电源

1 引言

开关电源是各种系统的核心部分。开关电源的需求越来越大,同时对可靠性提出了越来越高的要求。涉及系统可靠性的因素很多。目前,人们认识上的主要误区是把可靠性完全(或基本上)归结于元器件的可靠性和制造装配的工艺,忽略了系统设计和环境温度对可靠性的决定性的作用。据美国海军电子实验室的统计,整机出现故障的原因和各自所占的百分比如表1所示。


在民用电子产品领域,日本的统计资料表明,可靠性问题80%源于设计方面(日本把元器件的选型、质量级别的确定、元器件的负荷率等部分也归入设计上的原因)。以上两方面的数据表明,设计及元器件(元器件的选型,质量级别的确定,元器件的负荷率)的原因造成的故障,在开关电源故障原因中占80%左右。减少这两方面造成的开关电源故障,具有重要的意义。总之,对系统的设计者而言,需要明确建立“可靠性”这个重要概念,把系统的可靠性作为重要的技术指标,认真对待开关电源可靠性的设计工作,并采取足够的措施提高开关电源的可靠性,才能使系统和产品达到稳定、可靠的目标。本文就从这两个方面来研究与阐述。

2、系统可靠性的定义及指标

国际上,通用的可靠性定义为:在规定条件下和规定的时间内,完成规定功能的能力。此定义适用于一个系统,也适用于一台设备或一个单元。描述这种随机事件的概率可用来作为表征开关电源可靠性的特征量和特征函数。从而,引出可靠度[R(t)]的定义:系统在规定条件下和规定时间内,完成规定功能的概率。

如系统在开始 (t=0)时有n0个元件在工作,而在时间为t时仍有n个元件在正常工作,

  则

  可靠性   R(t)=n/n0  0≤R(t) ≤1

  失效率   λ(t)= - dinR(t)/dt

  λ定义为该种产品在单位时间内的故障数,即λ=dn/dt。

  如失效率λ为常数,则

dn/dt=-λt

  n=n0e-λt

  R(t)=e-λt0     

  MTBF(平均无故障时间)=1/λ

平均无故障时间(MTBF)是开关电源的一个重要指标,用来衡量开关电源的可靠性。

3、影响开关电源可靠性的因素
  
从各研究机构研究成果可以看出,环境温度和负荷率对可靠性影响很大,这两个方面对开关电源的影响很大,下面将从这两方面分析,如何设计出高可靠的开关电源。其中:PD为使用功率;PR为额定功率主。UD为使用电压;UR为额定电压。

3.1 环境温度对元器件的影响

3.1.1 环境温度对半导体IC的影响

硅三极管以PD/PR=0.5使用负荷设计,则环温度对可靠性的影响,如表2所示。


由表2可知,当环境温度Ta从20℃增加到80℃时,失效率增加了30倍。

3.1.2 环境温度对电容器的影响
 
以UD/UR=0.65使用负荷设计 则环境温度对可靠性的影响如表3所示。


从表3可知,当环境温度Ta从20℃增加到80℃时,失效率增加了14倍。

3.1.3 环境温度对电阻器的影响

以PD/PR=0.5使用负荷设计,则环境温度对可靠性的影响如表4所示。


从表4可知,当环境温度Ta从20℃增加到80℃时,失效率增加了4倍。

3.2 负荷率对元器件的影响

3.2.1 负荷率对半导体IC的影响   

当环境温度为50℃时,PD/PR对失效率的影响如表5所示。


由表5可知,当PD/PR=0.8时,失效率比0.2时增加了1000倍。

3.2.2 负荷率对电阻的影响

负荷率对电阻的影响如表6所示。


从表6可以看出,当PD/PR=0.8时,失效率比PD/PR=0.2时增加了8倍。

4、可靠性设计的原则

  我们可以从上面的分析中得出开关电源的可靠性设计原则。

  4.1可靠性设计指标应包含定量的可靠性要求。

  4.2可靠性设计与器件的功能设计相结合,在满足器件性能指标的基础上,尽量提高器件的可靠性水平。

  4.3应针对器件的性能水平、可靠性水平、制造成本、研制周期等相应制约因素进行综合平衡设计。

  4.4在可靠性设计中尽可能采用国、内外成熟的新技术、新结构、新工艺和新原理。

  4.5对于关键性元器件,采用并联方式,保证此单元有足够的冗佘度。

  4.6 原则上要尽一切可能减少元器件使用数目。

  4.7在同等体积下尽量采用高额度的元器件。

  4.8 选用高质量等级的元器件。

  4.9 原则上不选用电解电容。

  4.10 对电源进行合理的热设计,控制环境温度,不致温度过高,导致元器件失效率增加。

  4.11 尽量选用硅半导体器件,少用或不用锗半导体器件。

  4.12 应选择金属封装、陶瓷封装、玻璃封装的器件,禁止选用塑料封装的器件。

5、可靠性设计

5.1 负荷率的设计

由于负荷率对可靠性有重大影响,故可靠性设计重要的一个方面是负荷率的设计,跟据元器件的特性及实践经验,元器件的负荷率在下列数值时,电源系统的可靠性及成本是较优的。

5.1.1半导体元器件   

半导体元器件的电压降额应在0.6以下,电流降额系数应在0.5以下。半导体元器件除负荷率外还有容差设计,设计开关电源时,应适当放宽半导体元器件的参数允许变化范围,包括制造容差、温度漂移、时间漂移、辐射导致的漂移等。以保证半导体元器件的参数在一定范围内变化时,开关电源仍能正常工作。

5.1.2电容器   

电容器的负荷率(工作电压和额定电压之比)最好在0.5左右,一般不要超过0.8,并且尽量使用无极性电容器。而且,在高频应用的情况下,电压降额幅度应进一步加大,对电解电容器更应如此。应特别注意,电容器有低压失效的问题,对于普通铝电解电容器和无极性电容的电压降额不低于0.3,但钽电容的电压降额应在0.3以下。电压降额不能太多,否则电容器的失效率将上升。

5.1.3电阻器、电位器

电阻器、电位器的负荷率要小于0.5,此为电阻器设计的上限值;但是大量试验证明,当电阻器降额数低于0.1时,将得不到预期的效果,失效率有所增加,电阻降额系数以0.1为可靠性降额设计的下限值。

总之,对各种元器件的负荷率只要有可能,一般应保持在0.3左右。最好不要超过0.5。这样的负荷率,对电源系统造成不可靠的机率是非常小的。

5.2 电源的热设计
  
开关电源内部过高的温升将会导致温度敏感的半导体器件、电解电容等元器件的失效。当温度超过一定值时,失效率呈指数规律增加。有统计资料表明,电子元器件温度每升高2℃,可靠性下降10%;温升50℃时的寿命只有温升25℃时的1/6。除了电应力之外,温度是影响开关电源可靠性的最重要的因素。高频开关电源有大功率发热器件,温度更是影响其可靠性的最重要的因素之一,完整的热设计包括两个方面:一 如何控制发热源的发热量;二 如何将热源产生的热量散出去。使开关电源的温升控制在允许的范围之内,以保证开关电源的可靠性。下面将从这两个方面论述。

5.2.1 控制发热量的设计

开关电源中主要的发热元器件为半导体开关管、功率二极管、高频变压器、滤波电感等。不同器件有不同的控制发热量的方法。功率管是高频开关电源中发热量较大的器件之一,减小它的发热量,不仅可以提高功率管的可靠性,而且可以提高开关电源的可靠性,提高平均无故障时间(MTBF)。开关管的发热量是由损耗引起的,开关管的损耗由开关过程损耗和通态损耗两部分组成,减小通态损耗可以通过选用低通态电阻的开关管来减小通态损耗;开关过程损耗是由于栅电荷大小及开关时间引起的,减小开关过程损耗可以选择开关速度更快、恢复时间更短的器件来减少。但更为重要的是通过设计更优的控制方式和缓冲技术来减小损耗,如采用软开关技术,可以大大减小这种损耗。减小功率二极管的发热量,对交流整流及缓冲二极管,一般情况下不会有更好的控制技术来减小损耗,可以通过选择高质量的二极管来减小损耗。对于变压器二次侧的整流可以选择效率更高的同步整流技术来减小损耗。对于高频磁性材料引起的损耗,要尽量避免趋肤效应,对于趋肤效应造成的影响,可采用多股细漆包线并绕的办法来解决。

5.2.2 开关电源的散热设计

MOS管导通时有一定的压降,也即器件有一定的损耗,它将引起芯片的温升,但是器件的发热情况与其耐热能力和散热条件有关。由此,器件功耗有一定的容限。其值按热欧姆定律可表示为:

PD="Tj-Tc/RT"
  
式中,Tj 是额定结温(Tj=150℃),Tc是壳温,RT是结到管壳间的稳态热阻,Tj代表器件的耐热能力,Tc和 RT代表器件的散热条件,而PD就是器件的发热情况。它必须在器件的耐热能力和散热条件之间取得平衡。
   
散热有三种基本方式:热传导、热辐射、热对流。根据散热的方式,可以选自然散热:加装散热器;或选择强制风冷:加装风扇。加装散热器主要利用热传导和热对流,即所有发热元器件均先固定在散热器上,热量通过传导方式传递给散热器,散热器上的热量再通过能流换热的方式由空气传递热量,进行散热。

5.2.3 电源的散热仿真

散热仿真是开发电源产品以及提供产品材料指南一个重要的组成部分。优化模块外形尺寸是终端设备设计的发展趋势,这就带来了从金属散热片向 PCB 覆铜层散热管理转换的问题。当今的一些模块均使用较低的开关频率,用于开关模式电源和大型无源组件。对于驱动内部电路的电压转换和静态电流而言,线性稳压器的效率较低。

随着功能越来越丰富,性能越来越高,设备设计也变得日益紧凑,这时 IC 级和系统级的散热仿真就显得非常重要了。

一些应用的工作环境温度为 70 到 125℃,并且一些裸片尺寸车载应用的温度甚至高达 140℃,就这些应用而言,系统的不间断运行非常重要。进行电子设计优化时,上述两类应用的瞬态和静态最坏情况下的精确散热分析正变得日益重要。

散热管理

散热管理的难点在于要在获得更高散热性能、更高工作环境温度以及更低覆铜散热层预算的同时,缩小封装尺寸。高封装效率将导致产生热量组件较高的集中度,从而带来在 IC 级和封装级极高的热通量。

系统中需要考虑的因素包括可能会影响分析器件温度、系统空间和气流设计/限制条件等其他一些印刷电路板功率器件。散热管理要考虑的三个层面分别为:封装、电路板和系统(请参见图 1)。

图 1 IC 封装中典型的热传递路径

低成本、小外形尺寸、模块集成和封装可靠性是选择封装时需要考虑的几个方面。由于成本成为关键的考虑因素,因此基于引线框架的散热增强封装正日益受到人们的青睐。这种封装包括内嵌散热片或裸露焊盘和均热片型封装,设计旨在提高散热性能。在一些表面贴装封装中,一些专用引线框架在封装的每一面均熔接几条引线,以起到均热器的作用。这种方法为裸片焊盘的热传递提供了较好的散热路径。

IC 与封装散热仿真

散热分析要求详细、准确的硅芯片产品模型和外壳散热属性。半导体供应商提供硅芯片 IC 散热机械属性和封装,而设备制造商则提供模块材料的相关信息。产品用户提供使用环境资料。

这种分析有助于 IC 设计人员对电源 FET 尺寸进行优化,以适用于瞬态和静态运行模式中的最坏情况下的功耗。在许多电源电子 IC 中,电源 FET 都占用了裸片面积相当大的一部分。散热分析有助于设计人员优化其设计。

选用的封装一般会让部分金属外露,以此来提供硅芯片到散热器的低散热阻抗路径。模型要求的关键参数如下:
• 硅芯片尺寸纵横比和芯片厚度。
• 功率器件面积和位置,以及任何发热的辅助驱动电路。
• 电源结构厚度(硅芯片内分散情况)。
• 硅芯片连接至外露金属焊盘或金属突起连接处的裸片连接面积与厚度。可能包括裸片连接材料气隙百分比。
• 外露金属焊盘或金属突起连接处的面积和厚度。
• 使用铸模材料和连接引线的封装尺寸。

需提供模型所用每一种材料的热传导属性。这种数据输入还包括所有热传导属性的温度依赖性变化,这些传导属性具体包括:
• 硅芯片热传导性
• 裸片连接、铸模材料的热传导性
• 金属焊盘或金属突起连接处的热传导性。
• 封装类型 (packageproduct) 和 PCB 相互作用

散热仿真的一个至关重要的参数是确定焊盘到散热片材料的热阻,其确定方法主要有以下几种:
• 多层 FR4 电路板(常见的为四层和六层电路板)
• 单端电路板
• 顶层及底层电路板

散热和热阻路径根据不同的实施方法而各异:
• 连接至内部散热片面板的散热焊盘或突起连接处的散热孔。使用焊料将外露散热焊盘或突起连接处连接至 PCB 顶层。
• 位于外露散热焊盘或突起连接处下方PCB 上的一个开口,可以和连接至模块金属外壳的伸出散热片基座相连。
• 利用金属螺钉将散热层连接至金属外壳的 PCB 顶部或底部覆铜层上的散热片。使用焊料将外露散热焊盘或突起连接处连接至 PCB 的顶层。

另外,每层 PCB 上所用镀铜的重量或厚度非常关键。就热阻分析而言,连接至外露焊盘或突起连接处的各层直接受这一参数的影响。一般而言,这就是多层印刷电路板中的顶部、散热片和底部层。

大多数应用中,其可以是两盎司重的覆铜(2 盎司铜=2.8 mils或 71 µm)外部层,以及1盎司重的覆铜(1盎司铜= 1.4 mils 或 35µm)内部层,或者所有均为 1 盎司重的覆铜层。在消费类电子应用中,一些应用甚至会使用 0.5 盎司重的覆铜(0.5 盎司铜= 0.7 mils 或 18 µm)层。

模型资料

仿真裸片温度需要一张 IC 平面布置图,其中包括裸片上所有的电源FET 以及符合封装焊接原则的实际位置。

每一个 FET 的尺寸和纵横比,对热分布都非常重要。需要考虑的另一个重要因素是 FET 是否同时或顺序上电。模型精度取决于所使用的物理数据和材料属性。

模型的静态或平均功耗分析只需很短的计算时间,并且一旦记录到最高温度时便出现收敛。

瞬态分析要求功耗-时间对比数据。我们使用了比开关电源情况更好的解析步骤来记录数据,以精确地对快速功率脉冲期间的峰值温度上升进行捕获。这种分析一般费时较长,且要求比静态功率模拟更多的数据输入。

该模型可仿真裸片连接区域的环氧树脂气孔,或 PCB 散热板的镀层气孔。在这两种情况下,环氧树脂/镀层气孔都会影响封装的热阻(请参见图 2)。

图 2 热传递的热阻路径

散热定义

Θja—表示周围热阻的裸片结点,通常用于散热封装性能对比。

· Θjc—表示外壳顶部热阻的裸片结点。

· Θjp—表示外露散热焊盘热阻的芯片结点,通常用于预测裸片结点温度的较好参考。

Θjb—表示一条引线热阻路径下电路板的裸片结点。

PCB 与模块外壳的实施

数据表明需要进行一些改动来降低顶部层附近裸片上的 FET 最高温度,以防止热点超出 150C 的 T 结点(请参见图 3)。系统用户可以选择控制该特定序列下的功率分布,以此来降低裸片上的功率温度。

图 3 由散热仿真得到的一个结果示例

散热仿真是开发电源产品的一个重要组成部分。此外,其还能够指导您对热阻参数进行设置,涵盖了从硅芯片 FET 结点到产品中各种材料实施的整个范围。一旦了解了不同的热阻路径之后,我们便可以对许多系统进行优化,以适用于所有应用。

该数据还可以被用于确定降额因子与环境运行温度升高之间相关性的准则。这些结果可用来帮助产品开发团队开发其设计。

来源:硬件十万个为什么,转载此文目的在于传递更多信息,版权归原作者所有。

围观 25

SCHURTER 4783 IEC电源输入插座首次将可重新接线的C13电源输入插座与成熟的带V型锁扣的电源线固定系统相结合,成为同类产品中的首创。4783型插座提供黑、白、灰三个色款,便于区分使用 — 如,在三相系统中区分使用。

小型电器系列装配的理想选择

可重新接线电源输入插座尤其适用于小型电器系列装配。安装4783型IEC电源输入插座后,用户可自由选择电源线长度和适合各国标准的插头。

V型锁扣

SCHURTER已推出多种可重新接线的IEC设备连接器。作为4783 IEC电源输入插座新增的独特配件,带V型锁扣的电源线固定系统与4783独有的新功能是集成了V-Lock锁扣的电源线固定系统,可有效防止电源线被意外拉出。

组装

工厂预组装电源线护罩的直径为8.5mm或10mm。螺丝端子可接受的横截面积最小为3 x 0.75mm2/18 AWG(0.82mm2)和最大为3 x 1.5mm2/14 AWG(2.08mm2)的电缆。

无卤结构

SCHURTER 4783插座的电源线护罩或任何其他塑料部件均不含卤素。

审批与认证

4783电源输入插座已获得欧洲、中国和北美市场的所有认证,也已经根据新的UL 60320标准进行认证。

独特卖点
- 防止电源线被意外拉出
- 简单的电缆组装
- 可重用
- 不含卤素

网际网路

Datasheet 4783 [1]

Landing Page V-Lock [2]

关于SCHURTER集团

SCHURTER是国际领先的电气和电子元件创新者和制造商。 该公司专注于安全电源和易于使用的设备。 其广泛的产品组合包括电路保护,插头和连接器,EMC产品,开关,输入系统和电子制造服务领域的标准解决方案。 SCHURTER的全球代表处网络确保了可靠的交付和专业的客户服务。 如果标准产品不适合,公司会开发特定于客户的解决方案。

联络方式

如果您需要更多信息,请联系SCHURTER: marketing.sg@schurter.com

schurter.cn

[1]: https://www.schurter.cn/datasheet/4783
[2]: https://www.schurter.cn/v-lock

围观 8

电源

电源是将其它形式的能转换成电能的装置。电源自“磁生电”原理,由水力、风力、海潮、水坝水压差、太阳能等可再生能源,及烧煤炭、油渣等产生电力来源。常见的电源是干电池(直流电)与家用的110V-220V 交流电源。

性能指标

优质的电源一般具有FCC、美国UL和中国长城等多国认证标志。这些认证是认证机构根据行业内技术规范对电源制定的专业标准,包括生产流程、电磁干扰、安全保护等,凡是符合一定指标的产品在申报认证通过后,才能在包装和产品表面使用认证标志,具有一定的权威性。
  
工作原理

发电机能把机械能转换成电能,干电池能把化学能转换成电能。

发电机、电池本身并不带电,它的两极分别有正负电荷,由正负电荷产生电压(电流是电荷在电压的作用下定向移动而形成的),电荷导体里本来就有,要产生电流只需要加上电压即可,当电池两极接上导体时为了产生电流而把正负电荷释放出去,当电荷散尽时,也就荷尽流(压)消了。

干电池等叫做电源。通过变压器和整流器,把交流电变成直流电的装置叫做整流电源。能提供信号的电子设备叫做信号源。晶体三极管能把前面送来的信号加以放大,又把放大了的信号传送到后面的电路中去。晶体三极管对后面的电路来说,也可以看做是信号源。整流电源、信号源有时也叫做电源。
  
电源是向电子设备提供功率的装置,也称电源供应器,它提供计算机中所有部件所需要的电能。电源功率的大小,电流和电压是否稳定,将直接影响计算机的工作性能和使用寿命。
  
计算机电源是一种安装在主机箱内的封闭式独立部件,它的作用是将交流电通过一个开关电源变压器换为5V,-5V,+12V,-12V,+3.3V等稳定的直流电,以供应主机箱内系统版,软盘,硬盘驱动及各种适配器扩展卡等系统部件使用。

通俗来讲就是,一个电源坏了,另一个备份电源代替其供电。可以通过为节点和磁盘提供电池后援来增强硬件的可用性。

磁盘与供电电路的连接方式应使镜像副本分别连接到不同的电源上。根磁盘与其相应的节点应由同一电源电路供电。特别是,群集锁磁盘(当重组群集时用作仲裁器)应该有冗余电源,或者,它能由群集中节点之外的电源供电。

目前许多磁盘阵列和其他架装系统含有多个电源输入,它们应部署为设备上的不同电源输入连接到带有两个或三个电源输入的独立电路设备上,这样,一般情况下,只要出现故障的电路不超过一个,系统就能继续正常运行。因此,如果群集中的所有硬件有2个或3个电源输入,则要求至少有三个独立的电路,以确保群集的电路设计中没有单点故障。
  
开关电源

开关电源的工作过程相当容易理解,在线性电源中,让功率晶体管工作在线性模式。

与线性电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断的状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小)/ 功率器件上的伏安乘积就是功率半导体器件上所产生的损耗。
  
与线性电源相比,PWM开关电源更为有效的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。脉冲的占空比由开关电源的控制器来调节,一旦输入电压被斩成交流方波,其幅值就可以通过变压器来升高或降低。通过增加变压器的二次绕组数就可以增加输出的电压值,最后这些交流波形经过整流滤波后就得到直流输出电压。
  
控制器的主要目的是保持输出电压稳定,其工作过程与线性形式的控制器很类似。也就是说控制器的功能块、电压参考和误差放大器,可以设计成与线性调节器相同。他们的不同之处在于,误差放大器的输出(误差电压)在驱动功率管之前要经过一个电压/脉冲宽度转换单元。

开关电源有两种主要的工作方式:正激式变换和升压式变换。尽管它们各部分的布置差别很小,但是工作过程相差很大,在特定的应用场合下各有优点。
  
电源分类

普通电源

又可细分为:开关电源、逆变电源、交流稳压电源、直流稳压电源、DC/DC电源、通信电源、模块电源、变频电源、UPS电源、EPS应急电源、净化电源、PC电源、整流电源、定制电源、加热电源、焊接电源/电弧电源、电镀电源、网络电源、电力操作电源、适配器电源、线性电源、电源控制器/驱动器、功率电源、其他普通电源、逆变电源、参数电源、调压电源、变压器电源。
  
特种电源

特种电源又可细分为:岸电电源、安防电源、高压电源、医疗电源、军用电源、航空航天电源、激光电源、其他特种电源。特种电源即特殊种类的电源。

所谓特殊主要是由于衡量电源的技术指标要求不同于常用的电源,其主要是输出电压特别高,输出电流特别大,或者对稳定度、动态响应及纹波要求特别高,或者要求电源输出的电压或电流是脉冲或其它一些要求。这就使得在设计及生产此类电源时有比普通电源有更特殊甚至更严格的要求。

特种电源一般是为特殊负载或场合要求而设计的,它的应用十分广泛。主要有:电镀电解、阳极氧化、感应加热、医疗设备、电力操作、电力试验、环保除尘、空气净化、食品灭菌、激光红外、光电显示等。而在国防及军事上,特种电源更有普通电源不可取代的用途,主要用于:雷达导航、高能物理、等离子体物理及核技术研究等。

电源+3.3V

电源+3.3V有什么用?

DDR内存是3.3V,DDR1内存是2.5V参考电压是1.25V,DDR2内存是1.8V电压参考电压是0.9V。

CPU供电是双12V的,3.3V主要是供给开机,复位5VSB(待机电压)内存电压偏低多为内存供电电路中的排阻出现了问题。

如果有电容鼓包或漏液,更换此电容即可解决。光驱和硬盘都是由一组12V和5V供电的。
  
解决电源3.3v的输出异常

电脑电源的3.3V输出异常表明电源内部已经坏了,需要维修或者更换一个新的电源。
  
维修方法是用改锥拆开电源,先目测有无明显损坏元件,将损坏元件换好后,再用万用表从电源输入端子开始检查有无损坏的原件,查到损坏原件后将其拆下换掉,直到所有坏的原件全部更换。

然后,拆除电源保险,将假负载接入电源的两个保险插口之间,插上电源,短接电源的绿色和黑色线,看电源能否启动 —— 如果灯亮说明电源还有短路性故障存在,需要再次检修,如果不亮,说明电源已经没有大的短路性故障,可以试着测量各组输出是否正常,正常表示电源奇珍修复,接上电脑,能正常使用就表示已经OK了,不行,需要重新检修。

来源:网络转载

围观 118

新款600W无风扇AC-DC电源,符合医疗(BF)和通讯/工业应用

2020年4月2日 –XP Power正式宣布推出一款新的对流冷却型,600W AC-DC电源系列。这款超紧凑型电源无需额外冷却,可在各种条件下提供满载功率。

UCH600系列非常适合在没有强制风冷、风扇噪音或灰尘进入的不受欢迎的情况下使用。这包括医疗设备,以及那些需要BF患者保护的设备,这些设备需要安静地运行,也包括通讯或工业电子应用,在这些环境中,强制风冷会加剧灰尘进入,或在可听见的噪音和风扇可靠性问题意味着强制风冷不可行的情况下。

该产品满足EN55011/32 B级传导和辐射标准,具有显著的裕度,可降低终端设备集成和系统批准的风险。Class C谐波合规性确保UCH600成为照明和显示应用的理想选择。

高水平的效率(高达95%)最大限度地减少了废热,并确保UCH600系列电源能够在高达+50℃的环境温度下(即使在低线输入下)提供其全部额定功率(600W)。在70℃时,无需任何形式的强制风冷,可提供全300W的功率。对于采用强制风冷的设备设计,可提供一个12V/0.6A辅助风扇。

UCH600系列符合通讯/工业和医疗保健应用需要满足的国际公认的IEC60950-1、IEC/EN/UL62368-1和IEC/EN60601-1第3版安规标准。

这款超紧凑和超薄的电源尺寸仅为8.0英寸x 5.0英寸x 1.57英寸,功率密度高达9.5W/平方英寸。其U型结构和低剖面允许轻松灵活地安装到广泛的应用中。

UCH600系列有现货供应,产品保质期为3年。

围观 4

电源的寿命就如同人的寿命一样是无法预知准确的年限,但是很多大数据分析报告中有平均寿命的概念。电源也一样,影响其寿命的因数很多,所以一般电源的寿命都是以平均无故障时间来衡量的。

电源的寿命主要由内部元器件和PCB的使用寿命以及整个焊接和装配的工艺确定的。在设计上要保证电源元器件的参数选择,在生产上要保证整个焊接和装配的一致性及可操作性。这样可以从源头保证了电源的稳定性和可靠性。

保证电源寿命的关键环节!

我们要减少故障发生的可能性,来保证电源长期稳定的工作。那就需要把控好电源生命周期中的两个重要环节:电源的研发、电源的生产。电源研发需要保证电源的性能满足我们的规格书要求,保证在电源正常生命周期中的电源性能指标。电源模块类产品对生产流程及工艺管控要求很高,需要高品质的生产设备及管理,才能达到预期的产品品质。

保证电源寿命的关键物料!

电源寿命与使用元器件之间也满足木桶效应,必须所有器件寿命都达到规定寿命才能保证电源的最终使用寿命。一般关键器件受到的电应力大,发热量高,机器内部温度上升快,温度对器件寿命影响较大,所以对器件的寿命最终评估尤为重要。那么我们电源里有哪些关键器件需要尤为关注呢?

1. 电解电容器

电解电容在电源器件中是对温度最为敏感的器件,从这个角度讲,电解电容器的好坏也一定程度上决定了电源装置的寿命,AC-DC电源产品表现的最为突出。

2. 初级开关管(MOS管)

此类开关器件,处于高速开关状态,所受电压应力及电流应力较高。开关损耗导致的发热也会是器件加速老化,同时也容易受到外部高压干扰而击穿损坏。

3. 高频功率变压器

高频变压器在能量传输时,内部的损耗会导致其发热,散发的热量也会影响变压器材料的寿命。常见的变压器故障有绝缘层击穿、绕组烧毁、铜线断裂等。

4. 多层陶瓷电容

贴片陶瓷电容最容易出现问题的地方是电容的焊点处,其可能会由于一些应力作用而崩裂。为了尽量减少发生的可能性,建议尽量避免多个陶瓷电容的并联使用。  

5. 输出整流二极管

二极管主要承受两大电应力,包括反向耐压及正向电流,同时二极管也是发热器件。为了保证此器件的使用寿命,我们会在设计时流出足够的裕量,最终保证电源的批量性能。

6. 光电耦合器

电流传输比(CTR)随着时间的推移会逐渐减少,为了保持环路稳定,发光二极管的电流会不断增大,最终会达到其极限值,导致光耦损坏。

综上所述,电源模块的价值不在与模块本身,而在于保证批量品质的工艺水平。消费者所需要的也是电源的安全可靠性,从而减少产品的生产及维护成本。

来源:电源Fan

围观 18

Q1:为什么要接地?

Answer:接地技术的引入最初是为了防止电力或电子等设备遭雷击而采取的保护性措施,目的是把雷电产生的雷击电流通过避雷针引入到大地,从而起到保护 建筑物的作用。同时,接地也是保护人身安全的一种有效手段,当某种原因引起的相线(如电线绝缘不良,线路老化等)和设备外壳碰触时,设备的外壳就会有危险 电压产生,由此生成的故障电流就会流经PE线到大地,从而起到保护作用。随电子通信和其它数字领域的发展,在接地系统中只考虑防雷和安全已远远不能满足要 求了。比如在通信系统中,大量设备之间信号的互连要求各设备都要有一个基准‘地’作为信号的参考地。而且随着电子设备的复杂化,信号频率越来越高,因此, 在接地设计中,信号之间的互扰等电磁兼容问题必须给予特别关注,否则,接地不当就会严重影响系统运行的可靠性和稳定性。最近,高速信号的信号回流技术中也 引入了 “地”的概念。

Q2:接地的定义

Answer: 在现代接地概念中、对于线路工程师来说,该术语的含义通常是‘线路电压的参考点’;对于系统设计师来说,它常常是机柜或机架;对电气工程师来说,它是绿色 安全地线或接到大地的意思。一个比较通用的定义是“接地是电流返回其源的低阻抗通道”。注意要求是”低阻抗”和“通路”。

Q3:常见的接地符号

Answer: PE,PGND,FG-保护地或机壳;BGND或DC-RETURN-直流-48V(+24V)电源(电池)回流;GND-工作地;DGND-数字地;AGND-模拟地;LGND-防雷保护地

Q4:合适的接地方式

Answer: 接地有多种方式,有单点接地,多点接地以及混合类型的接地。而单点接地又分为串联单点接地和并联单点接地。一般来说,单点接地用于简单电路,不同功能模 块之间接地区分,以及低频(f<1MHz)电子线路。当设计高频(f>10MHz)电路时就要用多点接地了或者多层板(完整的地平面层)。

Q5:信号回流和跨分割的介绍

Answer:对于一个电子信号来说,它需要寻找一条最低阻抗的电流回流到地的途径,所以如何处理这个信号回流就变得非常的关键。

第一,根据公式可以知道,辐射强度是和回路面积成正比的,就是说回流需要走的路径越长,形成的环越大,它对外辐射的干扰也越大,所以,PCB布板的时候要尽可能减小电源回路和信号回路面积。

第二,对于一个高速信号来说,提供有好的信号回流可以保证它的信号质量,这是因为PCB上传输线的特性阻抗一般是以地层(或电源层)为参考来计算的,如 果高速线附近有连续的地平面,这样这条线的阻抗就能保持连续,如果有段线附近没有了地参考,这样阻抗就会发生变化,不连续的阻抗从而会影响到信号的完整 性。所以,布线的时候要把高速线分配到靠近地平面的层,或者高速线边并行走一两条地线,起到屏蔽和就近提供回流的功能。

第三,为什么说布线的时候尽量不要跨电源分割,这也是因为信号跨越了不同电源层后,它的回流途径就会很长了,容易受到干扰。当然,不是严格要求不能跨越电 源分割,对于低速的信号是可以的,因为产生的干扰相比信号可以不予关心。对于高速信号就要认真检查,尽量不要跨越,可以通过调整电源部分的走线。(这是针 对多层板多个电源供应情况说的)

Q6:为什么要将模拟地和数字地分开,如何分开?

Answer:模拟信号和数字信号都要回流到地,因为数字信号变化速度快,从而在数字地上引起的噪声就会很大,而模拟信号是需要一个干净的地参考工作的。如果模拟地和数字地混在一起,噪声就会影响到模拟信号。

一般来说,模拟地和数字地要分开处理,然后通过细的走线连在一起,或者单点接在一起。总的思想是尽量阻隔数字地上的噪声窜到模拟地上。当然这也不是非常严格的要求模拟地和数字地必须分开,如果模拟部分附近的数字地还是很干净的话可以合在一起。

Q7:单板上的信号如何接地?

Answer:对于一般器件来说,就近接地是最好的,采用了拥有完整地平面的多层板设计后,对于一般信号的接地就非常容易了,基本原则是保证走线的连续性,减少过孔数量;靠近地平面或者电源平面,等等。

Q8:单板的接口器件如何接地?

Answer:有些单板会有对外的输入输出接口,比如串口连接器,网口RJ45连接器等等,如果对它们的接地设计得不好也会影响到正常工作,例如网口互连 有误码,丢包等,并且会成为对外的电磁干扰源,把板内的噪声向外发送。一般来说会单独分割出一块独立的接口地,与信号地的连接采用细的走线连接,可以串上 0欧姆或者小阻值的电阻。细的走线可以用来阻隔信号地上噪音过到接口地上来。同样的,对接口地和接口电源的滤波也要认真考虑。

Q9:带屏蔽层的电缆线的屏蔽层如何接地?

Answer:屏蔽电缆的屏蔽层都要接到单板的接口地上而不是信号地上,这是因为信号地上有各种的噪声,如果屏蔽层接到了信号地上,噪声电压会驱动共模电 流沿屏蔽层向外干扰,所以设计不好的电缆线一般都是电磁干扰的最大噪声输出源。当然前提是接口地也要非常的干净。

来源:网络

围观 36

内阻对电源到底有什么影响?

demi的头像

在学习电流源和电压源时,关于电源内阻的问题经常会困惑很多人,只记得电压源与外界负载连接时认为内阻是和外界负载串联;电流源与外界负载连接时认为内阻是和外界负载并联,使用时要求电压源内阻越小越好,电流源内阻越大越好!

1. 反激式电源

当选择一个可从单电源产生多输出的系统拓扑时,反激式电源是一个明智的选择。由于每个变压器绕组上的电压与该绕组中的匝数成比例,因此可以通过匝数来轻松设置每个输出电压。在理想情况下,如果调节其中一个输出电压,则所有其他输出将按照匝数进行缩放,并保持稳定。

2. 如何提高反激式电源的交叉调整率

在现实情况中,寄生元件会共同降低未调节输出的负载调整。我将进一步探讨寄生电感的影响,以及如何使用同步整流代替二极管来大幅提高反激式电源的交叉调整率。

例如,一个反激式电源可分别从一个48V输入产生两个1 A的12V输出,如图1的简化仿真模型所示。理想的二极管模型具有零正向压降,电阻可忽略不计。变压器绕组电阻可忽略不计,只有与变压器引线串联的寄生电感才能建模。这些电感是变压器内的漏电感,以及印刷电路板(PCB)印制线和二极管内的寄生电感。当设置这些电感时,两个输出相互跟踪,因为当二极管在开关周期的1-D部分导通时,变压器的全耦合会促使两个输出相等。

图1 该反激式简化模型模拟了漏电感对输出电压调节的影响

现在考虑一下,当您将100 nH的漏电感引入变压器的两根二次引线,并且将3μH的漏电与初级绕组串联时,将会发生什么。这些电感可在电流路径中建立寄生电感,其中包括变压器内部的漏电感以及PCB和其他元件中的电感。当初始场效应晶体管(FET)关断时,初始漏电感仍然有电流流动,而次级漏电感开启初始条件为0 A的1-D周期。变压器磁芯上出现基座电压,所有绕组共用。该基座电压使初级漏电中的电流斜降至0 A,并使次级漏电电流斜升以将电流传输到负载。当两个重载输出时,电流在整个1-D周期持续流动,输出电压平衡良好,如图2所示。然而,当一个重载输出和另一个轻载输出时,轻载输出上的输出电容倾向于从该基座电压发生峰值充电;因为电流迅速回升到零,其输出二极管将停止导通。请参见图3中的波形。这些寄生电感的峰值充电交叉调节影响通常比整流器正向压降单独引起的要差得多。

图2 输出施加重载时,次级绕组电流在两个次级绕组中流动


图3 重载次级1和轻载次级2,基座电压对次级2的输出电容器进行峰值充电

无论负载如何,同步整流器有助于通过在整个1-D周期内强制电流流入两个绕组来减轻此问题。

图4显示了具有与图3相同负载条件的波形,但用理想的同步整流器代替了理想的二极管。由于同步整流器在基座电压降低后保持良好状态,因此即使出现严重不平衡的负载,两个输出电压也能很好地相互跟踪。

虽然次级2的平均电流非常小,但均方根(RMS)含量仍然可以相当高。这是因为,与图3中的理想二极管不同,同步整流器在整个1-D周期期间可强制连续电流流动。有趣的是,电流在这一周期的大部分时间内必须是负的,以保证低平均电流。

显然,您牺牲更佳的调节以实现更高的循环电流。然而,这并不一定意味着总损耗会更高。同步整流器的正向压降通常远低于二极管,因此同步整流器在较高负载下的效率通常要好得多。

图4 用同步整流器代替二极管以强制电流在两个次级绕组中流动

3. 漏电感对交叉调节的影响

您可以在图5中看到对交叉调节的影响。1号输出上的负载在1A时保持稳定,而2号输出上的负载则在10 mA到1A之间起伏。在低于100 mA的负载下,当使用二极管时,由于基座电压峰值充电的影响,交叉调节严重降低。

请记住,您之所以只看到漏电感的影响,是因为在这些模拟中使用的是理想的二极管和理想的同步整流器。当考虑电阻和整流器的正向压降影响时,使用同步整流器的优势会进一步凸显。

因此,为了在多输出反激式电源中实现卓越的交叉调节效果,请考虑使用同步整流器。此外,您还可能提高电源的效率。

图5 两个输出之间的交叉调节

其中1号输出上的1-A负载保持稳定,而2号输出上的负载不断变化,从而凸显了同步整流器如何减轻漏电感的影响。

来源:电源Fan

围观 148

1. 概述

电源的输入部分,为了防止误操作,将电源的正负极接反,对电路造成损坏,一般会对其进行防护,如采用保险丝,二极管,MOS管等方式,这里就稍微做一下梳理总结。

2. 方式介绍

2.1 二极管防反接


采用二极管进行保护,电路简单,成本低,占用空间小。但是二极管的PN结在导通时,存在一个 <= 0.7V的压降,对电路造成不必要的损耗,比如对电池供电的系统,电流较大的电路都会造成比较明显的影响(电路中,功耗,发热都是不可忽略的问题)。

2.2 保险丝防护

很多常见的电子产品,拆开之后都可以看到电源部分加了保险丝,在电源接反,电路中存在短路的时候由于大电流,进而将保险丝熔断,起到保护电路的作用,但这种方式修理更换比较麻烦。

2.3 MOS管防护

MOS管因工艺提升,自身性质等因素,其导通内阻技校,很多都是毫欧级,甚至更小,这样对电路的压降,功耗造成的损失特别小,甚至可以忽略不计,所以选择MOS管对电路进行保护是比较推荐的方式。

2.3.1 NMOS防护

如下图:上电瞬间,MOS管的寄生二极管导通,系统形成回路,源极S的电位大约为0.6V,而栅极G的电位为Vbat,MOS管的开启电压极为:Ugs = Vbat - Vs,栅极表现为高电平,NMOS的ds导通,寄生二极管被短路,系统通过NMOS的ds接入形成回路。


若电源接反,NMOS的导通电压为0,NMOS截止,寄生二极管反接,电路是断开的,从而形成保护。

2.3.2 PMOS防护

如下图:上电瞬间,MOS管的寄生二极管导通,系统形成回路,源极S的电位大约为Vbat-0.6V,而栅极G的电位为0,MOS管的开启电压极为:Ugs = 0 -(Vbat-0.6),栅极表现为低电平,PMOS的ds导通,寄生二极管被短路,系统通过PMOS的ds接入形成回路。


若电源接反,PMOS的导通电压大于0,PMOS截止,寄生二极管反接,电路是断开的,从而形成保护。

注:NMOS管将ds串到负极,PMOS管ds串到正极,寄生二极管方向朝向正确连接的电流方向;

MOS管的D极和S极的接入:通常使用N沟道的MOS管时,一般是电流由D极进入而从S极流出,PMOS则S进D出,应用在这个电路中时则正好相反,通过寄生二极管的导通来满足MOS管导通的电压条件。MOS管只要在G和S极之间建立一个合适的电压就会完全导通。导通之后D和S之间就像是一个开关闭合了,电流是从D到S或S到D都一样的电阻。

实际应用中,G极一般串接一个电阻,为了防止MOS管被击穿,也可以加上稳压二极管。并联在分压电阻上的电容,有一个软启动的作用。在电流开始流过的瞬间,电容充电,G极的电压逐步建立起来。


对于PMOS,相比NOMS导通需要Vgs大于阈值电压,由于其开启电压可以为0,DS之间的压差不大,比NMOS更具有优势。

USB与电池切换设计:

当USB供电时,PMOS截止,通过二极管输入系统;当电池供电时,PMOS导通,下拉电阻的作用是将栅极电位稳定的拉低,确保PMOS正常开启,防止栅极高阻抗带来的隐患。


通过MCU的IO控制输入—>输出:

R3确保栅极电流不至于太大,R2上拉,截止PMOS,IO输出控制时,稳定为低,开启PMOS。


参考:
1.MOS管防止电源反接的一些总结
2.关于直流电防接反电路的总结
3.TI参考设计
4.PMOS开关管的选择与电路图

本文转自:https://blog.csdn.net/wwt18811707971/article/details/80232617
作者:霁风AI,转载此文目的在于传递更多信息,版权归原作者所有。

围观 368

在给嵌入式系统设计电源电路,或选用成品电源模块时,要考虑的重要问题之一就是用隔离还是非隔离的电源方案。在进行讨论之前,我们先了解下隔离与非隔离的概念,及两者的主要特点。

一、电源隔离与非隔离的概念

电源的隔离与非隔离,主要是针对开关电源而言,业内比较通用的看法是:

1、隔离电源:电源的输入回路和输出回路之间没有直接的电气连接,输入和输出之间是绝缘的高阻态,没有电流回路。

2、非隔离电源:输入和输出之间有直接的电流回路,例如,输入和输出之间是共地的。

隔离电源示意图如图所示。

二、隔离电源与非隔离电源的优缺点

由上述概念可知,对于常用的电源拓扑而言,非隔离电源主要有Buck、Boost、Buck-Boost等;而隔离电源主要有各种带隔离变压器的反激、正激、半桥、LLC等拓扑。

结合常用的隔离与非隔离电源,我们从直观上就可得出它们的一些优缺点,两者的优缺点几乎是相反的。

使用隔离或非隔离的电源,需了解实际项目对电源的需求是怎样的,但在此之前,可了解下隔离和非隔离电源的主要差别:

1、隔离模块的可靠性高,但成本高,效率差点。

2、非隔离模块的结构很简单,成本低,效率高,安全性能差。

因此,在如下几个场合,建议用隔离电源:

1、涉及可能触电的场合,如从电网取电,转成低压直流的场合,需用隔离的AC-DC电源;

2、串行通信总线通过RS-232、RS-485和控制器局域网(CAN)等物理网络传送数据,这些相互连接的系统每个都配备有自己的电源,而且各系统之间往往间隔较远,因此,我们通常需要隔离电源进行电气隔离来确保系统的物理安全,且通过隔离切断接地回路,来保护系统免受瞬态高电压冲击,同时减少信号失真;

3、对外的I/O端口,为保证系统的可靠运行,也建议对I/O端口做电源隔离。

三、隔离与非隔离电源的应用场合

通过了解隔离与非隔离电源的优缺点可知,它们各有优势,对于一些常用的嵌入式供电选择,我们已可做成准确的判断:

1、 系统前级的电源,为提高抗干扰性能,保证可靠性,一般用隔离电源。

2、 电路板内的IC或部分电路供电,从性价比和体积出发,优先选用非隔离的方案。

3、 对安全有要求的场合,如需接市电的AC-DC,或医疗用的电源,为保证人身的安全,必须用隔离电源,有些场合还必须用加强隔离的电源。

4、 对于远程工业通信的供电,为有效降低地电势差和导线耦合干扰的影响,一般用隔离电源为每个通信节点单独供电。

5、 对于采用电池供电,对续航力要求严苛的场合,采用非隔离供电。

四、抗电强度

电源的隔离耐压在GB-4943国标中又叫抗电强度,这个GB-4943标准就是我们常说的信息类设备的安全标准,就是为了防止人员受到物理和电气伤害的国家标准,其中包括避免人受到电击伤害、物理伤害、爆炸等伤害。如下图为隔离电源结构图。

隔离电源结构图

作为模块电源的重要指标,标准中也规定了隔离耐压相关测试方法,简单的测试时一般采用等电位连接测试,连接示意图如下:

隔离耐压测试示意图

测试方法:

将耐压计的电压设为规定的耐压值,电流设为规定的漏电流值,时间设为规定的测试时间值;

操作耐压计开始测试,开始加压,在规定的测试时间内,模块应无击穿,无飞弧现象。

注意在测试时焊接电源模块要选取合适的温度,避免反复焊接,损坏电源模块。

五、那么隔离电源与非隔离电源比较有什么的优缺点呢?

隔离电源与非隔离电源优缺点

通过了解隔离与非隔离电源的优缺点可知,它们各有优势,对于一些常用的嵌入式供电选择,我们可遵循以下判断条件:

对安全有要求的场合,如需接市电的AC-DC,或医疗用的电源,为保证人身的安全,必须用隔离电源,有些场合还必须用加强隔离的电源。

一般场合使用对模块电源隔离电压要求不是很高,但是更高的隔离电压可以保证模块电源具有更小的漏电流,更高的安全性和可靠性,并且EMC特性也更好一些,因此目前业界普遍的隔离电压水平为1500VDC以上。

本文转自网络,玩转单片机,转载此文目的在于传递更多信息,版权归原作者。

围观 535

页面

订阅 RSS - 电源