,才能继续执行其他操作。因为设计师绝不能向坏块写入,这就意味着在NAND Flash上自始至终必须进行虚拟映像。

H、NOR Flash用于对数据可靠性要求较高的代码存储、通信产品、网络处理等领域,被成为代码闪存;NAND Flash则用于对存储容量要求较高的MP3、存储卡、U盘等领域,被成为数据闪存。

2、RAM存储器

(1)SRAM的特点:

SRAM表示静态随机存取存储器,只要供电它就会保持一个值,它没有刷新周期,由触发器构成基本单元,集成度低,每个SRAM存储单元由6个晶体管组成,因此其成本较高。它具有较高速率,常用于高速缓冲存储器。

通常SRAM有4种引脚:

CE:片选信号,低电平有效。

R/W:读写控制信号。

ADDRESS:一组地址线。

DATA:用于数据传输的一组双向信号线。

(2)DRAM的特点:

DRAM表示动态随机存取存储器。这是一种以电荷形式进行存储的半导体存储器。它的每个存储单元由一个晶体管和一个电容器组成,数据存储在电容器中。电容器会由于漏电而导致电荷丢失,因而DRAM器件是不稳定的。它必须有规律地进行刷新,从而将数据保存在存储器中。

DRAM的接口比较复杂,通常有一下引脚:

CE:片选信号,低电平有效。

R/W:读写控制信号。

RAS:行地址选通信号,通常接地址的高位部分。

CAS:列地址选通信号,通常接地址的低位部分。

ADDRESS:一组地址线。

DATA:用于数据传输的一组双向信号线。

(3)SDRAM的特点:

SDRAM表示同步动态随机存取存储器。同步是指内存工作需要同步时钟,内部的命令发送与数据的传输都以它为基准;动态是指存储器阵列需要不断的刷新来保证数据不丢失。它通常只能工作在133MHz的主频。

(4)DDRAM的特点

DDRAM表示双倍速率同步动态随机存取存储器,也称DDR。DDRAM是基于SDRAM技术的,SDRAM在一个时钟周期内只传输一次数据,它是在时钟的上升期进行数据传输;而DDR内存则是一个时钟周期内传输两次次数据,它能够在时钟的上升期和下降期各传输一次数据。在133MHz的主频下,DDR内存带宽可以达到133×64b/8×2=2.1GB/s。

3、硬盘、光盘、CF卡、SD卡

4、GPIO原理与结构

GPIO是I/O的最基本形式,它是一组输入引脚或输出引脚。有些GPIO引脚能够加以编程改变工作方向,通常有两个控制寄存器:数据寄存器和数据方向寄存器。数据方向寄存器设置端口的方向。如果将引脚设置为输出,那么数据寄存器将控制着该引脚状态。若将引脚设置为输入,则此输入引脚的状态由引脚上的逻辑电路层来实现对它的控制。

5、A/D接口

(1)A/D转换器是把电模拟量转换为数字量的电路。实现A/D转换的方法有很多,常用的方法有计数法、双积分法和逐次逼进法。

(2)计数式A/D转换法

其电路主要部件包括:比较器、计数器、D/A转换器和标准电压源。

其工作原理简单来说就是,有一个计数器,从0开始进行加1计数,每进行一次加1,该数值作为D/A转换器的输入,其产生一个比较电压VO与输入模拟电压VIN进行比较。如果VO小于VIN则继续进行加1计数,直到VO大于VIN,这时计数器的累加数值就是A/D转换器的输出值。

这种转换方式的特点是简单,但是速度比较慢,特别是模拟电压较高时,转换速度更慢。例如对于一个8位A/D转换器,若输入模拟量为最大值,计数器要从0开始计数到255,做255次D/A转换和电压比较的工作,才能完成转换。

(3)双积分式A/D转换法

其电路主要部件包括:积分器、比较器、计数器和标准电压源。

其工作原理是,首先电路对输入待测电压进行固定时间的积分,然后换为标准电压进行固定斜率的反向积分,反向积分进行到一定时间,便返回起始值。由于使用固定斜率,对标准电压进行反向积分的时间正比于输入模拟电压值,输入模拟电压越大,反向积分回到起始值的时间越长。只要用标准的高频时钟脉冲测定反向积分花费的时间,就可以得到相应于输入模拟电压的数字量,也就完成了A/D转换。

其特点是,具有很强的抗工频干扰能力,转换精度高,但转换速度慢,通常转换频率小于10Hz,主要用于数字式测试仪表、温度测量等方面。

(4)逐次逼近式A/D转换法

其电路主要部件包括:比较器、D/A转换器、逐次逼近寄存器和基准电压源。

其工作原理是,实质上就是对分搜索法,和平时天平的使用原理一样。在进行A/D转换时,由D/A转换器从高位到低位逐位增加转换位数,产生不同的输出电压,把输入电压与输出电压进行比较而实现。首先使最高位为1,这相当于取出基准电压的1/2与输入电压比较,如果在输入电压小于1/2的基准电压,则最高位置0,反之置1。之后,次高位置1,相当于在1/2的范围中再作对分搜索,以此类推,逐次逼近。

其特点是,速度快,转换精度高,对N位A/D转换器只需要M个时钟脉冲即可完成,一般可用于测量几十到几百微秒的过渡过程的变化,是目前应用最普遍的转换方法。

(5)A/D转换的重要指标(有可能考一些简单的计算)

A、分辨率:反映A/D转换器对输入微小变化响应的能力,通常用数字输出最低位(LSB)所对应的模拟电压的电平值表示。n位A/D转换器能反映1/2n满量程的模拟输入电平。

B、量程:所能转换的模拟输入电压范围,分为单极性和双极性两种类型。

C、转换时间:完成一次A/D转换所需要的时间,其倒数为转换速率。

D、精度:精度与分辨率是两个不同的概念,即使分辨率很高,也可能由于温漂、线性度等原因使其精度不够高。精度有绝对精度和相对精度两种表示方法。通常用数字量的最低有效位LSB的分数值来表示绝对精度,用其模拟电压满量程的百分比来表示相对精度。

例如,满量程10V,10位A/D芯片,若其绝对精度为±1/2LSB,则其最小有效位LSB的量化单位为:10/1024=9.77mv,其绝对精度为9.77mv/2=4.88mv,相对精度为:0.048%。

6、D/A接口基本

(1)D/A转换器使将数字量转换为模拟量。

(2)在集成电路中,通常采用T型网络实现将数字量转换为模拟电流,再由运算放大器将模拟电路转换为模拟电压。进行D/A转换实际上需要上面的两个环节。

(3)D/A转换器的分类:

A、电压输出型:常作为高速D/A转换器。

B、电流输出型:一般外接运算放大器使用。

C、乘算型:可用作调制器和使输入信号数字化地衰减。

(4)D/A转换器的主要指标:分辨率、建立时间、线性度、转换精度、温度系数。

7、键盘接口

(1)键盘的两种形式:线性键盘和矩阵键盘。

(2)识别键盘上的闭合键通常有两种方法:行扫描法和行反转法。

(3)行扫描法是矩阵键盘按键常用的识别方法,此方法分为两步进行:

A、识别键盘哪一列的键被按下:让所有行线均为低电平,查询各列线电平是否为低,如果有列线为低,则说明该列有按键被按下,否则说明无按键按下。

B、如果某列有按键按下,识别键盘是哪一行按下:逐行置低电平,并置其余各行为高电平,查询各列的变化,如果列电平变为低电平,则可确定此行此列交叉点处按键被按下。

8、显示接口

(1)LCD的基本原理是,通过给不同的液晶单元供电,控制其光线的通过与否,从而达到显示的目的。

(2)LCD的光源提供方式有两种:投射式和反射式。笔记本电脑的LCD显示器为投射式,屏的背后有一个光源,因此外界环境可以不需要光源。一般微控制器上使用的LCD为反射式,需要外界提供电源,靠反射光来工作。电致发光(EL)是液晶屏提供光源的一种方式。

(3)按照液晶驱动方式分类,常见的LCD可以分为三类:扭转向列类(TN)、超扭曲向列型(STN)和薄膜晶体管型(TFT)。

(4)市面上出售的LCD有两种类型:带有驱动电路的LCD显示模块,只要总线方式驱动;没有驱动电路的LCD显示器,使用控制器扫描方式。

(5)通常,LCD控制器工作的时候,通过DMA请求总线,直接通过SDRAM控制器读取SDRAM中指定地址(显示缓冲区)的数据,此数据经过LCD控制器转换成液晶屏扫描数据格式,直接驱动液晶显示器。

(6)VGA接口本质上是一个模拟接口,一般都采用统一的15引脚接口,包括2个NC信号、3根显示器数据总线、5个GND信号、3个RGB色彩分量、1个行同步信号和1个场同步信号。其色彩分量采用的电平标准为EIA定义的RS343标准。

9、触摸屏接口

(1)按工作原理分,触摸屏可以分为:表面声波屏、电容屏、电阻屏和红外屏几种。

(2)触摸屏的控制采用专业芯片,例如ADS7843。

10、音频接口
(1)基本原理:麦克风输入的数据经音频编解码器解码完成A/D转换,解码后的音频数据通过音频控制器送入DSP或CPU进行相应的处理,然后数据经音频控制器发送给音频编码器,经编码D/A转换后由扬声器输出。

(2)数字音频的格式有多种,最常用的是下面三种:

A、采用数字音频(PCM):是CD或DVD采用的数据格式。其采样频率为44.1kHz。精度为16位时,PCM音频数据速率为1.41Mb/s;精度为32位时为2.42 Mb/s。一张700MB的CD可以保存大约60分钟的16位PCM数据格式的音乐。

B、MPEG层3音频(MP3):MP3播放器采用的音频格式。立体声MP3数据速率为112kb/s至128kb/s。

C、ATSC数字音频压缩标准(AC3):数字TV、HDTV和电影数字音频编码标准,立体声AC3编码后的数据速率为192kb/s。

(3)IIS是音频数据的编码或解码常用的串行音频数字接口。IIS总线只处理声音数据,其他控制信号等则需要单独传输。IIS使用了3根串行总线:数据线SD、字段选择线WS、时钟信号线SCK。

(4)当接收方和发送方的数据字段宽度不一样时,发送方不考虑接收方的数据字段宽度。如果发送方发送的数据字段小于系统字段宽度,就在低位补0;如果发送方的数据宽度大于接收方的宽度,则超过LSB的部分被截断。字段选择WS用来选择左右声道,WS=0表示选择左声道;WS=1表示选择右声道。此外,WS能让接收设备存储前一个字节,并准备接收下一个字节。

11、串行接口

(1)串行通信是指,使数据一位一位地进行传输而实现的通信。与并行通信相比,串行通信具有传输线少、成本低等优点,特别适合远距离传送;缺点使速度慢。

(2)串行数据传送有3种基本的通信模式:单工、半双工、全双工。

(3)串行通信在信息格式上可以分为2种方式:同步通信和异步通信。

A、异步传输:把每个字符当作独立的信息来传输,并按照一固定且预定的时序传送,但在字符之间却取决于字符与字符的任意时序。异步通信时,字符是一帧一帧传送的,每帧字符的传送靠起始位来同步。一帧数据的各个代码间间隔是固定的,而相邻两帧数据其时间间隔是不固定的。

B、同步传输:同步方式不仅在字符之间是同步的,而且在字符与字符之间的时序仍然是同步的,即同步方式是将许多字符******成一字符块后,在每块信息之前要加上1~2个同步字符,字符块之后再加入适当的错误检测数据才传送出去。

(4)异步通信必须遵循3项规定:

A、字符格式:起始位+数据+校验位+停止位(检验位可无),低位先传送。

B、波特率:每秒传送的位数。

C、校验位:奇偶检验。

a、奇校验:要使字符加上校验位有奇数个“1”。

b、偶检验:要使字符加上校验位有偶数个“1”。

(5)RS-232C的电气特性:负逻辑。

A、在TxD和RxD上:逻辑1为-3V~-15V,逻辑0为3V~15V。

B、在TES、CTS、DTR、DCD等控制线上:

信号有效(ON状态)为3V~15V

信号无效(OFF状态)为-3V~-15V

(6)TTL标准与RS-232C标准之间的电平转换利用集成芯片RS232实现。

(7)RS-422串行通信接口

A、RS-422是一种单机发送、多机接收的单向、平衡传输规范,传输速率可达10Mb/s。

B、RS-422采用差分传输方式,也称做平衡传输,使用一对双绞线。

C、RS-422需要一终端电阻,要求其阻值约等于传输电缆的特性阻抗。

(8)RS-485串行总线接口

A、RS-485是在RS-422的基础上建立的标准,增加了多点、双向通信能力,通信距离可为几十米到上千米。

B、RS-485收发器采用平衡发送和差分接收,具有抑制共模干扰的能力。

C、RS-485需要两个终端电阻。在近距离(300m一下)传输可不需要终端电阻。

12、并行接口

(1)并行接口的数据传输率比串行接口快8倍,标准并行接口的数据传输率为1Mb/s,一般用来连接打印机、扫描仪等,所以又称打印口。

(2)并行接口可以分为SPP(标准并口)、EPP(增强型并口)和ECP(扩展型并口)。

(3)并行总线分为标准和非标准两类。常用的并行标准总线有IEEE 488总线和ANSI SCSI总线。MXI总线是一种高性能非标准的通用多用户并行总线。

13、PCI接口

(1)PCI总线是地址、数据多路复用的高性能32位和64位总线,是微处理器与外围控制部件、外围附加板之间的互连机构。

(2)从数据宽度上看,PCI定义了32位数据总线,且可扩展为64位。从总线速度上分,有33MHz和66MHz两种。

(3)与ISA总线相比,PCI总线的地址总线与数据总线分时复用,支持即插即用、中断共享等功能。

14、USB接口

(1)USB总线的主要特点:

A、使用简单,即插即用。

B、每个USB系统中都有主机,这个USB网络中最多可以连接127个设备。

C、应用范围广,支持多个设备同时操作。

D、低成本的电缆和连接器,使用统一的4引脚插头。

E、较强的纠错能力。

F、较低的协议开销带来了高的总线性能,且适合于低成本外设的开发。

G、支持主机与设备之间的多数据流和多消息流传输,且支持同步和异步传输类型。

H、总线供电,能为设备提供5V/100mA的供电。

(2)USB系统由3部分来描述:USB主机、USB设备和USB互连。

(3)USB总线支持的数据传输率有3种:高速信令位传输率为480Mb/s;全速信令位传输率为12Mb/s;全速信令位传输率为1.5Mb/s。

(4)USB总线电缆有4根线:一对双绞信号线和一对电源线。

(5)USB是一种查询总线,由主控制器启动所有的数据传输。USB上所挂接的外设通过由主机调度的、基于令牌的协议来共享USB带宽。

(6)大部分总线事务涉及3个包的传输:

A、令牌包:指示总线上要执行什么事务,欲寻址的USB设备及数据传送方向。

B、数据包:传输数据或指示它没有数据要传输。

C、握手包:指示传输是否成功。

(7)主机与设备端点之间的USB数据传输模型被称作管道。管道有两种类型:流和消息。消息数据具有USB定义的结构,而数据流没有。

(8)事务调度表允许对某些流管道进行流量控制,在硬件级,通过使用NAK(否认)握手信号来调节数据传输率,以防止缓冲区上溢或下溢产生。

(9)USB设备最大的特点是即插即用。

(10)工作原理:USB设备插入USB端点时,主机都通过默认地址0与设备的端点0进行通信。在这个过程中,主机发出一系列试图得到描述符的标准请求,通过这些请求,主机得到所有感兴趣的设备信息,从而知道了设备的情况以及该如何与设备通信。随后主机通过发出Set Address请求为设备设置一个唯一的地址。以后主机就通过为设备设置好的地址与设备通信,而不再使用默认地址0。

15、SPI接口

(1)SPI是一个同步协议接口,所有的传输都参照一个共同的时钟,这个同步时钟有主机产生,接收数据的外设使用时钟来对串行比特流的接收进行同步化。

(2)在多个设备连接到主机的同一个SPI接口时,主机通过从设备的片选引脚来选择。

(3)SPI主要使用4个信号:主机输出/从机输入(MOSI),主机输入/从机输出(MISO)、串行时钟SCLK和外设片选CS。

(4)主机和外设都包含一个串行移位寄存器,主机通过向它的SPI串行寄存器写入一个字节来发起一次数据传输。寄存器通过MOSI信号线将字节传送给外设,外设也将自己移位寄存器中的内容通过MISO信号线返回给主机,这样,两个移位寄存器中的内容就被交换了。

(5)外设的写操作和读操作时同步完成的,因此SPI成为一个很有效的协议。

(6)如果只是进行写操作,主机只需忽略收到的字节;反过来,如果主机要读取外设的一个字节,就必须发送一个空字节来引发从机的传输。

16、IIC接口

(1)IIC总线是具备总线仲裁和高低速设备同步等功能的高性能多主机总线。

(2)IIC总线上需要两条线:串行数据线SDA和串行时钟线SCL。

(3)总线上的每个器件都有唯一的地址以供识别,而且各器件都可以作为一个发送器或者接收器(由器件的功能决定)。

(4)IIC总线有4种操作模式:主发送、主接收、从发送、从接收。

(5)IIC在传送数据过程******有3种类型信号:

A、开始信号:SCL为低电平时,SDA由高向低跳变。

B、结束信号:SCL为低电平时,SDA由低向高跳变。

C、应答信号:接收方在收到8位数据后,在第9个脉冲向发送方发出特点的低电平。

(6)主器件发送一个开始信号后,它还会立即送出一个从地址,来通知将与它进行数据通信的从器件。1个字节的地址包括7位地址信息和1位传输方向指示位,如果第7位为0,表示要进行一个写操作,如果为1,表示要进行一个读操作。

(7)SDA线上传输的每个字节长度都是8位,每次传输种字节的数量没有限制的。在开始信号后面的第一个字节是地址域,之后每个传输字节后面都有一个应答位(ACK),传输中串行数据的MSB(字节高位)首先发送。

(8)如果数据接收方无法再接收更多的数据,它可以通过将SCL保持低电平来中断传输,这样可以迫使数据发送方等待,直到SCL被重新释放。这样可以达到高低速设备同步。

(9)IIC总线的工作过程:SDA和SCL都是双向的。空闲的时候,SDA和SCL都是高电平,只有SDA变为低电平,接着SCL再变为低电平,IIC总线的数据传输才开始。SDA线上被传输的每一位在SCL的上升沿被采样,该位必须一直保持有效到SCL再次变为低电平,然后SDA就在SCL再次变为高电平之前传输下一个位。最后,SCL变回高电平,接着SDA也变为高电平,表示数据传输结束。

17、以太网接口

(1)最常用的以太网协议是IEEE802.3标准。

(2)传输编码(06和07年都有******):曼彻斯特编码和差分曼彻斯特编码。

A、曼彻斯特编码:每位中间有一个电平跳变,从高到底的跳变表示“0”,从低到高的跳变表示为“1”。

B、差分曼彻斯特编码:每位中间有一个电平跳变,利用每个码元开始时有无跳变来表示“0”或“1”,有跳变为“0”,无跳变为“1”。

(3)相比之下,曼彻斯特编码编码简单,差分曼彻斯特编码提供更好的噪声抑制性能。

(4)以太网数据传输特点:

A、所有数据位的传输由低位开始,传输的位流时用曼彻斯特编码。

B、以太网是基于冲突检测的总线复用方法,由硬件自动执行。

C、传输的数据长度,目的地址DA+源地址SA+类型字段TYPE+数据段DATA+填充位PAD,最小为60B,最大为1514B。

D、通常以太网卡可以接收3种地址的数据:广播地址、多播地址、自己的地址。

E、任何两个网卡的物理地址都不一样,是世界上唯一的,网卡地址由专门机构分配。

(5)嵌入式以太网接口有两种实现方法:

A、嵌入式处理器+网卡芯片(例如:RTL8019AS、CS8900等)

B、带有以太网接口的处理器。

(6)TCP/IP是一个分层协议,分为:物理层、数据链路层、网络层、传输层和应用层。每层实现一个明确的功能,对应一个或几个传输协议,每层相对于它的下层都作为一个独立的数据包来实现。每层上的协议如下:

A、应用层:BSD套接字。

B、传输层:TCP、UDP。

C、网络层:IP、ARP、ICMP、IGMP

D、数据链路层:IEEE802.3 Ethernet MAC

E、物理层:二进制比特流。

(7)ARP(地址解析协议)

A、网络层用32位的地址来标识不同的主机(即IP地址),而链路层使用48位的物理地址(MAC)来标识不同的以太网或令牌网接口。

B、ARP功能:实现从IP地址到对应物理地址的转换。

(8)ICMP(网络控制报文协议)

A、IP层用它来与其他主机或路由器交换错误报文和其他重要控制信息。

B、ICMP报文是在IP数据包内被传输的。

C、网络诊断工具ping和traceroute其实就是ICMP协议。

(9)IP(网际协议)

A、IP工作在网络层,是TCP/IP协议族中最为核心的协议。

B、所有的TCP、UDP、ICMP及IGMP数据都以IP数据包格式传输。

C、TTL(生存时间字段):指定了IP数据包的生存时间(数据包可以经过的路由器数)。

D、IP提供不可靠、无连接的数据包传送服务,高效、灵活。

a、不可靠:它不能保证数据包能成功到达目的地,任何要求的可靠性必须由上层来提供(如TCP)。如果发生某种错误,IP有一个简单的错误处理算法--丢弃该数据包,然后发送ICMP消息报给信源端。

b、无连接:IP不维护任何关于后续数据包的状态信息。每个数据包的处理都是相互独立的。IP数据包可以不按顺序接收,

(10)TCP(传输控制协议)

TCP协议是一个面向连接的可靠的传输层协议,它为两台主机提供高可靠性的端到端数据通信。

(11)UDP(用户数据包协议)

UDP协议是一种无连接不可靠的传输层协议,它不保证数据包能到达目的地,可靠性有应用层来提供。UDP协议开销少,和TCP相比更适合于应用在低端的嵌入式领域中。

(12)端口:TCP和UDP采用16位端口号来识别上层的用户,即应用层协议,例如FTP服务的TCP端口号都是21,Telnet服务的TCP端口号都是23,TFTP服务的UDP端口号都是69。

18、CAN总线接口

(1)CAN(Control Area Network,控制器局域网)总线是一种多主方式的串行通信总线,是国际上应用最广泛的现场总线之一,最初被用于汽车环境中的电子控制网络。一个CAN总线构成的单一网络中,理想情况下可以挂接任意多个节点,实际应用中节点数据受网络硬件的电气特性所限制。

(2)总线信号使用差分电压传送。两条信号线被称为CAN_H和CAN_L,静态是均为2.5V左右,此时状态表示逻辑1,也可以叫做“隐性”。用CAN_H比CAN_L高表示逻辑0,称为“显性”,此时,通常电压值为CAN_H=3.5V和CAN_L=1.5V。

(3)当“显性”和“隐性”位同时发送的时候,最后总线数值将为“显性”这种特性为CAN总线的仲裁奠定了基础。

(4)CAN总线的一个位时间可以分成4个部分:同步段、传播时间段、相位缓冲段1和相位缓冲段2。

(5)CAN总线的数据帧有两种格式:标准格式和扩展格式。包括:帧起始、仲裁场、控制场、数据场、CRC场、ACK场和帧结束。

(6)CAN总线硬件接口包括:CAN总线控制器和CAN收发器。CAN控制器主要完成时序逻辑转换等工作,例如菲利普的SJA1000。CAN收发器是CAN总线的物理层芯片,实现TTL电平到CAN总线电平特性的转换,例如TJA1050。

19、xDSL接口

(1)xDSL(数字用户线路)技术是,在现有用户电话线两侧同时接入专用的DSL调制解调设备,在用户线上利用数字数字信号高频带宽较宽的特性直接采用数字信号传输,省去中间的A/D转换,突破了模拟信号传输极限速率为56KB/s的闲置。

(2)DSL技术主要分为对称和非对称两大类。

(3)对成xDSL更适合于企业点对点连接应用,例如文件传输、视频会议等收发数据量大致相同的工作。

(4)ASDL是近年发展的另一种宽带接入技术,是利用双绞铜线向用户提供两个方向上速率不对称的宽带信息业务。

(5)ADSL在一对电话线上同时传送一路高速下行数据、一路较低速率上行数据、一路模拟电话。各信号之间采用频分复用方式占用不同频带,低频段传送话音;中间窄频带传送上行信道数据及控制信息;其余高频段传送下行信道数据、图像或高速数据。

20、WLAN接口

(1)WLAN(Wireless Local Area Network)是利用无线通信技术在一定的局部范围内建立的,是计算机网络与无线通信技术相结合的产物,它以无线多址通道作为传输媒介,提供有线局域网的功能。

(2)WLAN的标准:主要是针对物理层和媒质访问控制层(MAC层),涉及到所有使用的无线频率范围、控制接口通信协议等技术规范与技术标准。

A、IEEE 802.11:定义了物理层和MAC层规范,工作在2.4~2.4835GHz频段,最高速率为2Mb/s,是IEEE最初制定的一个无线局域网标准。

B、IEEE 802.11b:工作在2.4~2.4835GHz频段,最高速率为11Mb/s,传输距离50~150inch。采用点对点模式和基本模式两种运行模式。在数据传输速率方面可以根据实际情况在11Mb/s、5.5Mb/s、2 Mb/s、1 Mb/s的不同速率间自动切换。

C、IEEE 802.11a:工作在5.15~8.825GHz频段,最高速率为54Mb/s/72Mb/s,传输距离10~100m。

D、IEEE 802.11g:混合标准,拥有EEE 802.11a的传输速率,安全性较EEE 802.11b好,采用两种调制方式,做到与EEE 802.11a和EEE 802.11b兼容。

(3)WLAN有两种网络类型:对等网络和基础机构网络。

21、蓝牙接口

(1)蓝牙技术的目的:使特定的移动电话、便鞋式电脑以及各种便携通信设备的主机之间近距离内实现无缝的资源共享。

(2)蓝牙技术的实质内容是要建立通用的无线空中接口及其控制软件的公开标准。其工作频段为全球通用的2.4GHz ISM(即工业、科学、医学)频段,其数据传输速率为1Mb/s,采用时分双工方案来实现全双工传输,其理想的连接范围为10cm~10m。

(3)蓝牙基带协议是电路交换和分组交换的结合。

(4)蓝牙技术特点:

A、传输距离短,工作距离在10m以内。

B、采用跳频扩频技术。

C、采用时分复用多路访问技术,有效地避免了“碰撞”和“隐藏终端”等问题。

D、网络技术。

E、语言支持。

F、纠错技术,其采用的是FEC(前向纠错)方案。

(5)蓝牙接口由3大单元组成:无线单元、基带单元、链路管理与控制单元。

22、1394接口

(1)1394作为一种标准总线,可以在不同的工业设备之间架起一座沟通的桥梁,在一条总线上可以接入63个设备。

(2)IEEE 1394的特点:

A、支持多种总线速度,适应不同应用要求。

B、即插即用,支持热插拔。

C、支持同步和异步两种传输方式。

D、支持点到点通信模式,IEEE 1394是多主总线。

E、遵循ANSI IEEE 1212控制及状态寄存器(CSR)标准,定义了64位的地址空间,可寻址1024条总线的63个节点,每个节点可包含256TB的内存空间。

F、支持较远距离的传输。

G、支持公平仲裁原则,为每一种传输方式保证足够的传输带宽。

H、六线电缆具有电源线,可传输8~40V的直流电压。

(3)IEEE 1394的协议栈由3层组成:物理层、链路层和事务层,例外还有一个管理层。物理层和链路层由硬件构成,而事务层主要由软件实现。

A、物理层提供IEEE 1394的电气和机械接口,功能是重组字节流并将它们发送到目的节点上去。

B、链路层提供了给事务层确认的数据服务,包括:寻址、数据组帧和数据校验。

C、事务层为应用提供服务。

D、管理层定义了一个管理节点所使用的所有协议、服务以及进程。

23、电源接口

(1)DC-DC转换器有三种类型:

A、线性稳压器:产生较输入电压低的电压。

B、开关稳压器:能升高电压、降低电压或翻转输入电压。

C、充电泵:可以升高、降低或翻转输入电压,但电流驱动能力有限。

(2)任何变压器的转换过程都不具有100%的效率,稳压器本省也使用电流(静态电流),这个电流来自输入电流。静态电流越大,稳压器功耗越大。

(3)线性稳压器输入输出使用退耦电容来过滤,电容除了有助于平稳电压以外,还有利于去除电源中的瞬间短时脉冲波形干扰。

(4)电压与功耗之间的平方关系意味着理想高效的方法是在要求较低电压的较低时钟速率上执行代码,而不是先以最高的时钟速率执行代码然后再转为空闲休眠。

(5)电源通常被认为是整个系统的“心脏”,绝大多数电子设备50%~80%的节能潜力在于电源系统,研制开发新型开关电源是节能的主要举措之一。

(6)降低功耗的设计技术:

A、采用低功耗器件,例如选用CMOS电路芯片。

B、采用高集成度专用器件,外部设备的选择也要尽量支持低功耗设计。

C、动态调整处理器的时钟频率和电压,在允许的情况下尽量使用低频率器件。

D、利用“节电”工作方式。

E、合理处理器件空余引脚:

a、大多数数字电路的输出端在输出低电平时,其功耗远远大于输出高电平时的功耗,设计时应该注意控制低电平的输出时间,闲置时使其处于高电平输出状态。

b、多余的非门、与非门的输入端应接低电平,多余的与门、或门的输入端应接高电平。

c、ROM或RAM及其他有片选信号的器件,不要将“片选”引脚直接接地,避免器件长期被接通,而应该与“读/写”信号结合,只对其进行读写操作时才选通。

F、实现电源管理,设计外部器件电源控制电路,控制“耗电大户”的供电情况。

文章来源:互联网(版权归原著作者所有)

围观 250

页面

订阅 RSS - 嵌入式