单片机

单片机(Microcontroller, MCU)是一种集成了计算机功能的微型计算机,通常由一个微处理器(CPU)、存储器(ROM、RAM)、输入/输出接口、定时器/计数器等功能模块集成在同一芯片上。单片机是一种常用于嵌入式系统中的控制器,它被广泛应用于家电、汽车、工业自动化、医疗设备、消费电子、物联网(IoT)设备等多个领域。

UART串口是嵌入式开发常见的一种通信方式,但还是有不少人不知道怎么使用串口。

今天就来围绕串口,简单分享几点内容:

  • 串口接收方式

  • 处理接收数据

  • 通信协议解析

串口接收方式

串口接收(通信另一端)的数据,常见的方式:

  • 轮询(查询)接收寄存器

  • 中断接收数据

轮询,就是间隔一定时间(一般ms,甚至us)去查询一下接收寄存器是否有数据,如果有数据,就处理接收到的数据。

中断,平时没有数据接收时,CPU干自己的事。当有接收数据时,UART串口控制器会响应中断,通知CPU有事干了。

轮询方式,大家想过有哪些弊端吗?

效率低:CPU大部分时间都是去做查询的工作;

响应不实时:如果短时间内有多个接收数据,CPU正在处理一件相对耗时的事情(比如:发送一个数据包),没来得及查询接收到的数据,此时,数据就可能丢失。(特别是早些年串口没有FIFO功能的时候)

所以,不管是UART串口,还是I2C、 SPI、 CAN等串行通信,用的最多,最常见的还是中断接收,很少有用轮询的方式。

我之前维护一个老代码(坑),CLI串口用轮询方式,出现丢数据、溢出错误等众多问题,让我还加了好几个班。。。

处理接收数据

中断有数据来了,大家怎么处理接收到的数据?

我见过有些小项目,直接在中断函数里面做一些应用的情况。比如:串口中断接收一个传感器发过来的数据,显示数据并做一些响应的动作。

中断函数,代码能少尽少,耗时能少尽少,不能处理太多耗时的复杂的逻辑、应用等。

中断有数据来了,一般是通过FIFO方式处理。

1.简单的数组接收、应用解析并处理

比如:

static uint8_t gRxCnt = 0;
static uint8_t gRxBuf[10];

void USART1_IRQHandler(void)
{  
    //...  
    gDgus_RxBuf[gRxCnt] = (uint8_t)USART_ReceiveData(USART1);  
    gRxCnt++;  //...  
}

void App(void)
{  
    //...  
    if(0 < gRxCnt)  
    {    
        //拷贝接收到的数据    
        gRxCnt = 0;    
        //解析接收数据并处理  
    }
}

2.中断函数接收一帧完整数据再处理

比如:

void USART1_IRQHandler(void)
{  
    static uint8_t RxCnt = 0;                      //计数值  
    static uint8_t RxNum = 0;                      //数量
   
   if((USART1->SR & USART_FLAG_RXNE) == USART_FLAG_RXNE)  
   {    
       gDgus_RxBuf[RxCnt] = (uint8_t)USART_ReceiveData(USART1);    
       RxCnt++;
       
      /* 判断帧头 */    
      if(gDgus_RxBuf[0] != DGUS_FRAME_HEAD1)       //接收到帧头1    
      {      
          RxCnt = 0;      
          return;    
      }    
      if((2 == RxCnt) && (gDgus_RxBuf[1] != DGUS_FRAME_HEAD2))    
      {      
          RxCnt = 0;      
          return;    
      }
    
     /* 确定一帧数据长度 */    
     if(RxCnt == 3)    
     {      
         RxNum = gDgus_RxBuf[2] + 3;    
     }
     
     /* 接收完一帧数据 */    
     if((6 <= RxCnt) && (RxNum <= RxCnt))    
     {      
         RxCnt = 0;      
         OSMboxPost(EventMBox_Touch, gDgus_RxBuf);  //发送消息邮箱(执行触控操作)    
     }  
     }
 }

中断函数解析完一帧数据,可以通过标志位通知应用(裸机时),也可以通过消息队列、邮箱等方式发送到应用(RTOS时)。

3.RTOS队列、邮箱接收

比如:

void DEBUG_COM_IRQHandler(void)
{  
    static uint8_t Data;
  
   if(USART_GetITStatus(DEBUG_COM, USART_IT_RXNE) != RESET)  
   {    
       Data = USART_ReceiveData(DEBUG_COM);    
       CLI_RcvDateFromISR(Data); //下面把这个函数分离出来了  
   }
}

void CLI_RcvDateFromISR(uint8_t RcvData)
{  
    static portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;
   if(xCLIRcvQueue != NULL)  
   {    
       xQueueSendFromISR(xCLIRcvQueue, &RcvData, &xHigherPriorityTaskWoken);  
   }
}

中断来一字节数据,就通过消息队列发送一个字节数据,如果没有及时出来这个数据,也是存储在队列中。

通信协议解析

像上面第2种,简单通信协议,项目相对较小的情况下,可以直接在中断函数里面处理。

但是,如果项目相对较大、复杂一点,协议也先对复杂一点,上面第2种在函数内部出来方式就不可取。

1.裸机环境

裸机的情况下,建议用第一种:中断数组缓存数据(FIFO),应用解析通信协议。

2.RTOS环境

RTOS情况下,建议用第三种方式:消息队列、邮箱等方式接收数据,然后发送(通知)应用解析协议。

当然,以上说的都只是常见的方式,具体还需要结合你项目实际情况。

同时,其它类似I2C、CAN等通信,如有协议解析,也是类似。

比如之前给大家分享的MavLink,我就用CAN实现过:

void CAN_RX_IRQHandler(void)
{  
    static CanRxMsg RxMessage;  
    static MAVRCV_QUEUE_TypeDef MAVRcvQueue_Union;
  
   CAN_Receive(CAN1, CAN_FIFO0, &RxMessage);                                                 
               //拷贝长度、 数据  
   
   MAVRcvQueue_Union.MAVRcvStruct.MAVLink_Len = RxMessage.DLC;  
   memcpy(&MAVRcvQueue_Union.MAVRcvStruct.MAVLink_Buf[0], &RxMessage.Data[0], RxMessage.DLC);
   MAVLink_RcvDateFromISR(&MAVRcvQueue_Union.MAVLinkRcv_Queue[0]);
}

最后,以上内容,仅提供思路,代码不一定适合项目。

来源:strongerHuang

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 7

通过篡改特定代码数据修复单片机BUG的方法

cathy的头像

本文以STM32F103C8T6单片机为例创建演示工程,分为app和bootloader两个工程。即将mcu的Flash分为“app”和“bootloader”两个区域, bootloader放在0x8000000为起始的24KB区域内,app放在0x8006000为起始的后续区域。bootloader完成对app的Flash数据修改。

单片机直连电机,你这样做过吗?单片机和电机能不能直连呢?本期贸泽科普实验室,我们就为大家来验证了——

上面视频里,实验表明单片机是可以直连驱动电机的。

是不是意味着单片机能直接驱动所有的电机呢?

当然不是。

不知道大家注意到没有,视频里的电机是非常迷你的,与我们在其他电子产品里常见到的电机相比,在体格上有非常大的差距。

1.png

这个小电机的额定电压是3.3V,额定电流4mA。想要让它转起来,首要条件就是单片机IO口的输出电压和电流要满足电机的额定电压和额定电流。

以STM32F103单片机为例,在输出电压特性表可以看到,STM32F103的I/O输出高电平的电压在VDD-0.4V至VDD,以3.3V供电的话,那么I/O口的高电平电压在2.9V至3.3V之间。

2.png

图源:STM32F10xxx参考手册

而在STM32F103的输出驱动电流说明表中,可以看到I/O输出拉电流是8mA,输出灌电流是25mA,流经芯片的总电流不得超过150mA。

3.png

4.png

图源:STM32F10xxx参考手册

这样看来,STM32F103的IO口直连小电机,完全是没问题的!但是,问题来了——

小电机,也就是直流有刷电机是感性设备,在电机运转的过程中,会产生反电动势,用示波器测量,供电使用3.3V的话,产生的反电动势峰峰值达到了10V左右。这个反电动势会全部加在单片机的I/O口上。

5.png

结合单片机的I/O结构来看,此时反电动势全部由保护二极管消耗,一旦保护二极管损坏,单片机的I/O也会直接玩完。

6.png

所以,对于功率小的电机,虽然使用单片机I/O可以直接驱动,但用不了多长时间,单片机I/O就会损坏。而对于功率大的电机,单片机是无法直接驱动的。

那单片机应该如何正确的驱动电机呢?

不同的电机,驱动方式也是不同的,以我们常见的直流有刷电机、直流无刷电机、直流步进电机为例。

01、直流有刷电机的驱动

如果只是控制电机转动速度,不控制电机旋转方向,单片机+1个MOS管即可。单片机的的1个IO口,连接MOS管的G极,如下图:

7.png

当MOS导通,电机旋转,当MOS关断,电机停转,电机产生的反电动势通过二极管D1消耗,起到保护电源的作用,当需要控制电机速度时,只需要单片机控制PWM的占空比就可以了。

如果既要控制方向,又要控制速度,就需要使用单片机+H桥。

单片机的4个IO口,即上图的PWM1,2,3,4,分别连接H桥4个MOS管的G极。通过控制单片机IO口输出电平,可以让4个MOS按照一定的顺序导通。当Q1和Q5导通,电机正转,当Q2和Q4导通时,电机反转。需要控制电机速度时,只需要单片机控制PWM信号的占空比就可以了。

02、直流无刷电机的驱动

直流无刷电机通常有2个重要组成部分,电机主体和驱动器。单个电机是无法运转的,直流无刷电机的定子绕组会做成三相对称星形接法,转子通常由n对磁极的永磁体构成,根据转子运转形式,有可以分为内转子和外转子。

直流无刷电机的驱动分三种情况:

第一种,驱动器和电机集成的。要想直流无刷电机运转,必须有驱动器。一些小型无刷电机,驱动器和电机是集成的,例如下面这种散热风扇,我们在使用的时候只需要连接电源就可以运转。

9.png

第二种,电子调速器,像无人机上常用的直流无刷电机,就需要外接电子调速器并且给控制信号才能工作。

10.png

第三种,使用闭环控制,通常在工业运动控制中使用,电机内部集成了3相霍尔传感器,用来检测转子位置和转速,同时,配套的驱动板也比较复杂,集成了很多信号采集和电机保护功能,可以控制直流无刷电机的转速、转矩、方向等。

03、步进电机的驱动

步进电机运转必须有步进电机驱动器,而步进电机驱动器种类是很多,对于功率比较小的步进电机,就可以使用单片机,外加ULN2003或者MX1508来驱动,这种驱动比较繁琐,每一相的脉冲信号时序都要自己去控制。

11.png

还有一种就是使用集成驱动芯片设计的步进电机驱动器,例如TB6600、A4988等驱动芯片,这类驱动器驱动功率大、使用简单,控制只需提供速度、方向和使能信号,设定好驱动器参数,通过给定脉冲数量,就能使步进电机转动对应角度。

12.png

此外还有一种情况是驱动和电机一体的步进电机,这类步进电机还集成了编码器,一般应用在高精度的控制场合,这类步进电机可以通过串口通讯进行控制,也可以通过脉冲信号去控制。

1736936192981485.png

关于电机驱动的问题,不是一篇文章就能说得完,由于篇幅有限,就介绍这么多了。总之,大家记住一点,单片机不能直接驱动电机,需要搭配合适的驱动电路才可以。

来源:贸泽电子

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 18

单片机开发过程中通常会用到“消息队列”,一般实现的方法有多种。本文给大家分享一下队列实现的原理和机制。

环形队列

环形队列是在实际编程极为有用的数据结构,它是一个首尾相连的FIFO的数据结构,采用数组的线性空间,数据组织简单,能很快知道队列是否满为空,能以很快速度的来存取数据。

环形队列通常用于通信领域,比如UART、USB、CAN、网络等。

1.环形队列实现原理

内存上没有环形的结构,因此环形队列实上是数组的线性空间来实现。当数据到了尾部它将转回到0位置来处理。

因此环列队列的逻辑:将数组元素q[0]与q[MAXN-1]连接,形成一个存放队列的环形空间。

为了方便读写,还要用数组下标来指明队列的读写位置。head/tail.其中head指向可以读的位置,tail指向可以写的位置。

1.jpg

环形队列的关键是判断队列为空,还是为满。当tail追上head时,队列为满时;当head追上tail时,队列为空。但如何知道谁追上谁,还需要一些辅助的手段来判断. 

如何判断环形队列为空,为满有两种判断方法:

a.附加一个标志位tag

  • 当head赶上tail,队列空,则令tag=0

  • 当tail赶上head,队列满,则令tag=1

b.限制tail赶上head,即队尾结点与队首结点之间至少留有一个元素的空间。

  • 队列空:   head==tail

  • 队列满:   (tail+1)% MAXN ==head

2.附加标志实现原理

a.采用第一个环形队列有如下结构:

typedef struct ringq
{   
    int head; /* 头部,出队列方向*/   
    int tail; /* 尾部,入队列方向*/    
    int tag ;   int size ; /* 队列总尺寸 */   
    int space[RINGQ_MAX]; /* 队列空间 */
}RINGQ;

初始化状态:

q->head = q->tail = q->tag = 0;

队列为空:

( q->head == q->tail) && (q->tag == 0)

队列为满 :

((q->head == q->tail) && (q->tag == 1))

入队操作,如队列不满,则写入:

q->tail =  (q->tail + 1) % q->size ;

出队操作,如果队列不空,则从head处读出。下一个可读的位置在:

q->head =  (q->head + 1) % q->size

b.完整代码

头文件ringq.h:

 #ifndef __RINGQ_H__
 #define __RINGQ_H__
 
#ifdef __cplusplus
extern "C" 
{
    #endif 
    #define QUEUE_MAX 20
    typedef struct ringq
    {   
        int head; /* 头部,出队列方向*/   
        int tail; /* 尾部,入队列方向*/    
        int tag ; /* 为空还是为满的标志位*/    
        int size ; /* 队列总尺寸 */   
        int space[QUEUE_MAX]; /* 队列空间 */
    }RINGQ;

    /*   
        第一种设计方法:     
            当head == tail 时,tag = 0 为空,等于 = 1 为满。
    */
    
    extern int ringq_init(RINGQ * p_queue);
    
    extern int ringq_free(RINGQ * p_queue);

    /* 加入数据到队列 */
    extern int ringq_push(RINGQ * p_queue,int data);
    
    /* 从队列取数据 */
    extern int ringq_poll(RINGQ * p_queue,int *p_data);

    #define ringq_is_empty(q) ( (q->head == q->tail) && (q->tag == 0))
    
    #define ringq_is_full(q) ( (q->head == q->tail) && (q->tag == 1))
    
    #define print_ringq(q) printf("ring head %d,tail %d,tag %d\n", q->head,q->tail,q->tag);
    #ifdef __cplusplus
}

#endif 

#endif /* __RINGQ_H__ */

源代码 ringq.c:

#include <stdio.h>
#include "ringq.h"

int ringq_init(RINGQ * p_queue)
{  
   p_queue->size = QUEUE_MAX ;
   
  p_queue->head = 0;  
  p_queue->tail = 0;
 
  p_queue->tag = 0;
 
  return 0;
}

int ringq_free(RINGQ * p_queue)
{  
   return 0;
}

int ringq_push(RINGQ * p_queue,int data)
{  
   print_ringq(p_queue);
 
  if(ringq_is_full(p_queue))  
  {
    printf("ringq is full\n");    
    return -1;  
   }
   
  p_queue->space[p_queue->tail] = data;
 
  p_queue->tail = (p_queue->tail + 1) % p_queue->size ;
 
  /* 这个时候一定队列满了*/     
  if(p_queue->tail == p_queue->head)    
  {      
      p_queue->tag = 1;    
   }
 
  return p_queue->tag ;  
}

int ringq_poll(RINGQ * p_queue,int * p_data)
{  
   print_ringq(p_queue);  
   if(ringq_is_empty(p_queue))  
   {
     printf("ringq is empty\n");    
     return -1;  
  }
 
  *p_data = p_queue->space[p_queue->head];
 
  p_queue->head = (p_queue->head + 1) % p_queue->size ;
 
  /* 这个时候一定队列空了*/  
  if(p_queue->tail == p_queue->head)    
  {      
      p_queue->tag = 0;    
  }        
  return p_queue->tag ;
}

看到源代码,相信大家就明白其中原理了。其实还有不采用tag,或者其他一些标志的方法,这里就不进一步展开讲述了,感兴趣的读者可以自行研究一下。

消息队列

在RTOS中基本都有消息队列这个组件,也是使用最常见的组件之一。

1.消息队列的基本概念

消息队列是一种常用于任务间通信的数据结构,队列可以在任务与任务间、中断和任务间传递信息,实现了任务接收来自其他任务或中断的不固定长度的消息。

通过消息队列服务,任务或中断服务程序可以将一条或多条消息放入消息队列中。同样,一个或多个任务可以从消息队列中获得消息。

使用消息队列数据结构可以实现任务异步通信工作。

2.消息队列的特性:

RTOS消息队列,常见特性

消息支持先进先出方式排队,支持异步读写工作方式。读写队列均支持超时机制。消息支持后进先出方式排队,往队首发送消息(LIFO)。可以允许不同长度(不超过队列节点最大值)的任意类型消息。一个任务能够从任意一个消息队列接收和发送消息。多个任务能够从同一个消息队列接收和发送消息。当队列使用结束后,可以通过删除队列函数进行删除。

3.消息队列的原理

这里以 FreeRTOS 为例进行说明。FreeRTOS 的消息队列控制块由多个元素组成,当消息队列被创建时,系统会为控制块分配对应的内存空间,用于保存消息队列的一些信息如消息的存储位置,头指针 pcHead、尾指针 pcTail、消息大小 uxItemSize 以及队列长度 uxLength 等。

2.png

比如创建消息队列:

xQueue = xQueueCreate(QUEUE_LEN, QUEUE_SIZE);

任务或者中断服务程序都可以给消息队列发送消息,当发送消息时,如果队列未满或者允许覆盖入队,FreeRTOS 会将消息拷贝到消息队列队尾,否则,会根据用户指定的阻塞超时时间进行阻塞,在这段时间中,如果队列一直不允许入队,该任务将保持阻塞状态以等待队列允许入队。当其它任务从其等待的队列中读取入了数据(队列未满),该任务将自动由阻塞态转移为就绪态。当等待的时间超过了指定的阻塞时间,即使队列中还不允许入队,任务也会自动从阻塞态转移为就绪态,此时发送消息的任务或者中断程序会收到一个错误码 errQUEUE_FULL。

发送紧急消息的过程与发送消息几乎一样,唯一的不同是,当发送紧急消息时, 发送的位置是消息队列队头而非队尾,这样,接收者就能够优先接收到紧急消息,从而及时进行消息处理。

当某个任务试图读一个队列时,其可以指定一个阻塞超时时间。在这段时间中,如果队列为空,该任务将保持阻塞状态以等待队列数据有效。当其它任务或中断服务程序往其等待的队列中写入了数据,该任务将自动由阻塞态转移为就绪态。当等待的时间超过了指定的阻塞时间,即使队列中尚无有效数据,任务也会自动从阻塞态转移为就绪态。

当消息队列不再被使用时,应该删除它以释放系统资源,一旦操作完成, 消息队列将被永久性的删除。

消息队列的运作过程具体见下图:

3.png

4.消息队列的阻塞

机制出队阻塞:当且仅当消息队列有数据的时候,任务才能读取到数据,可以指定等待数据的阻塞时间。

入队阻塞:当且仅当队列允许入队的时候,发送者才能成功发送消息;队列中无可用消息空间时,说明消息队列已满,此时,系统会根据用户指定的阻塞超时时间将任务阻塞。

假如有多个任务阻塞在一个消息队列中,那么这些阻塞的任务将按照任务优先级进行排序,优先级高的任务将优先获得队列的访问权。

“环形队列”和“消息队列”的异同

通过以上分析,你会发现“环形队列”和“消息队列”之间有很多共同点:

1.他们都是一种数据结构,结构中都包含头、尾、标志等信息;

2.它们都是分配一块连续的内存空间,且都可以分配多个队列。

3.应用场景类似,有大量吞吐数据的情况下,比如通信领域。

...

当然,他们也有一些不同点:

1.“环形队列”可以独立使用,也可以结合操作系统使用。而消息队列依赖RTOS(有些RTOS的参数信息)。

2.“环形队列”占用资源更小,更适合于资源较小的系统中。

3.“消息队列”结合RTOS应用更加灵活,比如延时、中断传输数据等。

...

最后,这两种队列应用都比较广,建议抽空都研究一下。

来源:嵌入式专栏(作者 | strongerHuang)

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 35

今天分析一个经典的单片机供电电路,电路的原理图如下图所示:

1.png

▲ 开关电路简化后的电路

在电路上电之前。开关"TEST"断开,单片机也没有通过VCC加电。此时,T1的基极通过R9(100k)接地,处于截止状态。T3的基级电阻R7所连接的Test,T1都处于截止状态,所以T3也处于截止状态。

电源+9V被T3隔离,没有加载稳压芯片IC2上,IC2的输出VCC保持低电平。

2.png

▲ 电路关闭状态

按动按钮“TEST”启动电路,T3的基极通过R7,Test,T2的b-e接地,从而使得T3导通。此时+9V通过T3加到IC2稳压芯片。IC2输出VCC是加到单片机上。

单片机工作后,通过IO2输出高电压,通过R8使得T1导通。此时即使Test松开,T3的基极也可以通过R7,LED1,T1接地,实现电源自锁打开。

3.png▲ 按动TEST,启动电路

4.png

▲ 电路启动后,由MCU提供T1基极电压维持T3导通

之后,单片机软件可以来使得IO2端口重新变成低电平,使得T1截止,进而使得T3截止。

可以根据IO1端口,读取T2的开关状态,进而判断用户是否按动功能键。判断用户按动Test之后,等到用户释放Test之后,便可以将IO2置低电平。

也可以根据软件功能,实现自动延迟掉电,进而减少对供电电源的消耗。

来源:电子工程学习圈

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 29

UART串口是嵌入式开发常见的一种通信方式,但还是有不少人不知道怎么使用串口。

今天就来围绕串口,简单分享几点内容:

  • 串口接收方式

  • 处理接收数据

  • 通信协议解析

串口接收方式

串口接收(通信另一端)的数据,常见的方式:

  • 轮询(查询)接收寄存器

  • 中断接收数据

轮询,就是间隔一定时间(一般ms,甚至us)去查询一下接收寄存器是否有数据,如果有数据,就处理接收到的数据。

中断,平时没有数据接收时,CPU干自己的事。当有接收数据时,UART串口控制器会响应中断,通知CPU有事干了。

轮询方式,大家想过有哪些弊端吗?

效率低:CPU大部分时间都是去做查询的工作;

响应不实时:如果短时间内有多个接收数据,CPU正在处理一件相对耗时的事情(比如:发送一个数据包),没来得及查询接收到的数据,此时,数据就可能丢失。(特别是早些年串口没有FIFO功能的时候)

所以,不管是UART串口,还是I2C、 SPI、 CAN等串行通信,用的最多,最常见的还是中断接收,很少有用轮询的方式。

我之前维护一个老代码(坑),CLI串口用轮询方式,出现丢数据、溢出错误等众多问题,让我还加了好几个班。。。

处理接收数据

中断有数据来了,大家怎么处理接收到的数据?

我见过有些小项目,直接在中断函数里面做一些应用的情况。比如:串口中断接收一个传感器发过来的数据,显示数据并做一些响应的动作。

中断函数,代码能少尽少,耗时能少尽少,不能处理太多耗时的复杂的逻辑、应用等。

中断有数据来了,一般是通过FIFO方式处理。

1.简单的数组接收、应用解析并处理

比如:

static uint8_t gRxCnt = 0;
static uint8_t gRxBuf[10];

void USART1_IRQHandler(void)
{  
    //...  
    gDgus_RxBuf[gRxCnt] = (uint8_t)USART_ReceiveData(USART1);  
    gRxCnt++;  
    //...  
    
}

void App(void){  
    //...  
    if(0 < gRxCnt)  
    {    
        //拷贝接收到的数据    
        gRxCnt = 0;    
        //解析接收数据并处理  
    }
}

2.中断函数接收一帧完整数据再处理

比如:

void USART1_IRQHandler(void)
{  
    static uint8_t RxCnt = 0;                      //计数值  
    static uint8_t RxNum = 0;                      //数量
   
   if((USART1->SR & USART_FLAG_RXNE) == USART_FLAG_RXNE)  
   {    
       gDgus_RxBuf[RxCnt] = (uint8_t)USART_ReceiveData(USART1);    
       RxCnt++;
       
      /* 判断帧头 */    
      if(gDgus_RxBuf[0] != DGUS_FRAME_HEAD1)       //接收到帧头1    
      {      
          RxCnt = 0;      
          return;    
      }  
        
      if((2 == RxCnt) && (gDgus_RxBuf[1] != DGUS_FRAME_HEAD2))    
      {      
          RxCnt = 0;      
          return;    
      }
      
      /* 确定一帧数据长度 */    
      if(RxCnt == 3)    
      {      
          RxNum = gDgus_RxBuf[2] + 3;    
      }
      
     /* 接收完一帧数据 */    
     if((6 <= RxCnt) && (RxNum <= RxCnt))    
     {      
         RxCnt = 0;      
         OSMboxPost(EventMBox_Touch, gDgus_RxBuf);  //发送消息邮箱(执行触控操作)    
     }  
    }
 }

中断函数解析完一帧数据,可以通过标志位通知应用(裸机时),也可以通过消息队列、邮箱等方式发送到应用(RTOS时)。

3.RTOS队列、邮箱接收

比如:

void DEBUG_COM_IRQHandler(void)
{  
    static uint8_t Data;
   
   if(USART_GetITStatus(DEBUG_COM, USART_IT_RXNE) != RESET)  
   {    
       Data = USART_ReceiveData(DEBUG_COM);    
       CLI_RcvDateFromISR(Data); //下面把这个函数分离出来了  
   }
}

void CLI_RcvDateFromISR(uint8_t RcvData)
{  
    static portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;
   if(xCLIRcvQueue != NULL)  
   {    
       xQueueSendFromISR(xCLIRcvQueue, &RcvData, &xHigherPriorityTaskWoken);  
   }
}

中断来一字节数据,就通过消息队列发送一个字节数据,如果没有及时出来这个数据,也是存储在队列中。

通信协议解析

像上面第2种,简单通信协议,项目相对较小的情况下,可以直接在中断函数里面处理。

但是,如果项目相对较大、复杂一点,协议也先对复杂一点,上面第2种在函数内部出来方式就不可取。

1.裸机环境

裸机的情况下,建议用第一种:中断数组缓存数据(FIFO),应用解析通信协议。

2.RTOS环境

RTOS情况下,建议用第三种方式:消息队列、邮箱等方式接收数据,然后发送(通知)应用解析协议。

当然,以上说的都只是常见的方式,具体还需要结合你项目实际情况。

同时,其它类似I2C、CAN等通信,如有协议解析,也是类似。

比如之前给大家分享的MavLink,我就用CAN实现过:

void CAN_RX_IRQHandler(void)
{  
    static CanRxMsg RxMessage;  
    static MAVRCV_QUEUE_TypeDef MAVRcvQueue_Union;
    
   CAN_Receive(CAN1, CAN_FIFO0, &RxMessage);                                                 
                               //拷贝长度、 数据    
   MAVRcvQueue_Union.MAVRcvStruct.MAVLink_Len = RxMessage.DLC;  
   memcpy(&MAVRcvQueue_Union.MAVRcvStruct.MAVLink_Buf[0], &RxMessage.Data[0], RxMessage.DLC);
   
   MAVLink_RcvDateFromISR(&MAVRcvQueue_Union.MAVLinkRcv_Queue[0]);
}

最后,以上内容,仅提供思路,代码不一定适合项目。

来源:strongerHuang(作者 | strongerHuang)

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 43

在研制带器的电子产品时,如何提高抗干扰能力和电磁兼容性?

一、下面的系统要特别注意抗电磁干扰:

1、微控制器时钟频率特别高,总线周期特别快的系统。

2、系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。

3、含微弱模拟信号电路以及高精度A/D变换电路的系统。

二、为系统的抗电磁干扰能力采取如下措施:

1、选用频率低的微控制器

选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。虽然方波的高频成份的波的幅度,比基波小,但频率越高越发射出成为噪声源,微控制器产生的最有影响的高频噪声大约是时钟频率的3倍。

2、减小信号传输中的畸变

微 控制器主要采用高速CMOS技术制造。信号输入端静态输入电流在1mA左右,输入电容10PF左右,输入阻抗相当高,高速CMOS电路的输出端都有相当的 带载能力,即相当大的输出值,将一个门的输出端通过一段很长线引到输入阻抗相当高的输入端,反射问题就很严重,它会引起信号畸变,系统噪声。当 Tpd>Tr时,就成了一个传输线问题,考虑信号反射,阻抗匹配等问题。

信号在印制板上的延迟时间与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。可以粗略地认为,信号在印制板引线的传输速度,约为光速的1/3到1/2。微控制器构成的系统中常用逻辑电话元件的Tr(标准延迟时间)为3到18ns。

在印制线路板上,信号通过一个7W的电阻和一段25cm长的引线,线上延迟时间大致在4~20ns。也说,信号在印刷线路上的引线越短越好,最长不宜超过25cm。而且过孔数目也应尽量少,最好不多于2个。

当信号的上升时间快于信号延迟时间,就要快电子学。要考虑传输线的阻抗匹配,对于一块印刷线路板上的集成块的信号传输,要避免出现Td>Trd的,印刷线路板越大系统的速度就越不能太快。

用以下结论归纳印刷线路板设计的一个规则:

信号在印刷板上传输,其延迟时间不应大于所用器件的标称延迟时间。

3、减小信号线间的交叉干扰

A 点一个上升时间为Tr的阶跃信号通过引线AB传向B端。信号在AB线上的延迟时间是Td。在D点,A点信号的向前传输,到达B点后的信号反射和AB线的延 迟,Td时间以后会感应出一个宽度为Tr的页脉冲信号。在C点,AB上信号的传输与反射,会感应出一个宽度为信号在AB线上的延迟时间的两倍,即2Td的 正脉冲信号。这信号间的交叉干扰。干扰信号的强度与C点信号的di/at有关,与线间距离有关。当两信号线不是很长时,AB上看到的是两个脉冲的迭加。

CMOS 工艺制造的微控制由输入阻抗高,噪声高,噪声容限也很高,数字电路是迭加100~200mv噪声并不影响其工作。若图中AB线是一模拟信号,这种干扰就变 为不能容忍。如印刷线路板为四层板,其中有一层是大面积的地,或双面板,信号线的反面是大面积的地时,这种信号间的交叉干扰就会变小。原因是,大面积的地 减小了信号线的特性阻抗,信号在D端的反射大为减小。特性阻抗与信号线到地间的介质的介电常数的平方成反比,与介质厚度的自然对数成正比。若AB线为一模 拟信号,要避免数字电路信号线CD对AB的干扰,AB线下方要有大面积的地,AB线到CD线的距离要大于AB线与地距离的2~3倍。局部屏蔽地,在有引结 的一面引线左右两侧布以地线。

4、减小来自电源的噪声

电源在向系统提供能源的,也将其噪声加到所供电的电源上。电路中微控制器的复位线,中断线,以它控制线最受外界噪声的干扰。电网上的强干扰通过电源进入电路,即使电池供电的系统,电池本身也有高频噪声。模拟电路中的模拟信号更经受不住来自电源的干扰。

5、注意印刷线板与元器件的高频特性

在 高频下,印刷线路板上的引线,过孔,电阻、电容、接插件的分布电感与电容等不可忽略。电容的分布电感不可忽略,电感的分布电容不可忽略。电阻产生对高频信 号的反射,引线的分布电容会起作用,当长度大于噪声频率相应波长的1/20时,就产生天线效应,噪声通过引线向外发射。

印刷线路板的过孔大约引起0.6pf的电容。

一个集成电路本身的封装材料引入2~6pf电容。

一个线路板上的接插件,有520nH的分布电感。一个双列直扦的24引脚集成电路扦座,引入4~18nH的分布电感。

这些小的分布参数对于这行较低频率下的微控制器系统中是可以忽略不计的;而对于高速系统予以特别注意。

6、元件布置要合理分区

元件在印刷线路板上排列的要充分考虑抗电磁干扰问题,原则之一是各部件的引线要尽量短。在布局上,要把模拟信号部分,高速数字电路部分,噪声源部分(如继电器,大电流开关等)这三部分合理地分开,使间的信号耦合为最小。

7、好接地线

印刷电路板上,电源线和地线最重要。克服电磁干扰,最主要的手段接地。

对 于双面板,地线布置特别讲究,通过采用单点接地法,电源和地是从电源的两端接到印刷线路板上来的,电源一个接点,地一个接点。印刷线路板上,要有多个返回 地线,这些都会聚到回电源的那个接点上,所谓单点接地。所谓模拟地、数字地、大功率器件地开分,是指布线分开,而最后都汇集到接地点上来。与印刷线路板以 外的信号相连时,通常采用屏蔽电缆。对于高频和数字信号,屏蔽电缆两端都接地。低频模拟信号用的屏蔽电缆,一端接地为好。

对噪声和干扰非常敏感的电路或高频噪声特别严重的电路应该用金属罩屏蔽起来。

8、用好去耦电容。

好 的高频去耦电容可以去除高到1GHZ的高频成份。陶瓷片电容或多层陶瓷电容的高频特性较好。设计印刷线路板时,每个集成电路的电源,地都要加一个去耦电 容。去耦电容有两个作用:一是本集成电路的蓄能电容,提供和吸收该集成电路开门关门瞬间的充放电能;另一旁路掉该器件的高频噪声。数字电路中典型的去耦电 容为0.1uf的去耦电容有5nH分布电感,它的并行共振频率大约在7MHz左右,也说对于10MHz以下的噪声有较好的去耦作用,对40MHz的噪声几 乎不起作用。

1uf,10uf电容,并行共振频率在20MHz,去除高频率噪声的效果要好。在电源进入印刷板的地方和一个1uf或10uf的去高频电容往往是有利的,即使是用电池供电的系统也这种电容。

每10片左右的集成电路要加一片充放电电容,或称为蓄放电容,电容大小可选10uf。最好不用电解电容,电解电容是两层溥膜卷起来的,这种卷起来的结构在高频时表现为电感,最好使用胆电容或聚碳酸酝电容。

去耦电容值的选取并不严格,可按C=1/f计算;即10MHz取0.1uf,对微控制器构成的系统,取0.1~0.01uf都可以。

三、降低噪声与电磁干扰的经验

能用低速芯片就不用高速的,高速芯片用在关键地方。

串一个电阻的办法,降低控制电路上下沿跳变速率。

尽量为继电器等提供某种形式的阻尼。

使用满足系统要求的最低频率时钟。

时钟产生器尽量靠近到用该时钟的器件。石英晶体振荡器外壳要接地。

用地线将时钟区圈起来,时钟线尽量短。

I/O驱动电路尽量靠近印刷板边,让其尽快离开印刷板。对进入印制板的信号要加滤波,从高噪声区来的信号也要加滤波,用串终端电阻的办法,减小信号反射。

MCD无用端要接高,或接地,或定义成输出端,集成电路上该接电源地的端都要接,不要悬空。

闲置不用的门电路输入端不要悬空,闲置不用的运放正输入端接地,负输入端接输出端。(10) 印制板尽量使用45折线而不用90折线布线以减小高频信号对外的发射与耦合。

印制板按频率和电流开关特性分区,噪声元件与非噪声元件要距离再远。

单面板和双面板用单点接电源和单点接地、电源线、地线尽量粗,经济是能承受的话用多层板以减小电源,地的容生电感。

时钟、总线、片选信号要远离I/O线和接插件。

模拟电压输入线、参考电压端要尽量远离数字电路信号线,特别是时钟。

对A/D类器件,数字部分与模拟部分宁可统一下也不要交叉。

时钟线垂直于I/O线比平行I/O线干扰小,时钟元件引脚远离I/O电缆。

元件引脚尽量短,去耦电容引脚尽量短。

关键的线要尽量粗,并在两边加上保护地。高速线要短要直。

对噪声敏感的线不要与大电流,高速开关线平行。

石英晶体下面以及对噪声敏感的器件下面不要走线。

弱信号电路,低频电路周围不要形成电流环路。

信号都不要形成环路,如不可避免,让环路区尽量小。

每个集成电路一个去耦电容。每个电解电容边上都要加一个小的高频旁路电容。

用大容量的钽电容或聚酷电容而不用电解电容作电路充放电储能电容。使用管状电容时,外壳要接地。

来源:单片机与嵌入式学堂

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 53

一个单片机应用系统的硬件电路设计包含两部分内容:一是系统扩展,即单片机内部的功能单元,如ROM、RAM、I/O、定时器/计数器、中断系统等不能满足应用系统的要求时,必须在片外进行扩展,选择适当的芯片,设计相应的电路。二是系统的配置,即按照系统功能要求配置外围设备,如键盘、显示器、打印机、A/D、D/A转换器等,要设计合适的接口电路。

1.jpg

系统的扩展和配置应遵循以下原则:

1、尽可能选择典型电路,并符合单片机常规用法。为硬件系统的标准化、模块化打下良好的基础。

2、系统扩展与外围设备的配置水平应充分满足应用系统的功能要求,并留有适当余地,以便进行二次开发。

3、硬件结构应结合应用软件方案一并考虑。硬件结构与软件方案会产生相互影响,考虑原则是:软件能实现的功能尽可能由软件实殃,以简化硬件结构。但必须注意,由软件实现的硬件功能,一般响应时间比硬件实现长,且占用CPU时间。

4、系统中的相关器件要尽可能做到性能匹配。如选用CMOS芯片单片机构成低功耗系统时,系统中所有芯片都应尽可能选择低功耗产品。

5、可靠性及抗干扰设计是硬件设计必不可少的一部分,它包括芯片、器件选择、去耦滤波、印刷电路板布线、通道隔离等。

6、单片机外围电路较多时,必须考虑其驱动能力。驱动能力不足时,系统工作不可靠,可通过增设线驱动器增强驱动能力或减少芯片功耗来降低总线负载。

7、尽量朝“单片”方向设计硬件系统。系统器件越多,器件之间相互干扰也越强,功耗也增大,也不可避免地降低了系统的稳定性。随着单片机片内集成的功能越来越强,真正的片上系统SoC已经可以实现,如ST公司新近推出的μPSD32××系列产品在一块芯片上集成了80C32核、大容量FLASH存储器、SRAM、A/D、I/O、两个串口、看门狗、上电复位电路等等。

单片机系统硬件抗干扰常用方法实践

影响单片机系统可靠安全运行的主要因素主要来自系统内部和外部的各种电气干扰,并受系统结构设计、元器件选择、安装、制造工艺影响。这些都构成单片机系统的干扰因素,常会导致单片机系统运行失常,轻则影响产品质量和产量,重则会导致事故,造成重大经济损失。

形成干扰的基本要素有三个:

(1)干扰源。指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt, di/dt大的地方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可 能成为干扰源。

(2)传播路径。指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传 播路径是通过导线的传导和空间的辐射。

(3)敏感器件。指容易被干扰的对象。如:A/D、D/A变换器,单片机,数字IC, 弱信号放大器等。

干扰的分类

1、干扰的分类

干扰的分类有好多种,通常可以按照噪声产生的原因、传导方式、波形特性等等进行不同的分类。按产生的原因分:

可分为放电噪声音、高频振荡噪声、浪涌噪声。

按传导方式分:可分为共模噪声和串模噪声。

按波形分:可分为持续正弦波、脉冲电压、脉冲序列等等。

2、干扰的耦合方式

干扰源产生的干扰信号是通过一定的耦合通道才对测控系统产生作用的。因此,我有必要看看干扰源和被干扰对象之间的传递方式。干扰的耦合方式,无非是通过导线、空间、公共线等等,细分下来,主要有以下几种:

(1)直接耦合:

这是最直接的方式,也是系统中存在最普遍的一种方式。比如干扰信号通过电源线侵入系统。对于这种形式,最有效的方法就是加入去耦电路。从而很好的抑制。

(2)公共阻抗耦合:这也是常见的耦合方式,这种形式常常发生在两个电路电流有共同通路的情况。为了防止这种耦合,通常在电路设计上就要考虑。使干扰源和被干扰对象间没有公共阻抗。

(3)电容耦合:又称电场耦合或静电耦合 。是由于分布电容的存在而产生的耦合。

(4)电磁感应耦合:又称磁场耦合。是由于分布电磁感应而产生的耦合。

(5)漏电耦合:这种耦合是纯电阻性的,在绝缘不好时就会发生。

常用硬件抗干扰技术

针对形成干扰的三要素,采取的抗干扰主要有以下手段。

1、抑制干扰源

抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。

抑制干扰源的常用措施如下:

(1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加 续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可 动作更多的次数。

(2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K 到几十K,电容选0.01uF),减小电火花影响。

(3)给电机加滤波电路,注意电容、电感引线要尽量短。

(4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的 影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电 容的等效串联电阻,会影响滤波效果。

(5)布线时避免90度折线,减少高频噪声发射。

(6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。

2、切断干扰传播路径

按干扰的传播路径可分为传导干扰和辐射干扰两类。

所谓传导干扰是指通过导线传播到敏感器件的干扰。高频干扰噪声和有用信号的频带不同,可以通过在导线上增加滤波器的方法切断高频干扰噪声的传播,有时也可加隔离光耦来解决。电源噪声的危害最大,要特别注意处理。

所谓辐射干扰是指通过空间辐射传播到敏感器件的干扰。一般的解决方法是增加干扰源与敏感器件的距,用地线把它们隔离和在敏感器件上加 蔽罩。

切断干扰传播路径的常用措施如下:

(1)充分考虑电源对单片机的影响。电源做得好,整个电路的抗干扰就 解决了一大半。许多单片机对电源噪声很敏感,要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。

(2)如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。

(3)注意晶振布线。晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。

(4)电路板合理分区,如强、弱信号,数字、模拟信号。尽可能把干扰源(如电机、继电器)与敏感元件(如单片机)远离。

(5)用地线把数字区与模拟区隔离。数字地与模拟地要分离,最后在一点接于电源地。A/D、D/A芯片布线也以此为原则。

(6)单片机和大功率器件的地线要单独接地,以减小相互干扰。大功率器件尽可能放在电路板边缘。

(7)在单片机I/O口、电源线、电路板连接线等关键地方使用抗干扰元件如磁珠、磁环、电源滤波器、屏蔽罩,可显着提高电路的抗干扰性能。

3、提高敏感器件的抗干扰性能

提高敏感器件的抗干扰性能是指从敏感器件这边考虑尽量减少对干扰噪声 的拾取,以及从不正常状态尽快恢复的方法。

提高敏感器件抗干扰性能的常用措施如下:

(1)布线时尽量减少回路环的面积,以降低感应噪声。

(2)布线时,电源线和地线要尽量粗。除减小压降外,更重要的是降低耦 合噪声。

(3)对于单片机闲置的I/O口,不要悬空,要接地或接电源。其它IC的闲置端在不改变系统逻辑的情况下接地或接电源。

(4)对单片机使用电源监控及看门狗电路,如:IMP809,IMP706,IMP813, X5043,X5045等,可大幅度提高整个电路的抗干扰性能。

(5)在速度能满足要求的前提下,尽量降低单片机的晶振和选用低速数字电路。

(6)IC器件尽量直接焊在电路板上,少用IC座。

4、其它常用抗干扰措施

交流端用电感电容滤波:去掉高频低频干扰脉冲。

变压器双隔离措施:变压器初级输入端串接电容,初、次级线圈间屏蔽层与初级间电容中心接点接大地,次级外屏蔽层接印制板地,这是硬件抗干扰的关键手段。

次级加低通滤波器:吸收变压器产生的浪涌电压。

采用集成式直流稳压电源:因为有过流、过压、过热等保护。I/O口采用光电、磁电、继电器隔离,同时去掉公共地。

通讯线用双绞线:排除平行互感。防雷电用光纤隔离最为有效。

A/D转换用隔离放大器或采用现场转换:减少误差。

外壳接大地:解决人身安全及防外界电磁场干扰。加复位电压检测电路。防止复位不充份,CPU就工作,尤其有EEPROM的器件,复位不充份会改变EEPROM的内容。

印制板工艺抗干扰:

①电源线加粗,合理走线、接地,三总线分开以减少互感振荡。

②CPU、RAM、ROM等主芯片,VCC和GND之间接电解电容及瓷片电容,去掉高、低频干扰信号。

③独立系统结构,减少接插件与连线,提高可靠性,减少故障率。

④集成块与插座接触可靠,用双簧插座,最好集成块直接焊在印制板上,防止器件接触不良故障。

⑤有条件采用四层以上印制板,中间两层为电源及地

来源:单片机与嵌入式学堂

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 26

一、单片机内部结构分析

我们来思考一个问题,当我们在编程器中把一条指令写进单片机内部,然后取下单片机,单片机就可以执行这条指令,那么这条指令一定保存在单片机的某个地方,并且这个地方在单片机掉电后依然可以保持这条指令不会丢失,这是个什么地方呢?这个地方就是单片机内部的只读存储器即ROM(READ ONLY MEMORY)。为什么称它为只读存储器呢?刚才我们不是明明把两个数字写进去了吗?原来在89C51中的ROM是一种电可擦除的ROM,称为FLASH ROM,刚才我们是用的编程器,在特殊的条件下由外部设备对ROM进行写的操作,在单片机正常工作条件下,只能从那面读,不能把数据写进去,所以我们还是把它称为ROM。

二、几个基本概念

1、数的本质和物理现象

我们知道,计算机可以进行数学运算,这令我们非常难以理解,计算机吗,我们虽不了解它的组成,但它们只是一些电子元器件,怎么可以进行数学运算呢?我们做数学题如37+45是这样做的,先在纸上写37,然后在下面写45,然后大脑运算,最后写出结果,运算的原材料:37、45和结果:82都是写在纸上的,计算机中又是放在什么地方呢?为了解决这个问题,先让我们做一个实验:这里有一盏灯,我们知道灯要么亮,要么不亮,就有两种状态,我们可以用’0’和’1’来代替这两种状态,规定亮为’1’,不亮为’0’。现在放上两盏灯,一共有几种状态呢?我们列表来看一下:

请大家自己写上3盏灯的情况000 001 010 011 100 101 110 111我们来看,这个000,001,101 不就是我们学过的的二进制数吗?本来,灯的亮和灭只是一种物理现象,可当我们把它们按一定的顺序排好后,灯的亮和灭就代表了数字了。让我们再抽象一步,灯为什么会亮呢?是因为输出电路输出高电平,给灯通了电。因此,灯亮和灭就可以用电路的输出是高电平还是低电平来替代了。这样,数字就和电平的高、低联系上了。(请想一下,我们还看到过什么样的类似的例子呢?(海军之)灯语、旗语,电报,甚至红、绿灯)。

2、位的含义

通过上面的实验我们已经知道:一盏灯亮或者说一根线的电平的高低,可以代表两种状态:0和1。实际上这就是一个二进制位,因此我们就把一根线称之为一“位”,用BIT表示。

3、字节的含义

一根线可以表示0和1,两根线可以表达00,01,10,11四种状态,也就是可以表达0到3,而三根可以表达0~7,计算机中通常用8根线放在一起,同时计数,就可以表示0-255一共256种状态。这8根线或者8位就称之为一个字节(BYTE)。

存储器的工作原理

1、存储器构造

1.jpg

存储器就是用来存放数据的地方。它是利用电平的高低来存放数据的,也就是说,它存放的实际上是电平的高、低,而不是我们所习惯认为的1234这样的数字,这样,我们的一个谜团就解开了,计算机也没什么神秘的吗。

如上图左所示:一个存储器就象一个个的小抽屉,一个小抽屉里有八个小格子,每个小格子就是用来存放“电荷”的,电荷通过与它相连的电线传进来或释放掉,至于电荷在小格子里是怎样存的,就不用我们操心了,你可以把电线想象成水管,小格子里的电荷就象是水,那就好理解了。存储器中的每个小抽屉就是一个放数据的地方,我们称之为一个“单元”。

有了这么一个构造,我们就可以开始存放数据了,想要放进一个数据12,也就是00001100,我们只要把第二号和第三号小格子里存满电荷,而其它小格子里的电荷给放掉就行了(看上图右)。可是问题出来了,看上图右,一个存储器有好多单元,线是并联的,在放入电荷的时候,会将电荷放入所有的单元中,而释放电荷的时候,会把每个单元中的电荷都放掉,这样的话,不管存储器有多少个单元,都只能放同一个数,这当然不是我们所希望的,因此,要在结构上稍作变化,看上图右,在每个单元上有个控制线,我想要把数据放进哪个单元,就把一个信号给这个单元的控制线,这个控制线就把开关打开,这样电荷就可以自由流动了,而其它单元控制线上没有信号,所以开关不打开,不会受到影响,这样,只要控制不同单元的控制线,就可以向各单元写入不同的数据了,同样,如果要从某个单元中取数据,也只要打开相应的控制开关就行了。

2、存储器译码

那么,我们怎样来控制各个单元的控制线呢?这个还不简单,把每个单元的控制线都引到集成电路的外面不就行了吗?事情可没那么简单,一片27512存储器中有65536个单元,把每根线都引出来,这个集成电路就得有6万多个脚?不行,怎么办?要想法减少线的数量。我们有一种方法称这为译码,简单介绍一下:一根线可以代表2种状态,2根线可以代表4种状态,3根线可以代表几种,256种状态又需要几根线代表?8种,8根线,所以65536种状态我们只需要16根线就可以代表了。

3、存储器的选片及总线的概念

至此,译码的问题解决了,让我们再来关注另外一个问题。送入每个单元的八根线是用从什么地方来的呢?它就是从计算机上接过来的,一般地,这八根线除了接一个存储器之外,还要接其它的器件。这样问题就出来了,这八根线既然不是存储器和计算机之间专用的,如果总是将某个单元接在这八根线上,就不好了,比如这个存储器单元中的数值是0FFH另一个存储器的单元是00H,那么这根线到底是处于高电平,还是低电平?岂非要打架看谁历害了?所以我们要让它们分离。办法当然很简单,当外面的线接到集成电路的引脚进来后,不直接接到各单元去,中间再加一组开关就行了。平时我们让开关打开着,如果确实是要向这个存储器中写入数据,或要从存储器中读出数据,再让开关接通就行了。这组开关由三根引线选择:读控制端、写控制端和片选端。要将数据写入片中,先选中该片,然后发出写信号,开关就合上了,并将传过来的数据(电荷)写入片中。如果要读,先选中该片,然后发出读信号,开关合上,数据就被送出去了。读和写信号同时还接入到另一个存储器,但是由于片选端不同,所以虽有读或写信号,但没有片选信号,所以另一个存储器不会“误会”而开门,造成冲突。那么会不同时选中两片芯片呢?只要是设计好的系统就不会,因为它是由计算控制的,而不是我们人来控制的,如果真的出现同时出现选中两片的情况,那就是电路出了故障了,这不在我们的讨论之列。

从上面的介绍中我们已经看到,用来传递数据的八根线并不是专用的,而是很多器件大家共用的,所以我们称之为数据总线,总线英文名为BUS,总即公交车道,谁也可以走。而十六根地址线也是连在一起的,称之为地址总线。

来源:面包板社区

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 39

页面

订阅 RSS - 单片机