利用C2000™ 实时MCU 提高GaN 数字电源设计实用性

cathy的头像
cathy 发布于:周四, 05/13/2021 - 14:02 ,关键词:

与碳化硅 (SiC)FET 和硅基FET 相比,氮化镓 (GaN) 场效应晶体管 (FET) 可显著降低开关损耗和提高功率密度。这些特性对于数字电源转换器等高开关频率应用大有裨益,可帮助减小磁性元件的尺寸。

电力电子行业的设计人员需要采用新的技术和方法来提高GaN 系统的性能,在利用GaN 技术开发现代电源转换系统时,C2000™ 实时微控制器 (MCU) 可帮助应对各种设计挑战。

C2000™ 实时MCU 的优点

C2000™ MCU 等数字控制器具有出色的适用性,适合各种复杂的拓扑和控制算法,例如零电压开关、零电流开关或采用混合磁滞控制的电感器-电感器-电容器 (LLC) 谐振直流/直流电源。

C2000™ MCU 可提供以下优势:

· 复杂的时间关键型计算处理。C2000™ MCU 拥有高级指令集,可显著减少复杂数学计算所需的周期数。计算时间减少后,可以在不增加MCU 工作频率的情况下提高控制环路频率。

· 精确控制。C2000™ MCU 中的高分辨率脉宽调制器 (PWM) 可提供 150ps的分辨率,而且内置的模拟比较器和可配置逻辑块 (CLB) 有助于安全处理出现的各种错误情况。

· 软件和外设可扩展性。随着系统要求的变化,C2000™ 平台支持向上或向下扩展实时MCU 功能,同时保持软件投入,从而减少软件投入加快产品上市速度。例如, TMS320F280029C 等低成本C2000™ MCU 可在小型服务器电源中实现实时处理和控制;而TMS320F28379D 是高频率多相系统中的常用器件。但TMS320F28379D 保持了和TMS320F280029代码的兼容性。

使用C2000™ MCU 应对GaN 开关挑战

如前所述,实现更高的开关频率可减小开关转换器中磁性元件的尺寸,但同时这会带来许多控制方面的挑战。例如,在图腾柱功率因数校正 (Totem-pole PFC) 拓扑中,减小电感器的尺寸不仅会导致零交叉点处的电流尖峰增加,还会增加死区引起的第三象限损耗,这些影响综合起来会增加总谐波失真 (THD) 并降低效率。

为解决上述问题,C2000™ 实时MCU 通过功能丰富的PWM 启用软启动算法,从而消除电流尖峰并改善THD。C2000™ MCU还拥有扩展的指令集、浮点运算单元 (FPU) 和三角函数加速器 (TMU),进而显著降低PWM导通时间等参数的计算时间。计算时间减少还可提高控制环路频率,再结合PWM的150ps分辨率,可帮助降低第三象限损耗。

使用TI GaN 技术连接C2000™ MCU

如图1所示,C2000™ MCU、数字隔离器件和GaN FET 都是器件连接中必不可少的一部分。

“图
图 1:连接C2000™ MCU、数字隔离器和600V GaN FET

增强型数字隔离器可帮助抑制瞬态噪声并保护C2000™ MCU。C2000™ MCU 无需外部逻辑器件,利用其高分辨率 PWM、可配置逻辑块和增强型捕捉模块实现GaN FET 的安全性、温度和错误报告等所有功能,从而提供精确的控制输出。600V GaN FET 中的集成驱动器可减少由感应振铃导致的系统设计问题。综合使用这些器件便无需增加额外的外部元件,因而可降低总体成本。

结束语

TI C2000™ 实时MCU和GaN FET协调工作,可为现代数字电源系统提供灵活而简单的解决方案,同时也提供了先进的功能来实现高功率密度且高效的数字电源系统。我们的参考设计都经过全面测试并附有完善的文档说明,可帮助加速高效且高功率密度的数字电源系统的开发进程。

本文转载自:德州仪器(作者:Cody Watkins)
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 54