瑞萨电子RA8搭载强大的Arm CM85核 为边缘AI应用提供支持(上)

cathy的头像
cathy 发布于:周三, 03/20/2024 - 14:12 ,关键词:

随着物联网的爆炸式增长,设备通过无处不在的有线和无线连接相互连接和通信。这种超连接性允许收集大量数据,然后将这些数据进行收集、分析从而做出明智的决策。从数据中获取见解并根据这些见解做出自主决策的能力是人工智能(AI)的本质。人工智能(AI)和物联网(IoT)或人工智能物联网(AIoT)的结合,可以创建“智能”设备,这些设备可以从数据中学习并在没有人为干预的情况下做出决策。

在边缘设备上构建智能的趋势有以下几个驱动因素:

  • 边缘决策可减少与云连接相关的延迟和成本,并使实时操作成为可能

  • 云带宽不足导致计算和决策需要边缘设备

  • 安全性是一个关键的考虑因素 - 对数据隐私和机密性的要求推动了在设备本身上处理和存储数据的需求

因此,边缘人工智能具有自主性、更低延迟、更低功耗、更低带宽要求、更低成本和更高安全性等优势,所有这些都使其对新兴应用和用例更具吸引力。

AIoT为MCU开辟了新的市场,使越来越多的新应用和用例成为可能,这些应用和用例可以使用MCU与某种形式的AI加速相结合,以促进边缘和端点设备的智能控制。这些支持AI的MCU为计算和机器学习(ML)提供了独特的DSP功能,并用于关键字识别、传感器融合和振动分析等各种应用。更高性能的MCU可实现更复杂的视觉和成像领域的应用,如人脸识别、指纹分析和物体检测。

神经网络用于AI/ML应用,例如图像分类、人员检测和语音识别。这些是用于实现机器学习算法的基本构建块,并广泛使用线性代数运算,例如用于推理处理、网络训练和权重更新的点积和矩阵乘法。正如您可能想象的那样,将AI构建到边缘产品中需要处理器具有强大的计算能力。这些新兴AI应用的设计人员需要满足对更高性能、更大内存和更低功耗的需求,同时保持低成本。在过去的日子里,这是GPU和MPU的职权范围,它们具有强大的CPU内核、大内存资源和用于分析的云连接。最近,可以使用AI加速器从主CPU卸载此任务。其他边缘计算应用(如音频或图像处理)需要支持快速乘法累加运算。通常,设计人员选择在系统中添加DSP来处理信号处理和计算任务。所有这些选项都提供了所需的高性能,但会大大增加系统成本,并且往往更耗电,因此不适合低功耗和低成本的端点设备。

MCU如何填补这一空白?

更高性能MCU的出现使得低成本、低功耗的边缘AIoT成为现实。AIoT是通过最新MCU更高的计算能力以及更适合这些终端设备中使用的资源受限MCU的轻量级神经网络模型来实现的。与MPU或DSP相比,基于MCU的物联网设备上的AI可实现实时决策和更快的事件响应,并且还具有更低的带宽要求、更低的功耗、更低的延迟、更低的成本和更高的安全性等优势。MCU还提供更快的唤醒时间,从而实现更快的推理时间和更低的功耗,以及与存储器和外设的更高集成度,以帮助降低成本敏感型应用的整体系统成本。

基于Cortex-M4/M33的MCU可以满足更简单的AI用例的需求,例如性能需求较低的关键字识别和预测性维护任务。然而,当涉及到更复杂的用例时,如视觉AI(目标检测、姿态估计、图像分类)或语音AI(语音识别、NLP),需要更强大的处理器。较旧的Cortex-M7内核可以处理其中一些任务,但推理性能较低,通常仅在2-4 fps范围内。

我们需要的是具有AI加速功能的更高性能微控制器。

RA8系列高性能AI MCU简介

全新RA8系列MCU采用基于Arm v8.1M架构的Arm Cortex-M85内核和7级超标量流水线,可提供计算密集型神经网络处理或信号处理任务所需的额外加速。

Cortex-M85是性能最高的Cortex-M内核,配备Helium™,即Arm v8.1M架构中引入的Arm M -Profile矢量扩展(MVE)。Helium是一种单指令多数据(SIMD)向量处理指令集扩展,它可以通过使用单个指令处理多个数据元素来提升性能,例如在多个数据上重复乘法累加。与较旧的Cortex-M7内核相比,Helium显著加速了资源受限的MCU器件中的信号处理和机器学习能力,并在ML任务中实现了前所未有的4倍加速,在DSP任务中实现了前所未有的3倍加速。RA8 MCU具有大容量内存、高级安全性以及丰富的外设和外部接口,非常适合语音和视觉AI应用,以及需要信号处理支持的计算密集型应用,例如音频处理、JPEG解码和电机控制。

有关瑞萨RA MCU的更多信息请访问:

RA MCU

https://www.renesas.cn/cn/zh/products/microcontrollers-microprocessors/ra-cortex-m-mcus 

您可识别下方二维码或复制网址到浏览器中打开进入瑞萨技术论坛:

https://community-ja.renesas.com/zh/forums-groups/mcu-mpu/ 

来源:瑞萨嵌入式小百科

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 28