电源

罪状一:固钽因“不断击穿”又“不断自愈”问题产生失效。

1

在正常使用一段时间后常发生固钽密封口的焊锡融化,或见到炸开,焊锡乱飞到线路板上。分析原因是其工 作时“击穿”又“自愈”,在反复进行,导致漏电流增加。这种短时间(ns~ms)的局部短路,又通过“自愈”后恢复工作。

2

关于“自愈”。理想的Ta2O5 介质氧化膜是连续性的和一致性的。加上电压或高温下工作时,由于TA+离子疵点的存在,导致缺陷微区的漏电流增加,温度可达到500℃~1000℃ 以上。这样高的温度使MnO2还原成低价的Mn3O4。有人测试出Mn3O4的电阻率要比MnO2高4~5个数量级。与Ta2O5介质氧化膜相紧密接触的 Mn3O4就起到电隔离作用,防止Ta2O5介质氧化膜进一步破坏,这就是固钽的局部“自愈了”。但是,很可能在紧接着的再一次“击穿”的电压会比前一次 的“击穿”电压要低一些。在每次击穿之后,其漏电流将有所增加,而且这种击穿电源可能产生达到安培级的电流。同时电容器本身的储存的能量也很大,导致电容 器永久失效。

罪状二:固钽有“热致失效”问题

固钽的Ta2O5介质氧化膜有单向导电性能,当有充放大电流通过Ta2O5介质氧化膜,会引 起发热失效。无充放大电流时,介质氧化薄相当稳定,微观其离子排列不规则、无序的,称作无定形结构。目测呈现的颜色 是五彩干涉色。当无定形结构向定形结构逐步转化,逐步变为有序排列,称之微“晶化”,目测呈现的颜色不再是五彩干涉色,而是无光泽、较暗的颜色。 Ta2O5介质氧化薄膜的“晶化”疏散的结构导致钽电容器性能恶化直至击穿失效。

3

罪状三:固钽有“场致失效”问题(dV/dT)

固钽加上高的电压,内部形成高的电场,易于局部击穿。

击 穿事故发生率随时间减低到一个稳定值。当击穿电压被接近时,击穿发生率增加。随着电压的增长,装置因在某个疵点发生的热逃逸而发生故障的机率也增加。击穿 电压依赖于脉冲的持续。在某些实验中,可以看到击穿电压随着脉冲长度的增加而降低。该过程不是十分确定的;击穿以不定时间间隔出现在不定位置。在反模式 下,电击穿是由于焦耳热产生的热击穿的最终状态。

4

电容如果选择不当的话,当电容失效后就会短路,一般的话,有两个可以考虑,作为生产厂商,如果一定要失效之 后是开路状态的话,可以考虑内部有保险丝的系列,通过的电压和电流都是有胆电容内部的保险丝所决定的。所以它失效后会是一个开路的模式,还有客户在选型的 时候,一定要考虑到足够多的余量在里边,如果在正常的工作电压使用的情况下是非常的可靠的。

钽电压在工业电子,汽车电子,至少需要降额50%使用。

另外潮湿也会对电容的ESR起到很大的变化。

变化测试:

5

其机理如下图所示:

6

一句话:慎重使用钽电容。

来源:玩转单片机

围观 296

数据手册是元器件、模块或系统性能的全面的、经测试和经验证信息的完美信息库。在电源单元(PSU)的情况下,数据手册为工程师提供了大量的性能参数,包括纹波和噪声、效率、调节精度、隔离电压、电磁排放量等。所提供的信息的数量和详细程度为用户在任何给定应用中实现预期性能提供了极大的信心。

但另一个重要的性能参数——电源可靠性又如何呢?事实上,当今的知名制造商提供的电源单元(PSU)具有极长的寿命。其寿命在由可靠性标准(如MIL-HDBK-217或Telcordia)规定的测试条件下进行了精确预测。更重要的是,经验表明,除了这些严格定义的参数之外,高质量的电源单元PSU也提供超长寿命。

但是,系统设计人员仍然面临一个问题:在这些测试条件以外的条件下操作时,他们如何自信地预测电源单元(PSU)的平均寿命?各种各样常见因素可能打破这些条件,如:热、冲击和振动、电源电压的瞬态波动、电解电容的老化等都可能引起过早失效。因此,数据手册的标准寿命额定值很少完全适用于真实世界的产品。

同时,无法控制最终产品的可靠性是难以接受的。品牌的声誉是一笔宝贵的财富。处置和维修的环境和费用成本也是一种浪费。

那么,系统设计工程师怎样才能自信地预估商用现货(COTS)电源单元的可靠性?而且,最大限度地提高信心水平的最有效的方法是什么?

制造商的可靠性数据的限制

最常用的表征一个新的COTS PSU的寿命的值是故障前平均时间(MTTF)或平均故障间隔时间(MTBF)值。故障前平均时间(MTTF)在恒定工作(环境)温度下通常为数千小时。

当然,故障前平均时间(MTTF)并没有给出从大量单元中随机抽取的任何单个单元的失效时间:MTTF是一个平均值。有的单元的寿命比额定MTTF值更长,有的则会更早失效。事实上,假定一个恒定的故障率在电子设备的操作条件下是不切实际的假设,单个单元的寿命能够持续到MTTF值的概率只有37%。换句话说,故障前平均时间(MTTF)经过69%后,半数的单元将失效,如图1所示。

1

这是因为,具有恒定故障率的故障由一个指数因子表征,如以下等式所示,用于计算元器件在给定时间后没有发生故障的可能性:R(t) = e-λt

其中:λ = 元器件的平均故障率

PSU制造商采用基于高度加速测试的模型以预测其产品的故障率。他们不能在正常操作条件下运行PSU的测试,并等待观察故障,因为需要许多年的时间来收集统计显著性数据。因此,他们将其产品暴露于过高的温度、振动、电流和电压应力下,以便使它们迅速失效。

显然,需要一种合理的方法将加速测试的结果转换成数据手册中的MTTF值;有信誉的PSU制造商应认真核实并完善自己的方法,以确保其能反映用户的真实世界体验。

因此,到目前为止,我们也许可以信任由值得信赖的制造商指定的数据手册中的MTTF值。但由于它仅适用于很窄的工作条件,当在一系列竞争产品中进行选择时,最好仅将它作为一个比较工具。换句话说,MTTF适用于指示在类似条件下经过测试的不同PSU的相对寿命。

但是,任何给定应用中的MTTF真实值高度依赖于该应用的操作条件。温度对寿命的影响最大,但寿命也受输入和输出电流和电压的绝对水平、这些参数的变化率、机械应力以及其他因素的影响。

因此,尽管MTTF值是基于一系列的“典型”和恒定操作条件而计算的,但许多用户的应用将在以下条件下运行:

·充满变化
·与“典型”值不同

即使应用具有恒定的条件,这些条件也几乎不可能与数据手册的典型应用条件相同。

因此,当在任何给定的真实世界应用中估计故障率的时候,数据手册中的故障率和可靠性信息仅能提供有限的效用。电源系统设计人员必须设计适应其终端产品的最大可接受的故障率。不管该目标故障率是几乎为零(在任务关键型应用中)还是每10,000小时一次故障(在低成本消费产品的情况下),设计人员都必须具有高度信心,使现场的实际故障率至少达到最低目标。

如上所述,数据表中的MTTF不能提供如此高的信心水平,除非在规定的恒定操作条件下。那么,电源系统设计人员怎样才能更自信地预测真实世界的故障率?答案是,部分是艺术,部分是科学。

科学是指有信誉的PSU供应商提供的附加数据集。例如,村田电源、Vicor和CUI等制造商都提供现场数据:声明返厂进行维修或更换的PSU故障率观察值。该声明基于对每个失效单元的检查,并提供故障原因分析。

该声明可以帮助PSU的特定型号的潜在用户:

通过审查它与现场故障率观察值之间的相关性来验证 MTTF的计算,如图2所示。

确定可能引起大多数故障的特定操作条件、应力或元器件。

2

图2:PSU的寿命有三个阶段:“早期故障率”在第一阶段很高,持续时间约24小时。装运前预烧可避免这些“早期故障率”故障

(来源:CUI,“电源的可靠性注意事项”)

有信誉的制造商还提供了设计工程师可以学习的如何优化其PSU方案的详细的应用笔记。例如,SL Power等供应商的应用笔记提供了有关热和机械设计的有用指导,并体现了其设计优化过程的细节深度。遵循制造商的指南将有助于最大限度延长PSU的使用寿命。

第二个附加数据点可以根据请求提供给用户,例如,Vicor电源:专为用户应用的典型操作条件而定制的应用专用的MTTF额定值。即使考虑到加速测试方法所固有的不确定性,以及用户自己的应用操作条件的不确定性,与基于典型工作条件的标准MTTF值相比,该定制MTTF值仍然提供了对用户应用中的各种Vicor PSU的更可靠的平均故障率预估。

每个有信誉的PSU制造商可提供的第三个数据点是热图,它显示了该电源单元的安全操作曲线,以及它如何受到应用中的改变(如增加一个冷却气流)的影响。

但是,即使加上这些数据,也无法保证可以在任何给定应用中绝对确定地计算平均故障率:变量的数量影响PSU的工作,制造商测试方法固有的不确定性也太大。事实上,随机真实世界事件所固有的不确定性的性质已经对一些最伟大的科学家提出了挑战:据说,Alan Turing这样对同事描述过这个问题:

“在一个城镇中,你如何通过看到的随机车牌最好地估计整个城镇的出租车数量?”

那么,科学只提供了部分答案;电源系统设计人员还必须运用工程师的艺术。经验为设计人员提供了对于每个制造商的数据的可靠性直觉。通过检查自己产品的现场故障,OEM设计人员可以建立实际故障率的图像、故障的原因,并与他们仅基于制造商的数据所形成的期望做比较。看它们是否有密切的相关性,或实际上性能更好还是更差?以及与预期性能有多大差距?

工程师对这些问题的直觉有助于加强其通过测量和统计计算结果来预估故障率的信心。

有信心地预测

当数据手册描述了PSU的可靠性或不可靠信息时,它具有明显的数学确定性。但是,这些数据本身在任何给定应用中预测MTTF时仅提供了有限的信心。

但当设计工程师选择的PSU来自一家已知的、有信誉的制造商,或者当他们对制造商的数据有自己的经验,或受信任的第三方(如电源分销商)的经验时,他们可以对其寿命性能有更高的信心。总之,这些产品已经积累了多年的知识经验,但令人惊讶的是,并非所有经验的获得都需要很高的代价。

换句话说,帮助工程师对PSU的使用寿命做出良好判断的不是单纯的艺术,也不是单纯的科学,而是艺术与科学的结合。

来源:中电网

围观 214

各种事物都有套路,开关电源的套路就是各种拓扑。对这些拓扑了然于胸,就能看清开关电源的本质。

为了表征各种电压或电流波形的好坏,一般都是拿电压或电流的幅值、平均值、有效值、一次谐波等参量互相进行比较。在开关电源之中,电压或电流的幅值和平均值最直观,因此,我们用电压或电流的幅值与其平均值之比,称为脉动系数S;也有人用电压或电流的有效值与其平均值之比,称为波形系数K。

因此,电压和电流的脉动系数Sv、Si以及波形系数Kv、Ki分别表示为:

Sv=Up/Ua——电压脉动系数

Si =Im/Ia——电流脉动系数

Kv=Ud/Ua——电压波形系数

Ki=Id/Ia——电流波形系数

上面4式中,Sv、Si、Kv、Ki分别表示:电压和电流的脉动系数S,和电压和电流的波形系数K,在一般可以分清楚的情况下一般都只写字母大写S或K。脉动系数S和波形系数K都是表征电压或者电流好坏的指标,S和K的值,显然是越小越好。S和K的值越小,表示输出电压和电流越稳定,电压和电流的纹波 也越小。

反激式开关电源的优点和缺点

1、反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。

反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为 0.5时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。即电压脉动系数 等于2,电流脉动系数等于4。反激式开关电源的电压脉动系数,和正激式开关电源的脉动系数基本相同,但是电流的脉动系数是正激式开关电源的电流脉动系数的 两倍。由此可知,反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。特别是,反激式开关电源使用的时候,为了防止电源开关管过压击,起占空比一般都小于0.5,此时,流过变压器次级线圈的电流会出现断续,电压和电流的脉动系数都会增加,其电压和电流的输出特性将会变得更差。
  
2、反激式开关电源的瞬态控制特性相对来说比较差。  

由于反激式开关电源仅在开关关断期间才向负载提供能量输出,当负载电流出现变化时,开关电源不能立即对输出电压或电流产生反应,而需要等到下一个周期 事,通过输出电压取样和调宽控制电路的作用,开关电源才开始对已经过去了的事情进行反应,即改变占空比,因此,反激式开关电源的瞬态控制特性相对来说比较 差。有时,当负载电流变化的频率和相位与取样、调宽控制电路输出的电压的延时特性在相位保持一致的时候,反激式开关电源输出电压可能会产生抖动,这种情况 在电视机的开关电源中最容易出现。
  
3、反激式开关电源变压器初级和次级线圈的漏感都比较大,开关电源变压器的工作效率低。

反激式开关电源变压器的铁芯一般需要留一定的气隙,一方面是为了防止变压器的铁芯因流过变压器的初级线圈的电流过大,容易产生磁饱和。另一方面是因为 变压器的输出功率小,需要通过调整电压器的气隙和初级线圈的匝数,来调整变压器初级线圈的电感量的大小。因此,反激式开关电源变压器初级和次级线圈的漏感都比较大,从而会降低开关电源变压器的工作效率,并且漏感还会产生反电动势,容易把开关管击穿。
  
4、反激式开关电源的优点是电路比较简单,体积比较小,反激式开关电源输出电压受占空比的调制幅度,相对于正激式开关电源来要高很多。 
 
反激式开关电源的优点是电路比较简单,比正激式开关电源少用了一个大的储能滤波电感,以及一个续流二极管,一次,反激式开关电源的体积要比正激式开关 电源的体积小,且成本也要低。此外,反激式开关电源输出电压受占空比的调制幅度,相对于正激式开关电源来要高很多,因此,反激式开关电源要求调控占空比的 误差信号幅度要比较低,误差信号放大器的增益和动态范围也要较小。由于这些优点,目前,反激式开关电源在家电领域中还是被广泛的应用。
  
5、反激式开关电源多用于功率较小的场合或是多路输出的场合。
  
6、反激式开关电源不需要加磁复位绕组。 

在反激式开关电源中,在开关管关断的时候,反激式变换器的变压器储能向负载释放,磁芯自然复位,不需要加磁复位措施。
  
7、在反激式开关电源中,电压器既具有储能的功能,有具有变压和隔离的功能。

正激式开关电源的优点和缺点

1、正激式变压器开关电源输出电压的瞬态控制特性相对来说比较好。 
 
正激式变压器开关电源正好是在变压器的初级线圈被直流电压激励时,变压器的次级线圈向负载提供功率输出,并且输出电压的幅度是基本稳定的,此时尽管输 出功率不停地变化,但输出电压的幅度基本还是不变,这说明正激式变压器开关电源输出电压的瞬态控制特性相对来说比较好;只有在控制开关处于关断期间,功率 输出才全部由储能电感和储能电容两者同时提供,此时输出电压虽然受负载电流的影响,但如果储能电容的容量取得比较大,负载电流对输出电压的影响也很小。
  
2、正激式变压器开关电源负载能力相对来说比较强。 

由于正激式变压器开关电源一般都是选取变压器输出电压的一周平均值,储能电感在控制开关接通和关断期间都向负载提供电流输出,因此,正激式变压器开关 电源的负载能力相对来说比较强,输出电压的纹波比较小。如果要求正激式变压器开关电源输出电压有较大的调整率,在正常负载的情况下,控制开关的占空比最好 选取在0.5左右,或稍大于0.5,此时流过储能滤波电感的电流才是连续电流。当流过储能滤波电感的电流为连续电流时,负载能力相对来说比较强。
  
3、正激式变压器开关电源的电压和电流输出特性要比反激式变压器开关电源好很多。

当控制开关的占空比为0.5时,正激式变压器开关电源输出电压uo的幅值正好等于电压平均值Ua的两倍,流过滤波储能电感电流的最大值Im也正好是平 均电流Io(输出电流)的两倍,因此,正激式变压器开关电源的电压和电流的脉动系数S都约等于2,而与反激式变压器开关电源的电压和电流的脉动系数S相 比,差不多小一倍,说明正激式变压器开关电源的电压和电流输出特性要比反激式变压器开关电源好很多。

4 正激式开关电源比反激式变压器开关电源多用一个大储能滤波电感,以及一个续流二极管。  

正激式变压器开关电源的缺点也是非常明显的。其中一个是电路比反激式变压器开关电源多用一个大储能滤波电感,以及一个续流二极管。此外,正激式变压器 开关电源输出电压受占空比的调制幅度,相对于反激式变压器开关电源来说要低很多,这个从(1-77)和(1-78)式的对比就很明显可以看出来。因此,正 激式变压器开关电源要求调控占空比的误差信号幅度比较高,误差信号放大器的增益和动态范围也比较大。
  
5、正激式开关电源的体积比较大。 

正激式变压器开关电源为了减少变压器的励磁电流,提高工作效率,变压器的伏秒容量一般都取得比较大(伏秒容量等于输入脉冲电压幅度与脉冲宽度的乘积, 这里用US来表示),并且为了防止变压器初级线圈产生的反电动势把开关管击穿,正激式变压器开关电源的变压器要比反激式变压器开关电源的变压器多一个反电 动势吸收绕组,因此,正激式变压器开关电源的变压器的体积要比反激式变压器开关电源的变压器的体积大。
  
6、正激式开关电源的变压器初级线圈产生的反电动势电压要比反激式变压器开关电源产生的反电动势电压高。

正激式变压器开关电源还有一个更大的缺点是在控制开关关断时,变压器初级线圈产生的反电动势电压要比反激式变压器开关电源产生的反电动势电压高。因为 一般正激式变压器开关电源工作时,控制开关的占空比都取在0.5左右,而反激式变压器开关电源控制开关的占空比都取得比较小。
  
7、双管正激式转换器可以应用于较高电压输入,较大功率输出的场合。

推挽式开关电源的优点和缺点

1、推挽式开关电源输出电流瞬态响应速度很高,电压输出特性很好。推挽式开关电源是所有开关电源中电压利用率最高的开关电源。  

由于推挽式开关电源中的两个控制开关轮流交替工作,其输出电压波形非常对称,并且开关电源在整个周期之内都向负载提供功率的输出,因此,其输出电流瞬 态响应速度很高,电压输出特性很好。推挽式开关电源是所有开关电源中电压利用率最高的开关电源。它在输入电压很低的情况下,仍然能维持很大的输出功率,所 以推挽式开关电源被广泛的应用于低输入电压的DC/AC逆变器,活DC/DC转换器电路中。
  
2、推挽式开关电源是一个输出电压特性很好的开关电源。

推挽式开关电源经桥式整流或全波整流后,其输出电压脉动系数和电流脉动系数都很小,因此,需要一个很小值的储能滤波电容或储能滤波电感就可以得到一个电压纹波和电流纹波很小的输出电压。因此,推挽式开关电源是一个输出电压特性很好的开关电源。
  
3、推挽式开关电源变压器的漏感以及铜阻损耗都比单极性磁化极变压器小很多,开关电源的工作效率跟高。

推挽式开关电源的变压器属于双极性磁化极,磁感应变压范围是单极性磁化极的两倍多,并且变压器铁芯不需要气隙,因此,推挽式开关电源变压器铁芯的磁导 率比单极性磁化极的正激或反激开关电源的变压器铁芯的磁导率高很多倍,这样推挽式开关电源变压器的初级、次级的线圈的匝数可比单极性磁化极变压器初级、次 级的线圈的匝数少一倍以上。所以,推挽式开关电源变压器的漏感以及铜阻损耗都比单极性磁化极变压器小很多,所以开关电源的工作效率跟高。
  
4、推挽式开关电源的驱动电路简单。  

推挽式开关电源的两个开关器件有一个公共接地端,相对于半桥式或全桥式开关电源来说,驱动电路简单的多。
  
5、推挽式开关电源不会像半桥、全桥式开关电源那样出现两个控制开关同时串通的可能性。
  
6、推挽式开关电源的主要缺点是两个开关器件需要很高的耐压值。 
 
推挽式开关电源的主要缺点是两个开关器件需要很高的耐压,其耐压必须大于工作电压的两倍。因此,推挽式开关电源在220V交流供电设备中很少使用。另外,直流输出电压可调整式推挽开关电源 输出电压的调整范围比反激式开关电源输出电压的调整范围小很多,并需要一个储能滤波电感,因此,推挽式开关电源不宜用于要求负载电压变化范围太大的场合,特别是负载很轻或是经常开路的场合。
  
7、推挽式开关电源的变压器有两组初级线圈,对于小功率输出的推挽式开关电源是个缺点,对于大功率输出的推挽式开关电源是个优点。因为大功率变压器的线 圈一般都是多股线来绕制的,因此,推挽式开关电源的变压器的两组初级线圈与用多股线绕制根本没有区别,并且两个线圈与单个线圈相比可以减低一半电流密度。
  
8、推挽式转换器可以看作两个正激式转换器的组合,在一个开关周期内,这两的正激式转换器交替的工作。若两个正激式变换器不完全对称或平衡时,就会出现直流偏磁的现象,经过几个周期累计的偏磁,会使磁芯进入饱和状态,并导致高频变压器的励磁电流过大,甚至损坏开关管。
  
9、推挽式、半桥式、全桥式转换器属于直流-交流-直流转换器。由于直流-交流转换器提高了工作频率,所以,变压器和输出滤波器的体积和重量都可以减小。

半桥式开关电源的优点和缺点

1、半桥式变压器开关电源输出功率很大,工作效率很高
  
半桥式变压器开关电源与推挽式变压器开关电源一样,由于两个开关管轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出 功率的两倍。因此,半桥式变压器开关电源输出功率很大,工作效率很高,经桥式整流或全波整流后,输出电压的电压脉动系数Sv和电流脉动系数Si都很小,仅 需要很小的滤波电感和电容,其输出电压纹波和电流纹波就可以达到非常小。
  
2、半桥式开关电源的开关管的耐压值比较低。
  
半桥式变压器开关电源最大的优点是,对两个开关器件的耐压要求比推挽式变压器开关电源对两个开关器件的耐压要求可以降低一半。因为,半桥式变压器开关 电源两个开关器件的工作电压只有输入电源Ui的一半,其最高耐压等于工作电压与反电动势之和,大约是电源电压的两倍,这个结果正好是推挽式变压器开关电源 两个开关器件耐压的一半。因此,半桥式变压器开关电源主要用于输入电压比较高的场合,一般电网电压为交流220伏供电的大功率开关电源大部分都是用半桥式 变压器开关电源。
  
3、半桥式开关电源的变压器初级线圈只需要一个绕组,这也是它的优点,这对小功率开关电源变压器的线圈绕制多少带来一些方便。但对于大功率开关电源变压器的线圈绕制没有优势,因为,大功率开关电源变压器的线圈需要用多股线来绕制。
  
4、半桥式变压器开关电源的缺点主要是电源利用率比较低,因此,半桥式变压器开关电源不适宜用于工作电压较低的场合。另外,半桥式变压器开关电源中的两个开关器件连接没有公共地,与驱动信号连接比较麻烦。
  
5、半桥式开关电源的缺点是会出现半导通区,损耗大。
  
半桥式开关电源最大的缺点是,当两个控制开关K1和K2处于交替转换工作状态的时候,两个开关器件会同时出现一个很短时间的半导通区域,即两个控制开 关同时处于接通状态。这是因为开关器件在开始导通的时候,相当于对电容充电,它从截止状态到完全导通状态需要一个过渡过程;而开关器件从导通状态转换到截 止状态的时候,相当于对电容放电,它从导通状态到完全截止状态也需要一个过渡过程。
  
当两个开关器件分别处于导通和截止过渡过程时,即两个开关器件都处于半导通状态时半导通状态时,相当于两个控制开关同时接通,它们会造成对电源电压产 生短路;此时,在两个控制开关的串联回路中将出现很大的电流,而这个电流并没有通过变压器负载。因此,在两个控制开关K1和K2同时处于过渡过程期间,两个开关器件将会产生很大的功率损耗。为了降低控制开关过渡过程产生的损耗,一般在半桥式开关电源电路中,都有意让两个控制开关的接通和截止时间错开一小段时间。
  
6、单电容半桥式变压器开关电源比双电容半桥式变压器开关电源节省一个电容器,这是它的优点。另外,单电容半桥式变压器开关电源刚开始工作的时候,输出电压差 不多比双电容半桥式变压器开关电源是输出电压高一倍,这种特点最适用于作为荧光灯电源,例如,节能灯或日光灯以及LCD显示屏的背光灯等。
  
荧光灯一般开始点亮的时候需要很高的电压,大约几百伏到几千伏,而点亮以后工作电压才需要几十伏到1百多伏,因此,几乎所有的节能灯无一不是使用单电容半桥式变压器开关电源。

7、单电容半桥式变压器开关电源也有缺点,就是开关器件的耐压要求比双电容半桥式变压器开关电源的耐压高。

全桥式开关电源的优点和缺点

1、全桥式变压器开关电源输出功率很大,工作效率很高。
  
全桥式变压器开关电源与推挽式变压器开关电源一样,由于两组开关器件轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输 出功率的两倍。因此,全桥式变压器开关电源输出功率很大,工作效率很高,经桥式整流或全波整流后,其输出电压的电压脉动系数Sv和电流脉动系数Si都很 小,仅需要一个很小值的储能滤波电容或储能滤波电感,就可以得到一个电压纹波和电流纹波都很小的输出电压。
 
2、全桥式开关电源的优点是开关管的耐压值特别的低。
  
全桥式变压器开关电源最大的优点是,对4个开关器件的耐压要求比推挽式变压器开关电源对两个开关器件的耐压要求可以降低一半。因为,全桥式变压器开关 电源4个开关器件分成两组,工作时2个开关器件互相串联,关断时,每个开关器件所承受的电压,只有单个开关器件所承受电压的一半。其最高耐压等于工作电压 与反电动势之和的一半,这个结果正好是推挽式变压器开关电源两个开关器件耐压的一半。
  
3、全桥式变压器开关电源主要用于输入电压比较高的场合,在输入电压很高的情况下,采用全桥式变压器开关电源,其输出功率要比推挽式变压器开关电源的输出功率 大很多。因此,一般电网电压为交流220伏供电的大功率开关电源大部分都是使用全桥式变压器开关电源。而在输入电压较低的情况下,推挽式变压器开关电源的 输出功率又要比全桥式变压器开关电源的输出功率大很多。
  
4、全桥式变压器开关电源的电源利用率比推挽式变压器开关电源的电源利用率低一些,因为2组开关器件互相串联,两个开关器件接通时总的电压降要比单个开关器件 接通时的电压降大一倍;但比半桥式变压器开关电源的电源利用率高很多。因此,全桥式变压器开关电源也可以用于工作电源电压比较低的场合。
  
5、与半桥式开关电源一样,全桥式变压器开关电源的变压器初级线圈只需要一个绕组,这也是它的优点,这对小功率开关电源变压器的线圈绕制多少带来一些方便。但对于大功率开关电源变压器的线圈绕制没有优势,因为,大功率开关电源变压器的线圈需要用多股线来绕。
  
6、全桥式变压器开关电源的缺点主要是功率损耗比较较大,因此,全桥式变压器开关电源不适宜用于工作电压较低的场合,否则工作效率会很低。另外,全桥式变压器开关电源中的4个开关器件连接没有公共地,与驱动信号连接比较麻烦。
  
7、全桥式开关电源的缺点是会出现半导通区,损耗大。
  
全桥式开关电源最大的缺点是,当两组控制开关K1、K4和K2、K3处于交替转换工作状态的时候,4个开关器件会同时出现一个很短时间的半导通区域, 即两组控制开关同时处于接通状态。这是因为开关器件在开始导通的时候,相当于对电容充电,它从截止状态到完全导通状态需要一个过渡过程;而开关器件从导通 状态转换到截止状态的时候,相当于对电容放电,它从导通状态到完全截止状态也需要一个过渡过程。
  
当两组开关器件分别处于导通和截止过渡过程时,即两组开关器件都处于半导通状态时,相当于两组控制开关同时接通,它们会造成对电源电压产生短路;此 时,在4个控制开关的串联回路中将出现很大的电流,而这个电流并没有通过变压器负载。因此,在4个控制开关K1、K4和K2、K3同时处于过渡过程期间,4个开关器件将会产生很大的功率损耗。为了降低控制开关过渡过程产生的损耗,一般在全桥式开关电源电路中,都有意让两组控制开关的接通和截止时间错开一小段时间。
  
双端隔离式PWM DC/DC转换器,在一个开关周期内,功率从隔离变压器的初级绕组的一端和另一端交替的输入,故称双端。双端隔离式PWM DC/DC转换器的磁芯在B-H平面坐标系的第一和第三象限运行,故磁芯可以得到充分的利用。

文章来源:21ic

围观 290

页面

订阅 RSS - 电源