单片机

虽然现在单片机的EMC做的很好,但有很多场合依然有很强的干扰信号,就比如我做了多年激光产品,激光瞬间功率很大,势必会对整个系统造成干扰。

针对电气控制产品的特点,本文讨论了几种单片机I/O的常用驱动和隔离电路的设计方法,对合理地设计电气控制系统,提高电路的接口能力,增强系统稳定性和抗干扰能力有实际指导意义。

输入电路设计

一般输入信号最终会以开关形式输入到单片机中,以工程经验来看,开关输入的控制指令有效状态采用低电平比采用高电平效果要好得多,如图1所示。当按下开关S1时,发出的指令信号为低电平,而平时不按下开关S1时,输出到单片机上的电平则为高电平。该方式具有较强的耐噪声能力。

1.jpg

图1 开关信号输入

若考虑到由于TTL电平电压较低,在长线传输中容易受到外界干扰,可以将输入信号提高到+24 V,在单片机入口处将高电压信号转换成TTL信号。这种高电压传送方式不仅提高了耐噪声能力,而且使开关的触点接触良好,运行可靠,如图2所示。其 中,D1为保护二极管,反向电压≥50 V。

2.jpg

图2 提高输入信号电平

3.jpg

图3 输入端保护电路

为了防止外界尖峰干扰和静电影响损坏输入引脚,可以在输入端增加防脉冲的二极管,形成电阻双向保护电路,如图3所示。二极管D1、D2、 D3的正向导通压降UF≈0.7 V,反向击穿电压UBR≈30 V,无论输入端出现何种极性的破坏电压,保护电路都能把该电压的幅度限制在输入端所能承受的范围之内。即:VI~VCC出现正脉冲时,D1正向导 通;VI~VCC出现负脉冲时,D2反向击穿;VI与地之间出现正脉冲时,D3反向击穿;VI与地之间出现负脉冲时,D3正向导通,二极管起钳位保护作用。缓冲电阻RS约为1.5~2.5 kΩ,与输入电容C构成积分电路,对外界感应电压延迟一段时间。若干扰电压的存在时间小于τ,则输入端承受的有效电压将远低于其幅度;若时间较长,则D1 导通,电流在RS上形成一定的压降,从而减小输入电压值。

此外,一种常用的输入方式是采用光耦隔离电路。如图4所示,R为输入限流电阻,使光耦中的发光二极管电流限制在10~20 mA。输入端靠光信号耦合,在电气上做到了完全隔离。

同时,发光二极管的正向阻抗值较低,而外界干扰源的内阻一般较高,根据分压原理,干扰源能馈送到输入 端的干扰噪声很小,不会产生地线干扰或其他串扰,增强了电路的抗干扰能力。

4.jpg

图4 输入端光耦隔离

在满足功能的前提下,提高单片机输入端可靠性最简单的方案是:在输入端与地之间并联一只电容来吸收干扰脉冲,或串联一只金属薄膜电阻来限制流入端口的峰值电流。

输出电路设计

单片机输出端口受驱动能力的限制,一般情况下均需专用的接口芯片。其输出虽因控制对象的不同而千差万别,但一般情况下均满足对输出电压、电流、开关频率、波形上升下降速率和隔离抗干扰的要求。在此讨论几种典型的单片机输出端到功率端的电路实现方法。

1.直接耦合

在采用直接耦合的输出电路中,要避免出现图5所示的电路。

5.jpg

图5 错误的输出电路

T1截止、T2导通期间,为了对T2提供足够的基极电流,R2的阻值必须很小。因为T2处于射极跟随器方式工作,因此为了减少T2损耗,必须将集射间电压降控制在较小范围内。

这样集基间电压也很小,电阻R2阻值很小才能提供足够的基极电流。R2阻值过大,会大幅度增加T2压降,引起T2发热严重。而在T2截止期间,T1必须导通,高压+15 V全部降在电阻R2上,产生很大的电流,显然是不合理的。

另外,T1的导通将使单片机高电平输出被拉低至接近地电位,引起输出端不稳定。T2基极被T1拉 到地电位,若其后接的是感性负载,由于绕组反电势的作用,T2的发射极可能存在高电平,容易引起T2管基射结反向击穿。

图6为一直接耦合输出电路,由T1和T2组成耦合电路来推动T3。T1导通时,在R3、R4的串联电路中产生电流,在R3上的分压大于T2 晶体管的基射结压降,促使T2导通,T2提供了功率管T3的基极电流,使T3变为导通状态。当T1输入为低电平时,T1截止,R3上压降为零,T2截止, 最终T3截止。R5的作用在于:一方面作为T2集电极的一个负载,另一方面T2截止时,T3基极所储存的电荷可以通过电阻R3迅速释放,加快T3的截止速度,有利于减小损耗。

6.png

图6 直接耦合输出电路

2.TTL或CMOS器件耦合

若单片机通过TTL或CMOS芯片输出,一般均采用集电极开路的器件,如图7(a)所示。集电极开路器件通过集电极负载电阻R1接至+15 V电源,提升了驱动电压。但要注意的是,这种电路的开关速度低,若用其直接驱动功率管,则当后续电路具有电感性负载时,由于功率管的相位关系,会影响波形 上升时间,造成功率管动态损耗增大。

为了改善开关速度,可采用2种改进形式输出电路,如图7(b)和图7(c)所示。图7(b)是能快速开通的改进电路,当TTL输出高电平 时,输出点通过晶体管T1获得电压和电流,充电能力提高,从而加快开通速度,同时也降低了集电极开路TTL器件上的功耗。图7(c)为推挽式的改进电路, 采用这种电路不但可提高开通时的速度,而且也可提高关断时的速度。输出晶体管T1是作为射极跟随器工作的,不会出现饱和,因而不影响输出开关频率。

7.png

图7 TTL或CMOS器件输出电路

3.脉冲变压器耦合

脉冲变压器是典型的电磁隔离元件,单片机输出的开关信号转换成一种频率很高的载波信号,经脉冲变压器耦合到输出级。由于脉冲变压器原、副边线圈间没有电路连接,所以输出是电平浮动的信号,可以直接与功率管等强电元件耦合,如图8所示。

8.png

图8 脉冲变压器输出电路

这种电路必须有一个脉冲源,脉冲源的频率是载波频率,应至少比单片机输出频率高10倍以上。脉冲源的输出脉冲送入控制门G,单片机输出信号 由另一端输入G门。当单片机输出高电平时,G门打开,输出脉冲进入变压器,变压器的副线圈输出与原边相同频率的脉冲,通过二极管D1、D2检波后经滤波还 原成开关信号,送入功率管。当单片机输出低电平时,G门关闭,脉冲源不能通过G门进入变压器,变压器无输出。

这里,变压器既传递信号,又传送能量,提高了脉冲源的频率,有利于减轻变压器的体重。由于变压器可通过调整电感量、原副边匝数等来适应不同 推动功率的要求,所以应用起来比较灵活。更重要的是,变压器原副边线圈之间没有电的联系,副线圈输出信号可以跟随功率元件的电压而浮动,不受其电源大小的 影响。

当单片机输出较高频率的脉冲信号时,可以不采用脉冲源和G门,对变压器原副边电路作适当调整即可。

4.光电耦合

光电耦合可以传输线性信号,也可以传输开关信号,在输出级应用时主要用来传递开关信号。

如图9所示,单片机输出控制信号经缓冲器7407放大后送入光耦。R2为光耦输出晶体管的负载电阻,它的选取应保证:在光耦导通时,其输出晶体管可靠饱和;而在光耦截止时,T1可靠饱和。但由于光耦响应速度慢使开关延迟时间加长,限制了其使用频率。

9.png

图9 光耦输出电路

结语

单片机接口技术在很多资料中均有详细的介绍,但在对大量电气控制产品的改造和设计中,经常会碰到用接口芯片所无法解决的问题(如驱动电流大、开关速度慢、抗干扰差等),因此必须寻求另一种电路解决方案。

上述几种输入/输出电路通过广泛的应用表明,其对合理、可靠地实现单片机电气控制系统具有较高的工程实用价值。

转载来源:嵌入式专栏 素材来源网络。

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 31

1、前言

嵌入式固件一般分为BootLoader和App,BootLoader用于启动校验、App升级、App版本回滚等功能,BootLoader在cpu上电第一阶段中运行,之后跳转至App地址执行应用程序。

因此,在发布固件的时候,会存在BootLoader固件和App固件;此时我们期望是将BootLoader固件和App固件合并成为一个固件,这样在量产时只需烧录一次即可。

1.png

2、传统方式

一些传统的方法都是“土办法”,没什么毛病,但比较繁琐。项目种类增加,或者版本发布频繁时更加体现出繁琐性,且易出错,操作稍微失误可能导致固件不完整;烧录不完整的固件,机子变“砖头”。

  • 烧录两次,分别烧录BootLoader和App固件

  • 烧录固件到芯片后,再从芯片读取固件,另存为hex文件

  • 手动复制、合并固件

  • BootLoader支持App固件传输功能的,只烧录BootLoader,后期再升级App

3、高效方式

我们目标是通过自动化脚本合并生成一个发布固件,提高效率和确保固件的完整性。

3.1 合并文件

Linux下的脚本我们用得很多,其实Windows的脚本也非常优秀,利用Windows的脚本可以快速实现增、删、查、改文件。常用Windows脚本命令如下。

  • 合并两个文件:copy /b

  • 重命名文件:ren <source_file> <dect_file>

  • 删除文件:del

很显然,我们利用其合并命令,只需一条指令即可将BootLoader和App文件合并。

例子:

假设当前目录存在Boot.bin和App.bin文件,合并后文件命名为Firmware.bin。

copy /b .\Boot.bin + .\App.bin Firmware.bin

注:Windows的目录路径为反斜杠,与Linux不同。

3.2 bin转hex

我们知道,二进制(bin)文件是不存在地址信息的,cpu上电执行并不一定是从地址0开始执行代码,如STM32芯片起始执行地址为0x8000000。

因此不能通过串口工具烧录bin文件,只能通过J-link或者ST-link烧录,并且在烧录前指定存储起始地址。因此,将bin文件转换为hex文件是有必要的。

bin转hex方式:

  • 使用jflash工具,把合并后的bin文件,使用jflash打开,另存为hex格式文件

  • 将bin文件烧录置芯片,读取出来,另存为hex文件

  • 自己动手写一个bin转hex工具

  • 借助第三方bin转hex工具

前两者太繁琐,效率低下;第三个比较灵活,但需要花点时间;如果使用优秀的现成工具是最快捷的办法。推荐使用“srec_cat.exe”工具,可以结合Windows脚本一起使用。

3.2.1 srec_cat工具

srec_cat一个功能非常强大的文件合并、转换工具,支持功能众多,包括:

  • 文件合并

  • 文件分割

  • bin转hex

  • hex转bin

  • 数据填充

  • CRC校验

此外,还存在srec的系列工具,文件比较工具 srec_cmp.exe和文件信息查看工具 srec_info.exe,可以从文章后面官方网站下载使用。

文件合并

命令格式:

srec_cat.exe <源文件0> <文件类型> <源文件1> <文件类型> <目标文件> <文件类型>

例子:

srec_cat.exe source0.bin -Binary source1.bin -Binary -o merge.bin -Binary
srec_cat.exe source0.hex -Intel source1.hex -Intel -o merge.hex -Intel

如果BootLoader和App生产的文件为hex格式,可以直接使用该命令合并为一个hex文件,注意地址的连续性。

bin转hex

命令格式:srec_cat.exe <bin源文件> <-Binary> <-offset> <偏移地址> <-Output> <hex目标文件> <-Intel>

例子:

将Boot.bin和App.bin合并的Firmware.bin转换为hex格式文件。

srec_cat.exe Firmware.bin -Binary -offset 0x8000000 -o Firmware.hex -Intel

0x8000000,是STM32的起始执行地址

更多的srec应用和工具下载详见官方网站:http://srecord.sourceforge.net/download.html

3.3 完整示例

第一步,在需要生成固件目录新建一个txt文件 第二步,键入如下内容(Boot固件和App固件可以指定目录)

copy /b .\Boot.bin + .\App.bin Firmware.bin
srec_cat.exe Firmware.bin -Binary -offset 0x8000000 -o Firmware.hex -Intel
del Firmware.bin

第三步,重命名txt文件为".bat"后缀文件,即是Windows可执行脚本的文件类型 第四步,双击运行脚本,即可生成目标文件 出现任何目标文件生成失败的情况,检查相关源文件是否存在,路径是否正确。

3.4 举一反三

以此类比,存在多个App文件的情况,可以通过该方式分别进行合并出一个固件。

另外,实际项目中,经常会使用内部flash空闲扇区保存一些设备参数信息,如校准系数、设备地址、序列号等信息,我们可以将参数信息保存为一个bin文件,通过该方式和固件合并,这样量产时将参数和固件一并写入,提高生产效率!

2.png

来源:网络

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com

围观 114

这是一个初学者不会去了解的问题,但,会使老司机掉坑的问题。这也是最近在技术交流群看到的一个问题,所以,就出来简单分享一下。

概述

这个问题看起来比较简单,我相信很多人都能说出答案。但是,很多人都只是停留在表面,没有在项目中经历过,也没有更深入的去了解。

1.jpg

很早之前年的单片机可能没有输出速度这个配置选项,但是这后面的单片机基本都有配置速度的选项,下面结合STM32来简单介绍一下。

GPIO输出速度

不管标准外设库,还是STM32CubeMX配置GPIO输出引脚,都会有速度GPIO_InitStruct.Speed这个选项。

类似如下:

GPIO_InitStruct.Pin = GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

根据不同MCU型号,速度选项,有些有3个,有些有4个。一般定义在xxx_gpio.h文件中。

#define GPIO_Speed_2MHz  GPIO_Speed_Level_1   /*!< I/O output speed: Low 2 MHz  */
#define GPIO_Speed_10MHz GPIO_Speed_Level_2   /*!< I/O output speed: Medium 10 MHz */
#define GPIO_Speed_50MHz GPIO_Speed_Level_3   /*!< I/O output speed: High 50 MHz */
#define  GPIO_SPEED_FREQ_LOW        (0x00000000u)  /*!< Low speed       */
#define  GPIO_SPEED_FREQ_MEDIUM     (0x00000001u)  /*!< Medium speed    */
#define  GPIO_SPEED_FREQ_HIGH       (0x00000002u)  /*!< High speed      */
#define  GPIO_SPEED_FREQ_VERY_HIGH  (0x00000003u)  /*!< Very high speed */

对于普通输出GPIO,使用STM32CubeMX配置,默认配置低:

2.png

当然,如果配置成其他模式,有可能是中,或高。

比如:配置UART、CAN引脚,速度会是高。

提问:你想过为什么会是低、高吗?

测量GPIO输出波形

不知道大家用示波器测量过GPIO输出波形没有,特别是在高速(单位M)的时候。

我以前经常测量MCO引脚输出时钟,测量过的人应该都知道,如果输出速度高于配置速度,会明显看到波形不正常。

波形会出现不完整,幅度低等失真现象。

相信不用我说,有一定常识的人都能理解。

差异原因

速度的配置,就是决定IO口驱动电路的响应速度。

我们需要结合实际情况配置速度,不同速度会有不同的影响。

高低速差异:配置高速:输出频率高,噪音大,功耗高,电磁干扰强;

配置低速:输出频率低,噪音小,功耗低,电磁干扰弱;提高系统EMI(电磁干扰)性能;

看到差异,相信很多人就能理解了。

实际情况中,比如:低功耗的产品,你会考虑功耗。

环境不好的场合,通信不稳定,你会考虑电磁干扰等。

举例:如果你使用9600波特率UART通信,建议速度配置为低。

所以,如果你想使产品更加完美,速度配置也是关键的一项。

来源:strongerHuang

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 28

这是一个初学者不会去了解的问题,但,会使老司机掉坑的问题。这也是最近在技术交流群看到的一个问题,所以,就出来简单分享一下。

概述

这个问题看起来比较简单,我相信很多人都能说出答案。但是,很多人都只是停留在表面,没有在项目中经历过,也没有更深入的去了解。

1.jpg

很早之前年的单片机可能没有输出速度这个配置选项,但是这后面的单片机基本都有配置速度的选项,下面结合STM32来简单介绍一下。

GPIO输出速度

不管标准外设库,还是STM32CubeMX配置GPIO输出引脚,都会有速度GPIO_InitStruct.Speed这个选项。

类似如下:

GPIO_InitStruct.Pin = GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

根据不同MCU型号,速度选项,有些有3个,有些有4个。一般定义在xxx_gpio.h文件中。

#define GPIO_Speed_2MHz  GPIO_Speed_Level_1   /*!< I/O output speed: Low 2 MHz*/
#define GPIO_Speed_10MHz GPIO_Speed_Level_2   /*!< I/O output speed: Medium 10 MHz */
#define GPIO_Speed_50MHz GPIO_Speed_Level_3   /*!< I/O output speed: High 50 MHz */
#define  GPIO_SPEED_FREQ_LOW        (0x00000000u)  /*!< Low speed       */
#define  GPIO_SPEED_FREQ_MEDIUM     (0x00000001u)  /*!< Medium speed    */
#define  GPIO_SPEED_FREQ_HIGH       (0x00000002u)  /*!< High speed      */
#define  GPIO_SPEED_FREQ_VERY_HIGH  (0x00000003u)  /*!< Very high speed */

对于普通输出GPIO,使用STM32CubeMX配置,默认配置低:

2.png

当然,如果配置成其他模式,有可能是中,或高。

比如:配置UART、CAN引脚,速度会是高。

提问:你想过为什么会是低、高吗?

测量GPIO输出波形

不知道大家用示波器测量过GPIO输出波形没有,特别是在高速(单位M)的时候。

我以前经常测量MCO引脚输出时钟,测量过的人应该都知道,如果输出速度高于配置速度,会明显看到波形不正常。波形会出现不完整,幅度低等失真现象。相信不用我说,有一定常识的人都能理解。

差异原因

速度的配置,就是决定IO口驱动电路的响应速度。我们需要结合实际情况配置速度,不同速度会有不同的影响。

高低速差异:配置高速:输出频率高,噪音大,功耗高,电磁干扰强; 

配置低速:输出频率低,噪音小,功耗低,电磁干扰弱;提高系统EMI(电磁干扰)性能;

看到差异,相信很多人就能理解了。实际情况中,比如:低功耗的产品,你会考虑功耗。环境不好的场合,通信不稳定,你会考虑电磁干扰等。

举例:如果你使用9600波特率UART通信,建议速度配置为低。所以,如果你想使产品更加完美,速度配置也是关键的一项。

来源:strongerHuang

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 17

随着微电子技术和计算机技术的发展,原来以强电和电器为主、功能简单的电气设备发展成为强、弱电结合,具有数字化特点、功能完善的新型微电子设备。在很多场合,已经出现了越来越多的单片机产品代替传统的电气控制产品。属于存储程序控制的单片机,其控制功能通过软件指令来实现,其硬件配置也可变、易变。因此,一旦生产过程有所变动,就不必重新设计线路连线安装,有利于产品的更新换代和订单式生产。

传统电气设备采用的各种控制信号,必须转换到与单片机输入/输出口相匹配的数字信号。用户设备须输入到单片机的各种控制信号,如限位开关、操作按钮、选择开关、行程开关以及其他一些传感器输出的开关量等,通过输入电路转换成单片机能够接收和处理的信号。输出电路则应将单片机送出的弱电控制信号转换、放大到现场需要的强输出信号,以驱动功率管、电磁阀和继电器、接触器、电动机等被控制设备的执行元件,能方便实际控制系统使用。针对电气控制产品的特点,本文讨论了几种单片机I/O的常用驱动和隔离电路的设计方法,对合理地设计电气控制系统,提高电路的接口能力,增强系统稳定性和抗干扰能力有实际指导意义。

1、输入电路设计

1.png

图1 开关信号输入

一般输入信号最终会以开关形式输入到单片机中,以工程经验来看,开关输入的控制指令有效状态采用低电平比采用高电平效果要好得多,如图1如示。当按下开关S1时,发出的指令信号为低电平,而平时不按下开关S1时,输出到单片机上的电平则为高电平。该方式具有较强的耐噪声能力。

若考虑到由于TTL电平电压较低,在长线传输中容易受到外界干扰,可以将输入信号提高到+24 V,在单片机入口处将高电压信号转换成TTL信号。这种高电压传送方式不仅提高了耐噪声能力,而且使开关的触点接触良好,运行可靠,如图2所示。其中,D1为保护二极管,反向电压≥50 V。

2.png

图2 提高输入信号电平

3.png

图3 输入端保护电路

为了防止外界尖峰干扰和静电影响损坏输入引脚,可以在输入端增加防脉冲的二极管,形成电阻双向保护电路,如图3所示。二极管D1、D2、D3的正向导通压降UF≈0.7 V,反向击穿电压UBR≈30 V,无论输入端出现何种极性的破坏电压,保护电路都能把该电压的幅度限制在输入端所能承受的范围之内。即:VI~VCC出现正脉冲时,D1正向导通;VI~VCC出现负脉冲时,D2反向击穿;VI与地之间出现正脉冲时,D3反向击穿;VI与地之间出现负脉冲时,D3正向导通,二极管起钳位保护作用。缓冲电阻RS约为1.5~2.5 kΩ,与输入电容C构成积分电路,对外界感应电压延迟一段时间。若干扰电压的存在时间小于τ,则输入端承受的有效电压将远低于其幅度;若时间较长,则D1导通,电流在RS上形成一定的压降,从而减小输入电压值。

 此外,一种常用的输入方式是采用光耦隔离电路。如图4所示,R为输入限流电阻,使光耦中的发光二极管电流限制在10~20 mA。输入端靠光信号耦合,在电气上做到了完全隔离。同时,发光二极管的正向阻抗值较低,而外界干扰源的内阻一般较高,根据分压原理,干扰源能馈送到输入端的干扰噪声很小,不会产生地线干扰或其他串扰,增强了电路的抗干扰能力。

4.png

图4 输入端光耦隔离

在满足功能的前提下,提高单片机输入端可靠性最简单的方案是:在输入端与地之间并联一只电容来吸收干扰脉冲,或串联一只金属薄膜电阻来限制流入端口的峰值电流。

2、输出电路设计

单片机输出端口受驱动能力的限制,一般情况下均需专用的接口芯片。其输出虽因控制对象的不同而千差万别,但一般情况下均满足对输出电压、电流、开关频率、波形上升下降速率和隔离抗干扰的要求。在此讨论几种典型的单片机输出端到功率端的电路实现方法。

2.1 直接耦合

在采用直接耦合的输出电路中,要避免出现图5所示的电路。

5.png

图5 错误的输出电路

T1截止、T2导通期间,为了对T2提供足够的基极电流,R2的阻值必须很小。因为T2处于射极跟随器方式工作,因此为了减少T2损耗,必须将集射间电压降控制在较小范围内。这样集基间电压也很小,电阻R2阻值很小才能提供足够的基极电流。R2阻值过大,会大幅度增加T2压降,引起T2发热严重。而在T2截止期间,T1必须导通,高压+15 V全部降在电阻R2上,产生很大的电流,显然是不合理的。另外,T1的导通将使单片机高电平输出被拉低至接近地电位,引起输出端不稳定。T2基极被T1拉到地电位,若其后接的是感性负载,由于绕组反电势的作用,T2的发射极可能存在高电平,容易引起T2管基射结反向击穿。

图6为一直接耦合输出电路,由T1和T2组成耦合电路来推动T3。T1导通时,在R3、R4的串联电路中产生电流,在R3上的分压大于T2晶体管的基射结压降,促使T2导通,T2提供了功率管T3的基极电流,使T3变为导通状态。当T1输入为低电平时,T1截止,R3上压降为零,T2截止,最终T3截止。R5的作用在于:一方面作为T2集电极的一个负载,另一方面T2截止时,T3基极所储存的电荷可以通过电阻R3迅速释放,加快T3的截止速度,有利于减小损耗。

6.png

图6 直接耦合输出电路

2.2 TTL或CMOS器件耦合

若单片机通过TTL或CMOS芯片输出,一般均采用集电极开路的器件,如图7(a)所示。集电极开路器件通过集电极负载电阻R1接至+15 V电源,提升了驱动电压。但要注意的是,这种电路的开关速度低,若用其直接驱动功率管,则当后续电路具有电感性负载时,由于功率管的相位关系,会影响波形上升时间,造成功率管动态损耗增大。

为了改善开关速度,可采用2种改进形式输出电路,如图7(b)和图7(c)所示。图7(b)是能快速开通的改进电路,当TTL输出高电平时,输出点通过晶体管T1获得电压和电流,充电能力提高,从而加快开通速度,同时也降低了集电极开路TTL器件上的功耗。图7(c)为推挽式的改进电路,采用这种电路不但可提高开通时的速度,而且也可提高关断时的速度。输出晶体管T1是作为射极跟随器工作的,不会出现饱和,因而不影响输出开关频率。

7.png

图7 TTL或CMOS器件输出电路

2.3 脉冲变压器耦合

脉冲变压器是典型的电磁隔离元件,单片机输出的开关信号转换成一种频率很高的载波信号,经脉冲变压器耦合到输出级。由于脉冲变压器原、副边线圈间没有电路连接,所以输出是电平浮动的信号,可以直接与功率管等强电元件耦合,如图8所示。

8.png

图8 脉冲变压器输出电路

这种电路必须有一个脉冲源,脉冲源的频率是载波频率,应至少比单片机输出频率高10倍以上。脉冲源的输出脉冲送入控制门G,单片机输出信号由另一端输入G门。当单片机输出高电平时,G门打开,输出脉冲进入变压器,变压器的副线圈输出与原边相同频率的脉冲,通过二极管D1、D2检波后经滤波还原成开关信号,送入功率管。当单片机输出低电平时,G门关闭,脉冲源不能通过G门进入变压器,变压器无输出。

这里,变压器既传递信号,又传送能量,提高了脉冲源的频率,有利于减轻变压器的体重。由于变压器可通过调整电感量、原副边匝数等来适应不同推动功率的要求,所以应用起来比较灵活。更重要的是,变压器原副边线圈之间没有电的联系,副线圈输出信号可以跟随功率元件的电压而浮动,不受其电源大小的影响。

当单片机输出较高频率的脉冲信号时,可以不采用脉冲源和G门,对变压器原副边电路作适当调整即可。

2.4 光电耦合

光电耦合可以传输线性信号,也可以传输开关信号,在输出级应用时主要用来传递开关信号。如图9所示,单片机输出控制信号经缓冲器7407放大后送入光耦。R2为光耦输出晶体管的负载电阻,它的选取应保证:在光耦导通时,其输出晶体管可靠饱和;而在光耦截止时,T1可靠饱和。但由于光耦响应速度慢使开关延迟时间加长,限制了其使用频率。

9.png

图9 光耦输出电路

3 结语

单片机接口技术在很多文献中均有详细的介绍,但在对大量电气控制产品的改造和设计中,经常会碰到用接口芯片所无法解决的问题(如驱动电流大、开关速度慢、抗干扰差等),因此必须寻求另一种电路解决方案。上述几种输入/输出电路通过广泛的应用表明,其对合理、可靠地实现单片机电气控制系统具有较高的工程实用价值。

来源:STM32嵌入式开发

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 149

市面上很多基于单片机的产品都具有在线或离线升级功能,为了防止升级过程出现意外,一般我们都会对Flash程序数据进行校验,常见的就是添加 CRC 校验信息。

本文给大家讲述一下Keil和IAR中计算CRC值的方法。

Flash自检的流程

Flash的自检一般分为启动时自检和程序运行时自检两个阶段。不管是哪种自检,其思路都是:

在程序编译完成后,计算整个程序的CRC值,然后将这个CRC值添加到可执行文件末尾,再将带有CRC校验值的可执行文件烧录到MCU中。程序启动后,由程序中的自检代码重新根据当前Flash内容(不包括预存的CRC校验值)计算一次CRC值,再与之前预先计算并烧录到Flash中的CRC校验值进行比较,如果一致就通过检测。

这两个自检阶段的区别就是:

程序启动自检是一次性对整个实际Flash代码范围计算出最终的CRC值;而运行时的自检,为了不影响其他程序模块的运行,计算CRC的过程是分步进行的,每次计算一部分,分多次计算出最终的CRC值。围绕Flash的自检所发生的问题可以归为两大类,一类是预先计算CRC值时和上电后计算CRC值的Flash范围设置是否一致;第二类就是预先计算CRC时和上电后计算CRC采用的CRC算法是否一致。

如何添加CRC值

下面我们主要介绍如何添加CRC校验值到可执行文件。

1、基于IAR环境

如果你使用IAR,那么添加CRC值的配置相对比较简单。通过配置IAR的CRC计算参数,自动对整个FLASH空间进行CRC计算,并将计算结果放到FLASH的末尾。

1)修改Link文件,指定CRC值的存放位置

在Link文件中增加下面语句,指定checksum在FLASH中的存储位置。

1.jpg

该语句指定将CRC的值放在FLASH的末尾位置,是整个FLASH空间的末尾,不是应用程序的代码末尾。这样,CRC值的位置就是固定的。不会随代码大小而变化。

在自检代码中,可以通过__checksum读取Flash中保存的CRC校验值来与重新计算的CRC值进行比较。

2)配置Checksum页面的参数

在link文件中指定了checksum的存储位置后,还要在工程配置菜单中,配置计算CRC值的范围和参数。见下图:

2.jpg

IAR的checksum页面分为两个部分。

第一部分,也就是红线圈出的部分。定义了FLASH中需要计算CRC的范围和空闲字节填充值。这里注意要留出flash末尾存储CRC值的位置。

剩下的部分,就是对checksum计算参数的设定部分。

Checksum size:选择checksum的大小(字节数)Alignment:指定checksum的对齐方式。一般,处理器不支持非对齐访问时有用,不填的话默认1字节对齐。

Algorithm:选择checksum的算法。

Complement:是否需要进行补码计算。选择“As is”就是不进行补码计算。

Bit order:位输出的顺序。

MSB first,每个字节的高位在前。LSB first,每个字节的低位在前。

Reverse byte order within word: 对于输入数据,在一个字内反转各个字节的顺序。

Initial value: checksum计算的初始化值。

Checksum unit size:选择进行迭代的单元大小,按8-bit,16-bit还是32-bit进行迭代。

3)STM32CRC外设的配置

与上图IARchecksum的配置对应,STM32 CRC外设可以按以下配置:

POLY= 0x4C11DB7(CRC32)

Initial_Crc = 0Xffffffff

输入/输出数据不反转

输入数据:根据实际Flash范围设定,留出CRC校验值的位置

CRC外设初始化及计算代码:

3.jpg

2、基于Keil环境

KEIL没有提供直接生成CRC值的功能,所以需要借助外部的工具计算CRC值,然后添加到可执行文件的末尾。在X-CUBE-CLASSB软件中提供了bat文件,它会利用外部工具Srecord来生成整个Flash的CRC校验码并放在文件末尾。这个工具同样也可以和标准外设库的ClassB库一起用。下面我们就来看看如何在KEIL工程中利用Srecord工具来添加CRC值。

1)安装Srecord工具

下载Srecord 工具(http://srecord.sourceforge.net )。将srec_cat.exe,srec_cmp.exe,srec_info.exe拷贝到C:\SREC(自己新建)目录下。

2)添加crc_gen_keil.bat及crc_load.ini文件到KEIL工程同级目录下

打开X-CUBE-CLASSB软件包中的任意KEIL工程目录,将其中crc_gen_keil.bat及crc_load.ini文件拷贝到自己的KEIL工程目录下。

crc_gen_keil.bat:利用外部工具Srecord来生成整个Flash的CRC校验码并放在文件末尾。

crc_load.ini:这个文件调试时有用,用来配置调试时导入带CRC校验码的HEX,避免对FLASH检测失败导致程序无法正常运行。

4.jpg

这两个文件中的内容也需要根据新工程路径进行修改:

  • 将crc_gen_keil.bat中的TARGET_NAME和TARGET_PATH改成跟新工程一致。否则不能成功的自动生成带CRC校验值的HEX文件。

5.jpg

  • Crc_load.ini文件中的路径和文件也要和实际的一致

6.jpg


3)添加定义CRC校验码存储区域

7.jpg

在分散加载文件中将CHECKSUM指定在代码的末尾。和IAR不同的是,通过在分散加载文件中+last指定checksum的位置,它不是将其固定放在整个flash地址的末尾,而是放在实际代码的末尾。

8.jpg

4)添加外部命令让KEIL在编译结束后,自动生成一个带CRC校验值的HEX文件

9.jpg

定义debug和flash download使用的HEX文件路径,使用带CRC校验值的HEX文件。

10.jpg

11.jpg

5)STM32CRC外设的配置

这里需要注意,从X-CUBE-CLASSB的软件包里拷贝出的crc_gen_keil.bat文件,里面的BYTE_SWAP设为1,也就是它在计算CRC值的时候,输入的数据,在一个字内按字节颠倒顺序。

12.jpg

所以直接用HAL_CRC_Calculate函数进行计算结果是不对的。可以参考下面的代码来初始化及进行计算:

13.jpg

或者,将crc_gen_keil.bat文件,里面的BYTE_SWAP改为0, 就可以直接调用HAL_CRC_Calculate函数进行计算了。

总结

本文介绍了基于IAR及ARM KEIL中如何添加CRC校验值的过程。在X-CUBE-CLASSB软件包中,也都可以找到对应的例程。如果在调试中,遇到FLASH CRC校验出错,也不用急。

可以从计算CRC值的范围设置是否一致和采用的CRC算法是否一致这两个方面去找原因。一定要调试看看代码实际执行的情况,比如要测试的地址范围和实际代码执行时计算的地址范围是否一样,防止因为coding错误造成检测不通过。

直接来源:strongerHuang

素材来源 | 网络

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 287

页面

订阅 RSS - 单片机