MCU

MCU是Microcontroller Unit(微控制器单元)的缩写,它是一种集成了中央处理器(CPU)、存储器(ROM、RAM)、输入/输出端口(I/O)、定时器(Timer)、串行通信接口(UART、SPI、I2C等)和其他外围设备控制器的单个芯片。MCU通常用于嵌入式系统中,用于控制各种电子设备和系统。

由于其集成度高、体积小、功耗低以及成本相对较低等特点,MCU被广泛应用于各种嵌入式系统中,例如智能家居设备、医疗设备、汽车电子系统、工业自动化等。MCU的选择通常基于应用的需求,如处理性能、功耗、外设接口等因素。

该如何对8位以及32位的MCU进行选择?8位和32位MCU在功能上仍是互为辅助、各有千秋,这其中的诀窍就在于,需先了解什么样的应用适合什么样的MCU架构。

本文对比了8位MCU和32位MCU的使用案例,也可作为如何选择这两种MCU架构的指南使用。本文中大部分32位MCU的范例将关注ARM Cortex-M,Cortex-M在不同MCU供应商产品组合中表现得非常相似。鉴于8位MCU有很多种架构,所以很难对8位供应商产品进行类似的比较。为了便于进行比较,我们将使用广泛应用、易于理解的8051 架构,该架构深受嵌入式开发人员的青睐。

8位和32位MCU该如何选择?

事实上,ARM Cortex和8051哪个更好并不是个逻辑问题,就像是在问:吉他和钢琴哪个更好?真正要解决的问题应是哪种MCU能帮我更好地解决当下面临的问题。不同的任务需要使用不同的工具,我们的目的是要了解「如何才能更好地运用我们所拥有的工具」,包括8位和32位MCU。几乎可以肯定地说,那些简单回答「ARM更好」或「8051更好」的人各有其目的,他们也许正在试图销售某种产品。

对不同的设备进行比较,需要对其进行测量。有很多构建工具可供选择,我们尽量选择一些场景,我认为其能够进行最公平的比较,且最能代表开发人员的真实体验。

并非所有的MCU都是一样的

在开始对架构进行比较之前,要注意到并非所有生产的MCU都是一样的,这一点非常重要。如果将基于ARM CortexM0+处理器的现代MCU与30年前的8051 MCU进行对比,8051 MCU在性能对比上不会胜出。幸运的是,依然有许多供应商一直在对8位处理器持续投资。在许多应用中,8位内核能依然能够弥补M0+或M3内核不利的地方,甚至在一些方面性能更佳。

开发工具也很重要。现代嵌入式固件开发需要全功能IDE、现成的固件库、丰富的范例、完整的评估和入门套件以及助手应用以简化硬体设定、库管理和量产程式设计之类的工作。当MCU有了现代化的8位内核和开发环境后,在很多情况下,这样的MCU将超越基于ARM Cortex的类似MCU。

系统规模

一般性原则是,ARM CortexM内核更适用于较大的系统规模,而8051设备适用于较小的系统规模。中等规模的系统可以选择两种方式,这取决于系统要执行的任务。有必要注意一点,在大多数情况下,外设组合将会发挥重要的作用。如果需要3个UART、1个LCD控制器、4个时钟和2个ADC,你可能并不会在8位MCU上找到所有这些外设。

易用性vs.成本和尺寸

对于中等规模的系统来说,使用任何一种架构都可以完成工作,需要权衡的是选择ARM内核带来的易用性,还是8051设备带来的成本和物理尺寸优势。ARM Cortex-M架构具有统一的存储映射模式,并且在所有常见编译器中支持完整的C99,这使得这种架构非常易于写固件。此外,还可得到一系列库和协力厂商代码。当然,这种易用性的代价就是成本。对于高复杂性、上市时间较短的应用或缺乏经验的固件开发人员来说,易用性是个重要因素。

尽管8位与32位组件相比有些成本上的优势,但真正的区别就在于成本级别。大家经常会发现具有2 KB/512 B(Flash/RAM)的小容量8位器件,而却很少见低于8 KB/2 KB的32位器件。在不需要很多资源的系统中,该范围的存储容量能够让系统开发人员获得显著降低成本的解决方案。因此,对成本极为敏感或仅需较小存储容量的应用会更倾向于选择8051解决方案。

通常,8位器件也具有物理尺寸上的优势。例如,某些MCU的32位QFN封装为4 mm×4 mm,而基于8051的8位器件的QFN封装可小至2 mm×2 mm。芯片级封装(CSP)的8位和32位架构之间的差异较小,但却使成本增加,且组装较难。对于空间严格受限的应用来说,通常需要选择8051 MCU来满足限制要求。

通用代码和RAM效率

8051 MCU成本较低的主要原因之一是,它通常比ARM Cortex-M内核更高效地使用Flash和RAM,这允许系统采用更少资源实现。系统越大,这种影响就越小。

但这种8位存储资源的优势并不总是如此,在某些情况下,ARM内核会像8051内核一样高效或比其更高效。例如:32位运算仅需要一条ARM设备指令,而在8051 MCU上则需要多条8位指令。显然,这种代码在ARM架构上有更高的执行效率。

ARM架构在Flash/RAM尺寸较小时的两个主要缺点是:代码空间效率和RAM使用的可预测性。首要也是最明显的问题是通用代码空间效率。8051内核使用1位组、2位组或3位组指令,而ARM内核使用2位组或4位组指令。通常情况下,8051指令更小,但这一优势因实际上花费许多时间而受到削弱,ARM内核比8051在一条指令下能做更多工作,32位运算就是这样一个范例。实践起来,指令宽度是能在8051上产生适度的更密集代码。

代码空间效率

在含有分散式访问变数的系统中,ARM架构的载入/存储架构通常比指令宽度更为重要。试想讯号量的实现,一个变数需要在代码周围的多个不同位置进行减量(分配)或者增量(释放)。ARM内核必须将变数载入到寄存器,对其进行操作并重新存储,这需要3条指令。另一方面,8051内核可以直接在记忆体位置上进行操作,且仅需1条指令。随着每次对变数完成工作量的增大,由于载入/存储而产生的消耗就变得微不足道。但对于每次仅完成一点工作的情况来说,载入/存储能产生重要影响,让8051获得明显的效率优势。

尽管讯号量在嵌入式软体中并非常见,但简单的计数器和标志讯号量却广泛应用于控制导向的应用中并起着相同的作用。许多常见的MCU代码都属于这一类型。

另一个原因是,ARM处理器比8051内核拥有更多的自由使用栈空间。通常情况下,8051设备针对每次函式呼叫仅在栈上存储返回位址(2位组),通常通过分配给栈的静态变数处理大量的任务。

在某些情况下,这会产生问题,因为这会造成函数预设不可重入。然而,这也意味着必须保留的栈空间很小,且完全可预测,这在RAM容量有限的MCU中至关重要。

“”

图一: 不同的任务需要使用不同的工具,我们的目的是要了解「如何才能更好地运用我们所拥有的工具」,包括8位和32位MCU。(Source:Yola)

架构细节

现在,我们来说基本情景。假设有基于ARM和基于8051的MCU各一个,配有所需的外设,那么对于较大的系统或需要重点考虑易用性的应用来说,ARM设备是更好的选择。如果首要考虑的是低成本/小尺寸,那么8051设备将是更好的选择。下面我们对于每种架构更擅长的应用进行更详细的分析,同时也划分出一般原则。

(1) 延时

两种架构的中断和函式呼叫延时存在很大差异,8051比ARM Cortex-M内核更快。此外,高级外设汇流排(APB)配备的外设也会影响延时,这是因为资料必须通过APB和AMBA高性能汇流排(AHB)传输。最后,当使用高频内核时钟时,许多基于Cortex-M的MCU需要分配APB时钟,这也增加了外设延时。

我做了1个简单的实验,实验中的中断是通过I/O引脚触发的。该中断对引脚发出一些信号,并根据引发中断的引脚更新标志。然后我测量了一些参数显示了32位的实现。

简单说明这个实验结果,8051内核在中断服务程式(ISR)进入和退出时显示出优势。但是,随着中断服务程式(ISR)越来越大和执行时间的增加,这些延迟将变得微不足道。和已有原则一致,系统越大,8051的优势越小。此外,如果中断服务程式(ISR)涉及到大量资料移转或大于8位的整数资料运算,中断服务程式(ISR)执行时间的优势将转向ARM内核。例如,一个采用新样本更新16位或32位移动平均的ADC ISR可能在ARM设备上执行得更快。

(2) 控制vs处理

8051内核的基本功能是控制代码,其中对于变数的访问是分散的,并且使用了许多控制逻辑(if、case等)。8051内核在处理8位资料时也是非常有效的,而ARM Cortex-M内核擅长资料处理和32位运算。此外,32位资料通道使得ARM MCU复制大包的资料更加有效,因为它每次可以移动4个位组,而8051每次仅能够移动1个位组。因此,那些主要把资料从一个地方移动到另一个地方(例如UART到CRC或者到USB)的流资料处理的应用更适合选择基于ARM处理器的系统。

这并不意味着有大量资料移动或32位运算的应用不应该选择8051内核完成。在许多情况下,其他方面的考虑将超过ARM内核的效率优势,或者说这种优势是不相关的。考虑使用UART到SPI桥接器,该应用花费大部分时间在外设之间复制资料,而ARM内核会更高效地完成该任务。

然而,这也是一个非常小的应用,可能小到足以放入一个仅有2 KB存储容量的器件就足够合适。尽管8051内核效率较低,但它仍然有足够的处理能力去处理该应用中的高资料速率。对于ARM设备来说,可用的额外周期可能处于空闲回圈或「WFI」(等待中断),等待下一个可用的资料片到来。在这种情况下,8051内核仍然最有意义,因为额外的CPU周期是微不足道的,而较小的Flash封装会节约成本。如果我们要利用额外的周期去做些有意义的工作,那么额外的效率将是至关重要的,且效率越高可能越有利于ARM内核。这个例子说明,清楚被开发系统所关注的环境中的各种架构优势是何等重要。做出这个最佳的决定是简单但却重要的一步。

(3) 指针

8051设备没有像ARM设备那样的统一的存储映射,而是对存取码(Flash)、IDATA(内部RAM)和XDATA(外部RAM)有不同的指令。为了生成高效的代码,8051代码的指标会说明它指向什么空间。然而,在某些情况下,使用通用指标可以指向任何空间,但是这种类型的指标是低效的访问。例如,将指标指向缓冲区并将该缓冲区资料输出到UART的函数。如果指标是XDATA指标,那么XDATA阵列能被发送到UART,但在代码空间中的阵列首先需要被复制到XDATA。通用指标能同时指向代码和XDATA空间,但速度较慢,并且需要更多的代码来访问。

专用区域指标在大多情况下能发挥作用,但是通用指标在编写使用情况未知的可重用代码时非常灵活。如果这种情况在应用中很常见,那么8051就失去了其效率优势。

(4) 通过选择完成工作

我已经注意到多次,运算倾向于选择ARM,而控制倾向于选择8051,但没有应用仅仅着眼于计算或控制。我们怎样才能表征广义上的应用,并计算出它的合适范围呢?让我们考虑一个由10%的32位计算、25%的控制代码和65%的一般代码构成的假定的应用,它不能明确地归于8位或32位类别。

这个应用也更注重代码空间而不是执行速度,因为它并不需要所有可用MIPS,并且必须为成本进行优化。成本比应用速度更为重要的事实在一般代码情形下将给8051内核带来微弱优势。此外,8051内核在控制代码中有中间等级的优势。ARM内核在32位计算上占上风,但是这并非是很多应用所考虑的。考虑到所有这些因素,这个特殊的应用选择8051内核更加合适。

如果进行细微的改变,假设该应用更关心执行速度而非成本,那么通用代码不会倾向于哪种架构,并且ARM内核在计算代码中全面占优势。在这种情况下,虽然有比计算更多的控制代码,但是总的结果将相当均衡。显然,在这个过程中有很多的评估,但是分解应用,然后评估每一元件的技术将?明并确保我们了解在哪种情况下哪种架构有更显著的优势。

功耗

当查阅资料手册时,很容易根据功耗资料得出哪个MCU更优的结论。虽然睡眠模式和工作模式电流性能在某些类型MCU上更优,但是这一评估可能会非常具有误导性。占空比(在每个电源模式上分别占用多少时间)将始终占据功耗的主导地位。除非两个器件的占空比相同,否则资料手册中的电流规格几乎是没有意义的。最适合应用需求的核心架构通常具有更低的功耗。

假设有一个系统,在设备被唤醒后添加一个16位ADC样本到移动平均,然后返回到休眠状态,直到获取下一个样本时才又被唤醒。该任务涉及到大量16位和32位计算。ARM设备将能够进行计算,并比8051设备更快返回到休眠状态,这会让系统功耗更低,即使8051具有更好的睡眠和工作模式电流。当然,如果进行的任务更适合8051设备,那么MCU功耗由于相同的原因而对系统有利。

虽然睡眠模式和工作模式电流性能在某些类型MCU上更优,但是这一评估可能会非常具有误导性。

8位或32位?我仍然不能决定!

如果考虑到所有这些变数后,仍然不清楚哪些MCU架构是最好的选择,会怎样?那好吧!这说明,它们都是很好的选择,你使用哪种体系结构并不是紧要的事情。如果没有明确的技术优势,那么过去的经验和个人喜好在你的MCU架构决定中也起到了很大的作用。

此外,你也可以利用这个机会去评估可能的未来项目,如果大多数未来专案更适合ARM设备,那么选择ARM,如果未来项目更侧重于降低成本和尺寸,那么就选择8051。

这到底意味着什么呢?

8位MCU仍然可以为嵌入式开发人员提供许多功能,并且越来越关注物联网。当开发人员开始设计时,重要的是确保从工具箱中获得合适的工具。虽然我还是很乐意把8051出售给可能更适合选择32位设备的客户,但是我不禁想像,如果开发人员仅仅花费1个小时思考就作出决定,那么他们的工作将会更加容易、最终的产品将会更好。

实际上的难题是,不能仅仅依赖于一些演示文件中的一两个要点,就得出选择MCU架构的结论。然而,一旦你有正确的资讯,并愿意花一点时间应用它,就不难作出最佳选择。

本文转载自:网络
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 29

2021年5月25日,AUTO TECH 2021广州国际汽车技术展在保利世贸博览馆成功召开,与车联网技术展、新能源汽车技术展、自动驾驶技术展、汽车测试展及汽车轻量化技术展联袂呈现最新技术成果。芯旺微电子不仅在现场展示了近50款车规芯片应用方案,还重磅推出了车规新品KF32A156,主要应用于车身车载模块控制,拥有512KB Flash、64KB RAM,支持2路CANFD,同时工作范围达到了Grade 1(-40~125℃)车规等级。KF32A156量产后将使芯旺微的车规产品从现有MCU覆盖30%车身控制单元模块扩展到70%的范围。

车规版图加速扩张

“”

“”

“”

“”

“应用方案”
应用方案

KF32A156创新性

自研KungFu内核和开发工具

KF32A156采用了ChipON自主研发的KungFu32内核架构处理器,该处理器采用3级流水线,16位/32位混合指令集,KF32A156最高主频为120Mhz,Flash达到512KB。KF32A156使用自主内核处理器,不存在芯片IP授权问题,也没有被禁用的风险。同时,ChipON还自主研发了开发工具,包括集成开发环境、C编译器和仿真器。真正意义上实现了从芯片到工具链的全自主。

兼顾性能与功耗的平衡

基于KungFu架构的KF32A156在保证和提升高可靠性能的同时,进一步实现了在低功耗、高可靠、高性能三方面的极致均衡,补齐了三者无法全部兼容的短板。

满足外设资源的多样性

为了适应当前汽车电子的多样化需求,KF32A156采用了丰富数模混合外设设计理念,以达到外设资源的多样性效果。KF32A156可提供2路CANFD和1路CAN2.0接口以及多路LIN接口,满足汽车控制域的高速通信需求。KF32A156还具备Flash/RAM的ECC校验功能,AES128硬件加解密和CRC32数据校验功能,满足汽车安全需求。

KF32A156产品优势

满足AEC-Q100汽车质量认证标准

● Grade 1 级温度范围(-40~125℃)
● ESD:8KV(HBM)

高性能

● 120MHz/3级流水线结构
● 32X32位单周期乘法/32位÷32位除法
● 2*7DMA通道

高集成度

● UP TO 512KB Flash/64KB RAM
● UP TO 2路CANFD
● UP TO 4路LIN
● PWM/ECCP/ADC/DAC/PGA/CMP...
● UP TO 144PIN

高安全性

● Flash可编程权限操作
● ECC Flash/RAM
● 双看门狗系统
● 时钟故障检测
● 内置硬件可变位数的CRC32校验单元
● AES128硬件加解密

KF32A156应用领域

车身控制应用场景,包括智能座舱、OBC车载充电、BCM、电源、电机控制等。

潜芯于市 致力于行

在展会同期的汽车电子创新技术论坛上,芯旺微电子市场拓展经理石水正发表了“芯旺微汽车级MCU产品及生态”的主题演讲,作为业内深耕汽车市场十余年的芯片设计公司,聚焦自主KungFu架构汽车级8位/32位MCU和DSP产品,专注多元化汽车芯片的研发,包括射频,无线、模拟及更高功能安全等级的汽车芯片。芯旺微电子研发的车规芯片从8位到32位近50款,满足AEC-Q100汽车质量认证标准,应用范围可覆盖整车MCU用量的80%左右,已大量进入汽车前装市场,与上汽、东风、吉利、广汽、长安、陕汽等建立合作伙伴关系,2020年车规芯片销售额超3000万。

“”

搭载KungFu内核的MCU产品具有高性能、高可靠性、高集成度、高I/O利用率、RAM/Flash容量比高、低功耗等优点。基于KungFu32 内核开发的车规级MCU,满足汽车电子的规范和要求,包括ECC校验、故障检测、双看门狗系统等。

“”

芯旺微电子不仅专注车规芯片的研发设计和商用落地,同样重视产业生态的建设,提供完整的IDE、C编译器和开发库函数,同时引入第三方软件公司联手搭建软件生态,不仅涵盖当下较为流行的RTOS操作系统,还包括汽车领域的AutoSar,以生态联动方式,整合高端车规芯片、基础软件和汽车产业链多方资源,加快国产车规芯片在汽车市场应用落地步伐,打造超市场预期的产品和技术,助推汽车新四化转型升级。

围观 345

MCU(MicrocontrollerUnit),又称微控制器或单片机,是把CPU的频率与规格做适当缩减,并将内存(Memory)、计数器(Timer)、USB、A/D转换、UART、PLC、DMA等周边接口,甚至LCD驱动电路都整合在单一芯片上,形成芯片级计算机。从而实现终端控制的功能,具有性能高、功耗低、可编程、灵活度高等优点。

MCU由Intel率先提出,经过4位、8位、16位、32位乃至64位MCU迭代更新,已广泛应用于多种场景。目前市场上以8位和32位MCU为主,未来随着产品性能要求的不断提高,32位MCU的市场规模将进一步扩大。而在国内,现阶段8位、32位MCU企业居多,未来企业加大研发投入,将进一步实现MCU的国产替代。

MCU芯片在很多领域都有着广泛的应用,在此次“芯片荒”浪潮中,MCU是受影响最严重的芯片。

1、MCU简介

微控制单元(Microcontroller Unit;MCU) 就是我们俗称的“单片机”。MCU内部的功能部件主要是CPU、存储器(程序存储器和数据存储器)、I/O端口、串行口、定时器、中断系统、特殊功能寄存器等八大部分,还有一些诸如时钟振荡器、总线控制器和供电电源等辅助功能部件。

此外,很多增强型单片机还集成了A/D、D/A、PWM、PCA、WDT等功能部件,以及SPI、I2C、ISP等数据传输接口方式,这些使单片机更具特色、更有市场应用前景。

“▲MCU结构"
▲MCU结构

在MCU应用中,真实世界的各种物理量,通过传感器转换为电信号,经信号调理,再通过放大器进行放大,然后通过ADC把模拟信号转化为数字信号,在MCU或CPU或DSP等处理后,再经由DAC还原为模拟信号,最后通过功率驱动器实现输出。

“▲MCU信号链"
▲MCU信号链

MCU由Intel率先提出,经过4位、8位、16位、32位乃至64位MCU迭代更新,已广泛应用于多种场景。目前市场上以8位和32位MCU为主,未来随着产品性能要求的不断提高,32位MCU的市场规模将进一步扩大。而在国内,现阶段8位、32位MCU企业居多,未来企业加大研发投入,将进一步实现MCU的国产替代。

目前市场的MCU以8位和32位为主。其中8位MCU凭借超低成本、设计简单等优势,活跃于市场,特别是中国市场。

由于32位MCU出现并持续降价及8位MCU简单耐用又便宜的低价优势下,夹在中间的16位MCU市场不断被挤压,成为出货比例中最低的产品。

“▲MCU位数及其应用场景"
▲MCU位数及其应用场景

目前市场上主流的MCU中央处理器,包括由Intel开发MCS-51内核、由英国公司ARMHoldinds开发的ARM Cortex-M内核、由Motorola开发的6800内核、由MIPSTechnologies, Inc.开发的MIPS内核、由Atmel公司开发的AVR内核、由MicrochipTechnologies公司开发PIC内核、由加利福尼亚大学伯克利分校开发的RISC-V内核。

“▲MCU常见中央处理器"
▲MCU常见中央处理器

据2020中国通用微控制器市场简报:市场上MCU,32位占比54%、8位占比43%;RISC指令集的MCU占比76%,CISC指令集的MCU占比24%;通用型MCU为主,占比73%;市场上MCU内核类型以ARM Cortex、8051和RISC-V为主,分别占比52%、22%和2%。

2、产业链概况

MCU产业链上游可分为原材料供应商和代工厂商(与中游Fabless厂商合作),原材料主要为圆晶、以及来自于ARM等的内核授权;代工厂商主要包括台积电、格罗方德、联电、中芯国际、华虹半导体等。

2019年头部的台积电、格罗方德、联电、中芯国际等厂商市占率超过90%,其中台积电市占率高达58.6%,由于原材料的不可替代性与代工厂商的高度集中性,上游厂商议价能力较强。

“▲2019年MCU代工厂竞争格局"
▲2019年MCU代工厂竞争格局

全球MCU供应商以国外厂商为主,行业集中度相对较高:全球MCU厂商主要为瑞萨电子(日本)、恩智浦(荷兰)、英飞凌(德国)、微芯科技(美国)、意法半导体等,TOP7头部企业市占率超过80%。

中国MCU奋起直追,逐步扩大市场份额:国内MCU芯片厂商在中低端市场具备较强竞争力。兆易创新、华大半导体、中颖电子、东软载波、北京君正、中国台湾企业新唐科技、极海半导体等市占率稳步上升。

另外, 国外大厂如意法半导体、瑞萨电子、德州仪器、微芯、英飞凌采用IDM模式,集芯片设计、芯片制造、芯片封装和测试等多个产业链环节于一身;国外个别厂商如恩智浦以及大部分大陆厂商采用Fabless模式,只负责芯片的电路设计与销售;中国台湾企业盛群、松翰、新唐以及大陆厂商士兰微、华大半导体等采用IDM模式。

“▲2019年全球MCU竞争格局"
▲2019年全球MCU竞争格局

“▲
▲ 2019年中国MCU竞争格局

国外厂商产品齐全,国内厂商集中在消费电子领域:国外厂商产品种类齐全,覆盖消费电子、汽车电子、工业控制领域,且产能分布较为均衡,国内厂商产能主要集中消费电子特别是家电领域,芯旺微、比亚迪等企业拥有车规级MCU产品,其他厂商尚处在研发或认证阶段。

国内外厂商产品位数相差不大:国外厂商如意法半导体、恩智浦、微芯科技等主流产品均为32位,部分国内厂商如中颖电子产品以8位为主,目前大部分国内厂商均具备32位产品生产能力,整体差距不大。

内核方面,各家厂商均以ARM内核为主,国内厂商主要使用ARM Cortex-M0/M3内核,国外厂商对更性能更好的M4/M7内核使用率较低。另外部分国外厂商如微芯科技拥有自主开发的内核,国内厂商中芯旺微拥有自研内核。

在应用领域上,全球汽车电子占比最高,中国集中在家电领域。据IC Insights数据,2019年全球MCU下游应用主要分布在汽车电子(33%)、工控/医疗(25%)、计算机(23%)和消费电子(11%)四大领域。具体到中国,2019年中国MCU市场销售额集中在消费电子(26%)、计算机网络(19%)领域,而汽车电子(16%)及工业控制(11%)领域的MCU占比则显著低于全球水平,中国MCU应用仍主要集中在家电等品类。

“▲2019年全球MCU应用分布"
▲2019年全球MCU应用分布

“▲
▲ 2020年中国MCU应用领域销售额分布

3、四大应用领域

1)物联网

伴随着物联网的发展,MCU市场经历价量齐升的过程。未来物联网将实现端到端人机互动,几乎每个设备每个端都需要一个甚至多个MCU。更多的数据更高的计算要求,推动设备向32位高端MCU升级。

根据GSMA数据,2018年全球物联网设备数量为91亿个,2010-2018年复合增长率为20.9%,预计2025年全球物联网设备将高达252亿个。

中国物联网整体规模逐年增长,2015年中国物联网整体规模为7500亿元,预计2020年达到18300亿元,2015年-2020年复合增长率为19.5%。

“▲全球物联网设备连接数量及预测情况"
▲全球物联网设备连接数量及预测情况

“▲中国物联网整体规模及增长率"
▲中国物联网整体规模及增长率

设备联网的关键在于组网技术,组网技术有LoRa(远距离无线电)、Zigbee(短距离低速)、WiFi、NB-IoT(蜂窝网络)、蓝牙,需要搭配响应的组网模块才能遥控设备。

我国物联网连接数2020年达到35亿,2017-2020的复合增长率为34%。主要的组网方式是WiFi和蓝牙,2020年WiFi和蓝牙组网技术占比达67.3%,蜂窝网络组网占比逐年提升,由2017年的3%上升到2020年占8.75%。

“▲中国物联网连接数(单位:亿)"
▲中国物联网连接数(单位:亿)

根据Techno Systems Research 2017年2月及2018年2月发布的各年度研究报告,在物联网Wi-Fi MCU 芯片领域,乐鑫是与高通、德州仪器、美满、赛普拉斯、瑞昱、联发科等同属于第一梯队的大陆企业。

目前主流嵌入式WiFi芯片企业包括:高通(美国)、瑞昱(中国台湾)、乐鑫、博通集成、联盛德以及博流,国产替代率高。

“▲主流WiFi
▲主流WiFi MCU性能对比

2)消费电子

家电智能化趋势:机械按键交互向触摸语音交互转变、数码管显示向液晶显示转变、单频向变频转变等。计算能力和抗干扰能力要求增大,需求向更高级的MCU转移。

2020年,中国智慧家庭产品出货总量达到2.8亿台,到2025年出货总量将增长至8.1亿台,年复合增长率可达23.7%。

家庭视频视讯设备(电视机、机顶盒)和智慧安防产品(摄像头、门锁)占比最高,分别达到39.2%和19.6%;智能白电(冰箱、空调、洗衣机)占比接近两成,达到17.1%。

“▲中国智慧家庭出货量及预测(单位:百万台)"
▲中国智慧家庭出货量及预测(单位:百万台)

全国家用电器工业信息中心数据显示,2019年国内市场家电零售额规模8032亿元,同比增长率为-2.2%。

根据《IDC中国智能家居设备市场季度跟踪报告》,2019年上半年中国智能大家电市场出货量约为2838万台,同比增长22.8%。

家电市场整体表现平稳,智能家电市场的销售保持稳步增长态势。传统家电智能化转型迫在眉睫。

“▲2016-2019年中国家电行业零售额"
▲2016-2019年中国家电行业零售额

“▲八大家电企业自给率高,纷纷加速智能化转型,加速家电芯片国产替代进程"
▲八大家电企业自给率高,纷纷加速智能化转型,加速家电芯片国产替代进程

一般家电芯片包括MCU主控芯片、电源管理芯片、通信芯片、驱动芯片和图像处理芯片,目前家电企业的造芯进程中,几乎所有芯片都已布局。八大家电企业造芯布局中,MCU的占比最高,达到34%

家电MCU国产替代程度高,中颖电子在中国小家电MCU中处于领先地位,据中国产业信息统计数据,2017年中颖电子在中国家电MCU中的占比为19.8%,排名第三,与排名前二的MCU厂家盛群半导体(22.6%)和盛群电子(21.2%)的差距不大,预计未来小家电领域MCU国产替代率会进一步提升。

“▲八大家电布局芯片类型占比"
▲八大家电布局芯片类型占比

“▲
▲ 2017年中国小家电MCU竞争格局

2016年苹果发布第一代Air Pods,开创真无线耳机(TWS)时代,iPhone 12系列取消标配耳机,再次引发TWS耳机销量暴增。

传统有线耳机线路简单,无需配置MCU主控芯片。

TWS产业链主要包括ODM厂商,无线耳机和充电盒元器件厂商,其包括主控芯片、存储芯片、FPC、语音加速感应器、MEMS、过流保护IC、电池等。

据Counterpoint预计,TWS耳机市场会有十年前智能手机一样的增长趋势,智能手机市场2009-2012年CAGR为80%,预计TWS市场2019-2022年CAGR为80%。

在Air Pods引爆市场后,各手机厂商如华为、OPPO、vivo、小米以及传统音频厂商Sony、BOSE、1MORE、漫步者纷纷跟进推出相关产品,苹果市场份额虽仍是第一,其他品牌耳机也在加速抢占,使得苹果市场份额逐年减少,据Statista数据,苹果TWS耳机市场占有率从2018年Q4的60%下降到2019年Q3的45%。

“▲TWS耳机市场竞争格局
▲TWS耳机市场竞争格局

高端手表处理的任务多,需要用内嵌操作系统的SoC,而手环只需要时钟、记步、统计热量小号、测血压等简单的功能,使用MCU即可。

随着智能手表性能和功能的加强,使用带系统的SoC+MCU会是的趋势,其中WiFi模块中集成了MCU,另外需要多一颗MCU来链接众多的传感器,辅助SoC采集数据。

“"
▲小米手环3拆解

得益于硬件创新,智能手表逐步成熟,与智能手机组成的应用生态日趋完善。通过定位聚焦于运动、健康、移动支付领域,行业持续加速发展,预计2021年智能手表的支出将达到273.88亿美元。

智能手环相比智能手表,性能较低、功能单一、只支持苹果或安卓单一操作系统。t4ai预测未来整个智能手环市场将持续萎缩。

小米智能手环市场占有率高,预计未来市场集中度进一步提升。

“▲全球智能手表消费趋势"
▲全球智能手表消费趋势

未来,智能手表行业将更进一步地向头部集中。苹果、三星、华为、Garmin将占据超过75%的市场份额。

参考智能手机市场的发展,未来苹果TWS耳机的市场份额会进一步下降,而国内厂商诸如小米、华为、OPPO、vivo等手机厂商会快速崛起,为芯片国产替代提供条件。目前充电盒国产主控MCU方案成熟,如芯海科技、昇生微、微源半导体等均有成熟的方案且被各大TWS品牌商采用。

“▲2020上半年全球主要智能手表企业"
▲2020上半年全球主要智能手表企业

3)汽车电子

ECU(Engine Control Unit),即发动机控制单元,特指电喷发动机的电子控制系统。但是随着汽车电子的迅速发展,ECU的定义也发生了巨大的变化,变成了electronic control unit即电子控制单元,泛指汽车上所有电子控制系统。而原来的发动机ECU有很多的公司称之为EMS(Engine Management System)。

常见的ECU有导航ECU、安全气囊ECU、引擎ECU、电动车窗ECU、悬吊系统ECU。

ECU由MCU、存储器、输入/输出接口、模数转换器以及驱动等集成电路组成。其中MCU是ECU真正起到控制作用的关键。

“▲汽车ECU"
▲汽车ECU

汽车电子应用已经占据超过1/3的MCU市场,汽车向智能化过程中,对安全、环保要求越来越高,因此对MCU的需求增长迅猛。据IC Insights预测,车用MCU销售额将在2020年接近65亿美元,并在2023年达到81亿美元。

据Strategy Analytics统计,传统燃油车中MCU占整车半导体价值的23%,纯电动汽车MCU占整车半导体价值的11%,2018年传统燃油车单车半导体价值量为338美元,新能源汽车单车半导体价值量为704美元,MCU价值量在传统燃油车和新能源车中相当,均为78美元左右。

“▲燃油和电动汽车半导体占比"
▲燃油和电动汽车半导体占比

据Strategy Analysis数据,全球以及国内车载MCU市场主要由恩智浦、瑞萨、英飞凌、德州仪器、微芯科技占领,共占约85%市场份额。

汽车级MCU产品品质严苛,认证过程很复杂,投入大,短期内难有盈利。目前国内汽车级MCU已量产的公司有:杰发科技、上海芯旺微电子、赛腾微电子、中微半导体等公司。

国内车载MCU起步晚,较少公司涉及该领域业务,未来国产替代潜力巨大。

4)工业控制

MCU是实现工业自动化的核心部件,如步进马达、机器手臂、仪器仪表、工业电机等。以工控的主要应用场景——工业机器人为例,为了实现工业机器人所需的复杂运动,需要对电机的位置、方向、速度和扭矩进行高精度控制,而MCU则可以执行电机控制所需的复杂、高速运算。

工业4.0时代下工业控制市场前景广阔,催涨MCU需求。根据Prismark统计,2019年全球工业控制的市场规模为2310亿美元,预计至2023年全球工业控制的市场规模将达到2600亿美元,年复合增长率约为3%。根据赛迪智库的数据,2020年中国工业控制市场规模达到2321亿元,同比增长13.1%。2021年市场规模有望达到2600亿元。

“▲全球工业控制市场规模及其增速"
▲全球工业控制市场规模及其增速

“▲中国工业控制市场规模及其增速"
▲中国工业控制市场规模及其增速

MCU市场现被国外厂商主导,国内厂商虽百花齐放,但占比较低,国产替代空间巨大。根据前瞻产业研究院,2019年全球MCU市场主要被微芯、意法半导体、瑞萨、德州仪器、恩智浦等厂商占据,前五大厂商合计市场份额达72.8%。中国MCU市场主要被意法半导体、恩智浦、微芯、瑞萨、英飞凌等厂商占据,前五大厂商合计市场份额达74.42%。

近期MCU市场缺货行情持续,本土MCU产业链有望加速产品的市场拓展,提升产品的价值量或出货量,从而充分受益于MCU市场高涨的应用需求。另一方面,高性能MCU的价量齐升,带来可观的毛利率,驱使更多国内优秀企业进军MCU领域,加快实现国产替代。

国内厂商在工业控制MCU产品方面,销售收入及其占比逐年上升,产品出货量增长显著,国产替代指日可待。

智东西认为,随着我国电动汽车如火如荼的快速发展,在汽车电子上的应用使得MCU芯片未来注定在我国的芯片行业中扮演者一个十分重要的角色。但是,现阶端国产MCU主要还是集中在家电等行业低端应用行业。好消息是,虽然32位MCU是现在的主流,但国内厂商有优势的8位芯片仍然在物联网等行业中有着广泛的应用,在国外巨头的统治下,国产MCU仍然有着不差的生长土壤,假以时日大规模的国产替代也不是不可能。

来源:智东西
免责声明:本文部分内容为网络转载,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。

围观 350

让我们试想一下一种可以减少模拟组件数量并缩小电路板尺寸的设计。使用这种设计,您可以针对特定应用定制功能,并针对性能、功耗、尺寸和成本进行优化。现在,一个简单的MSP430 MCU就可以满足上述所有功能。让我们看一下MSP430 MCU在各种设计中可能会有怎样的新应用。

丰富的模拟功能

您可以使用MSP430 MCU分流许多重要的系统级功能并降低设计复杂性。将MSP430 MCU用作内务处理型(或辅助)MCU意味着它可以处理多种系统级功能,例如输入/输出扩展、模数转换器 (ADC) 和LED控制,这可以减少布板空间和设计成本。

低功耗楼宇自动化传感器设计

使用MSP430 MCU可以完成较小的印刷电路板布局布线、可扩展的范围感应和低噪声的高效分辨率采样。因此很适合各种楼宇自动化应用,例如热释电红外传感器 (PIR)、烟雾探测器(如图 1 所示)和恒温器。

“图
图 1:MSP430 MCU可在低功耗楼宇自动化应用中实现感应功能

市场上有多种类型的传感器,例如电化学传感器(氧气、二氧化碳和一氧化碳),它们需要不同的信号集成类型。MSP430 MCU的超低功耗特点可以延长这些系统的电池续航时间。MSP430还具有集成的可编程增益放大器 (PGA) 及用于气体检测器的多路接口。此外,MSP430 MCU还配套了一个图形用户界面 (GUI),您可以在其中配置并连接比较器、PGA和ADC,以方便快速评估。

电容式触控技术让您的设计更智能

从电梯间的按钮到车载娱乐系统中的音量控制,再到智能家居的中心显示器,越来越多的客户需要快速地响应触控姿势。图 2是汽车触控屏的示例。这些应用都采用了电容式触控技术。电容式触控技术具有较低的功耗以及良好的电磁兼容性和抗噪性,可以满足这些应用的要求。

MSP430 MCU提供了一个易于使用的生态系统使电容式触控解决方案的设计变得简单,该生态系统包括评估模块、软件和具有代码生成功能的GUI,可以在原型机到量产的整个设计过程中提供帮助。

“图
图 2:汽车触控屏的示例

深入了解使用超声波感应技术的流量计

您的系统是否需要可以测量液体或气体流速或检测物体的器件?超声波感应MCU可实现水和气体流量测量,或者使用超声波技术检测房间内的物体。MSP430 MCU具有独特的波形捕获技术,采用高速ADC和互相关方法,能够以较低功耗实现高精度测量。借助我们的 MSP Academy,构建您的下一个水流量测量系统、咖啡机或通风机;MSP Academy可使您更好地理解超声波感应技术,并帮助您在一个小时内搭建测试评估环境。

创造可靠的低功耗电源管理设计

电动自行车、电池报和电动工具需要高度可靠的电池管理解决方案,以确保更长的电池寿命。MSP430 MCU可以用作与电池监测器通信的主控制器。

结束语

从数字外设(例如具有捕获和比较功能的16位计时器、通用异步收发器、串行外设接口和 I2C)到模拟外设(例如10至12位连续逼近型寄存器ADC)、数模转换器、运算放大器和LCD,MSP430 MCU系列提供了广泛且低价的产品组合,可帮助解决当今日益增长的多样化MCU设计挑战。

借助MSP430 MCU丰富的生态系统,无论遇到什么应用,都可以轻松评估MSP430 MCU并加速完成每个模块的设计。

本文转载自:德州仪器
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 32

MCU是电子产品的核心部件,对于这个器件的选型一定要慎之又慎,如中途变更MCU,整个电路板就要做个大的手术了。MCU选型时就要综合考虑MCU需要完成的功能,成本,交期,各类端口的数量,存储空间,可移植性,器件等级,功耗,电压等因素。

1、MCU初步筛选

MCU初步筛选是时,最好是软件工程师和硬件工程师以及器件工程师一起讨论,硬件工程师提供所需各类端口的大致数量,产品要实现的功能,应用环境等等。软件工程师根据这些信息选出三四款合适的芯片,然后元器件工程师根据芯片的成本,交期,品质等信息最终选定一款MCU。

在这个过程当中,硬件工程师提供一份各类端口的数量清单,软件工程师需提供一份MCU引脚分配图表,以供硬件工程师使用。

2、普通I/O口

上拉、下拉电阻的选择,通常可以选择1K~1MΩ之间的电阻,封装可以根据产品的尺寸,以及端口的电流值选择0201,0402,0603,或0805的封装。如端口用的是内部上拉或下拉电阻,电阻值通常是几百欧,在低功耗的产品中尽量不要使用。

输入输出电压的高电平通常就是电源电压,低电压通常就是0V。对于输入口来说,如果高低,电压不分明,需做整形后再提供给输入口,输入到输入口的信号电流值不能超过输入口所能承受的电流范围;对于输出口来说,小功率的负载,尽量是选用低电平驱动。一般情况下,负载电流值在10毫安以下的,可以用输出口直接驱动;负载电流值在10毫安到100毫安之间的,需加一级驱动电路;驱动更大功率的负载时,负载与MCU之间去加隔离电路。

3、器件等级

根据产品的类别及其应用环境,选择MCU的等级,工作温度范围。如产品用于汽车类产品,尽可能地使用汽车级芯片,工作温度范围-40度到125度。根据产品销售地,选择认证范围,如CCC认证,UL认证。

4、ADC转换

根据产品的实际需要,选择合适的精度,转换时间。进行模数转换时,去做适度的整形。如输入信号非常微弱,可以对信号进行放大;如输入信号电平与输入端口的电平不匹配,需做电平转换。

5、存储空间

根据产品功能,电路板的尺寸,软件代码的长短,选择合适的存储容量。如需外置存储,软件组需提前说明,以便PCB板预留空间。

随着电子产品复杂度越来越高,扩大存储容量与采用flash存储是大的趋势。扩大存储容量,硬件工程师可以赋予产品更多的附加功能,同时给后续的升级维护带来便利。掉电保护数据和对产品快速编程的需求,以推动产品采用flash存储。flash芯片长期来看,单价会持续下跌的。

6、移植性

如果考虑从旧的平台移植程序过来,就要考虑MCU之间的可移植性。

7、低功耗

越来越多的移动电子产品出现,推动MCU也快速地向低功耗方向发展。低功耗不仅仅是为了省电,更是是为了降低电源模块以及散热模组的成本。随着电流的降低,电磁干扰和热噪声也大幅度地降低了。

上拉下拉电阻也有功耗,如对单一的信号进行上拉或下拉,电流也就是几个微安到几十微安之间,但是对于一个被驱动了的信号进行上拉和下拉,电流能达到几十毫安。
闲置不用的端口,尽量不要悬空。如果悬空,外界的干扰可能在这些端口形成反复的震荡信号,MOS工艺芯片的功耗主要取决于门电路的翻转次数。

8、成本和交期

很多8位和16位及32位MCU,价差已降至将近几美分,需结合产品实际情况选取合适的MCU。

MCU选定后,后续很多新项目也会用这一系列MCU,因此在做MCU选项时一定要调查清楚供应商是否长期生产该系列的芯片,有几家生产工厂。在我们的客户所在地,该供应商是否有强大的售后服务团队。

对MCU进行试验验证,确保产品的低失效率,因为高失效率率意味着更高的成本。调查统计各MCU及其供应商的口碑。

9、其它功能

将更多的其它功能集成到MCU是大的趋势。如DSP功能,上电复位,低电压检测功能。应调查清楚所选这一系列MCU现在及未来可集成哪些功能模块,为后续新产品的设计开发做准备。

对于MCU,在已批量生产后轻易不要做替代动作,MCU的替代需做各种严格的测试验证,成本较高。

本文转载自:网络
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 306

页面

订阅 RSS - MCU