汽车

汽车是一种用于运输人和物的交通工具,通常由发动机、底盘、车轮和车身等部件组成。汽车是现代社会中最常见的交通工具之一,它们为人们提供了灵活、高效和便捷的出行方式。

为了使新能源爱好者和初级研发人员更好地了解新能源汽车的核心技术,笔者结合研发过程中的经验总结,从新能源汽车分类、模块规划、电控技术和充电设施等方面进行了分析。

1新能源汽车分类

在新能源汽车分类中,“弱混、强混”与“串联、并联”不同分类方法令非业内人士感到困惑,其实这些名称是从不同角度给出的解释、并不矛盾。

1.1消费者角度

消费者角度通常按照混合度进行划分,可分为起停、弱混、中混、强混、插电和纯电动,节油效果和成本增等指标加如表1所示。表中“-”表示无此功能或较弱、“+”个数越多表示效果越好,从表中可以看出随着节油效果改善、成本增加也较多。

表1 消费者角度分类

功能

起停

弱混

中混

强混

插电

纯电动

典型车型

奇瑞BSG

通用BAS

荣威750Hybrid

丰田Prius

通用Volt

日产Leaf

电功率比例

<5%

5-10%

10-20%

>30%

>50%

100%

节油效果

<5%

5-12%

15-25%

25-40%

>50%

100%

起动/停机

+

+

+

+

+

-

再生制动

-

+

++

+++

+++

+++

发动机效率优化

-

+

++

++

+++

-

纯电动能力

-

-

-

+

+++

+++

成本增加(万元)

0.2-0.5

1~2

3~4

4~6

6~8

>12

1.2技术角度

图1 技术角度分类

图1 技术角度分类

技术角度由简到繁分为纯电动、串联混合动力、并联混合动力及混联混合动力,具体如图1所示。其中P0表示BSG(Belt starter generator,带传动启停装置)系统,P1代表ISG(Integrated starter generator,启动机和发电机一体化装置)系统、电机处于发动机和离合器之间,P2中电机处于离合器和变速器输入端之间,P3表示电机处于变速器输出端或布置于后轴,P03表示P0和P3的组合。从统计表中可以看出,各种结构在国内外乘用或商用车中均得到广泛应用,相对来说P2在欧洲比较流行,行星排结构在日系和美系车辆中占主导地位,P03等组合结构在四驱车辆中应用较为普遍、欧蓝德和标致3008均已实现量产。新能源车型选择应综合考虑结构复杂性、节油效果和成本增加,例如由通用、克莱斯勒和宝马联合开发的三行星排双模系统,尽管节油效果较好,但由于结构复杂且成本较高,近十年间的市场表现不尽如人意。

2新能源汽车模块规划

尽管新能源汽车分类复杂,但其中共用的模块较多,在开发过程中可采用模块化方法,共享平台、提高开发速度。总体上讲,整个新能源汽车可分为三级模块体系、如图2所示,一级模块主要是指执行系统,包括充电设备、电动附件、储能系统、发动机、发电机、离合器、驱动电机和齿轮箱。二级模块分为执行系统和控制系统两部分,执行部分包括充电设备的地面充电机、集电器和车载充电机,储能系统的单体、电箱和PACK,发动机部分的气体机、汽油机和柴油机,发电机的永磁同步和交流异步,离合器中的干式和湿式,驱动电机的永磁同步和交流异步,齿轮箱部分的有级式自动变速器(包括AMT、AT和DCT等)、行星排和减速齿轮;二级模块的控制系统包括BMS、ECU、GCU、CCU、MCU、TCU和VCU,分别表示电池管理系统、发动机电子控制单元、发电机控制器、离合器控制单元、电机控制器、变速器控制系统和整车控制器。三级模块体系中,包括电池单体的功率型和能量型,永磁和异步电机的水冷和风冷形式,控制系统的三级模块主要包括硬件、底层和应用层软件。

图2三级模块体系

图2三级模块体系

根据功能和控制的相似性,三级模块体系的部分模块可组成纯电动(含增程式)、插电并联混动和插电混联混动三种平台架构,例如纯电动(含增程式)由充电设备、电动附件、储能系统、驱动电机和齿轮箱组成。各平台模块的通用性较强,采用平台和模块的开发方法,可共享核心部件资源,提升新能源系统的安全性和可靠性,缩短周期、降低研发及采购成本。

3新能源三大核心技术

在三级模块体系和平台架构中,整车控制器(VCU)、电机控制器(MCU)和电池管理系统(BMS)是最重要的核心技术,对整车的动力性、经济性、可靠性和安全性等有着重要影响。

3.1VCU

VCU是实现整车控制决策的核心电子控制单元,一般仅新能源汽车配备、传统燃油车无需该装置。VCU通过采集油门踏板、挡位、刹车踏板等信号来判断驾驶员的驾驶意图;通过监测车辆状态(车速、温度等)信息,由VCU判断处理后,向动力系统、动力电池系统发送车辆的运行状态控制指令,同时控制车载附件电力系统的工作模式;VCU具有整车系统故障诊断保护与存储功能。

图3为VCU的结构组成,共包括外壳、硬件电路、底层软件和应用层软件,硬件电路、底层软件和应用层软件是VCU的关键核心技术。

图3 VCU组成

图3 VCU组成

VCU硬件采用标准化核心模块电路( 32位主处理器、电源、存储器、CAN )和VCU专用电路(传感器采集等)设计;其中标准化核心模块电路可移植应用在MCU和BMS,平台化硬件将具有非常好的可移植性和扩展性。随着汽车级处理器技术的发展,VCU从基于16位向32位处理器芯片逐步过渡,32位已成为业界的主流产品。

底层软件以AUTOSAR汽车软件开放式系统架构为标准,达到电子控制单元(ECU)开发共平台的发展目标,支持新能源汽车不同的控制系统;模块化软件组件以软件复用为目标,以有效提高软件质量、缩短软件开发周期。

应用层软件按照V型开发流程、基于模型开发完成,有利于团队协作和平台拓展;采用快速原型工具和模型在环(MIL)工具对软件模型进行验证,加快开发速度;策略文档和软件模型均采用专用版本工具进行管理,增强可追溯性;驾驶员转矩解析、换挡规律、模式切换、转矩分配和故障诊断策略等是应用层的关键技术,对车辆动力性、经济性和可靠性有着重要影响。

表2为世界主流VCU供应商的技术参数,代表着VCU的发展动态。

表2 VCU技术参数

国外主流厂商1

国外主流厂商2

尺寸(mm)

185*127*65

220*170*45

CPU架构

Freescale  32位(MPC5642),单核 120MHz

+Delphi ASIL C

Freescale  32位(MPC5644),

单核 120Mhz

+ Freescale 8位(S9S08DZ60)

软件架构

参考AutoSAR

非AutoSAR

通讯方式

CAN、LIN、SPI、FlexRay

CAN、LIN、SPI

工作电压

10~16V(不兼容24V系统)

9~16V(不兼容24V系统)

功能安全

可通过扩展相关芯片满足ISO26262 ASIL C

符合ISO26262 ASIL C

3.2MCU

MCU是新能源汽车特有的核心功率电子单元,通过接收VCU的车辆行驶控制指令,控制电动机输出指定的扭矩和转速,驱动车辆行驶。实现把动力电池的直流电能转换为所需的高压交流电、并驱动电机本体输出机械能。同时,MCU具有电机系统故障诊断保护和存储功能。

MCU由外壳及冷却系统、功率电子单元、控制电路、底层软件和控制算法软件组成,具体结构如图4所示。

图4 MCU组成

图4 MCU组成

MCU硬件电路采用模块化、平台化设计理念(核心模块与VCU同平台),功率驱动部分采用多重诊断保护功能电路设计,功率回路部分采用汽车级IGBT模块并联技术、定制母线电容和集成母排设计;结构部分采用高防护等级、集成一体化液冷设计。

与VCU类似,MCU底层软件以AUTOSAR开放式系统架构为标准,达到ECU开发共同平台的发展目标,模块化软件组件以软件复用为目标。

应用层软件按照功能设计一般可分为四个模块:状态控制、矢量算法、需求转矩计算和诊断模块。其中,矢量算法模块分为MTPA控制和弱磁控制。

MCU关键技术方案包括:基于32位高性能双核主处理器;汽车级并联IGBT技术,定制薄膜母线电容及集成化功率回路设计,基于AutoSAR架构平台软件及先进SVPWM PMSM控制算法;高防护等级壳体及集成一体化水冷散热设计。

表3为世界主流 MCU硬件供应商的技术参数,代表着MCU的发展动态。

表3 MCU技术参数


国外主流厂商
1

国外主流厂商2

尺寸(mm)

475*245*108

411*454*183

峰值功率

180KVA

320KVA

峰值输出电流

320A

450A

主处理器

TMS320F28335

Infineon

防护等级

IP67

IP69

通讯方式

CAN

CAN

转矩和转速响应时间,转矩和转速控制精度

满足整车控制要求

满足整车控制要求

3.3电池包和BMS

电池包是新能源汽车核心能量源,为整车提供驱动电能,它主要通过金属材质的壳体包络构成电池包主体。模块化的结构设计实现了电芯的集成,通过热管理设计与仿真优化电池包热管理性能,电器部件及线束实现了控制系统对电池的安全保护及连接路径;通过BMS实现对电芯的管理,以及与整车的通讯及信息交换。

电池包组成如图5所示,包括电芯、模块、电气系统、热管理系统、箱体和BMS。BMS能够提高电池的利用率,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。

图5 电池包组成

图5 电池包组成

BMS是电池包最关键的零部件,与VCU类似,核心部分由硬件电路、底层软件和应用层软件组成。但BMS硬件由主板(BCU)和从板(BMU)两部分组成,从版安装于模组内部,用于检测单体电压、电流和均衡控制;主板安装位置比较灵活,用于继电器控制、荷电状态值(SOC)估计和电气伤害保护等。

BMU硬件部分完成电池单体电压和温度测量,并通过高可靠性的数据传输通道与BCU 模块进行指令及数据的双向传输。BCU 可选用基于汽车功能安全架构的32 位微处理器完成总电压采集、绝缘检测、继电器驱动及状态监测等功能。

底层软件架构符合AUTOSAR标准,模块化开发容易实现扩展和移植,提高开发效率。

应用层软件是BMS的控制核心,包括电池保护、电气伤害保护、故障诊断管理、热管理、继电器控制、从板控制、均衡控制、SOC估计和通讯管理等模块,应用层软件架构如图6所示。

图6 应用层软件架构

图6 应用层软件架构

表4为国内外主流 BMS供应商的技术参数,代表着BMS的发展动态。

表4 BMS技术参数

国外主流厂商

国内主流厂商

配套方案

主从结构

主从结构

温度范围

-40~85℃

-40~85℃

技术指标

电压测量精度:0.1%FS

电流测量精度:0.1%FS

电流测量范围:0~±600A

SOC估算精度:5%

均衡方式:主动平衡

电压测量精度:0.5% FS

电流测量精度:0.5% FS

温度测量范围(℃):-40~125℃

温度测量精度(℃):0.5℃

SOC测量精度:5%;

均衡方式:被动平衡

车型应用范围

纯电动车、混合动力车

纯电动车、混合动力车

功能安全

电池过充、过放、温升保护、绝缘防护、高压互锁、预充电

电池过充、过放、温升保护、绝缘防护

适用电芯范围

锰酸锂、三元材料

铅酸电池、镍氢电池、锂电池等动力电池

4充电设施

充电设施不完善是阻碍新能源汽车市场推广的重要因素,对特斯拉成功的解决方案进行分析,并提出新能源汽车的充电解决方案、剖析充电系统组成。

4.1特斯拉充电方案分析

特斯拉超级充电器代表了当今世界最先进的充电技术,它为MODEL S充电的速度远高于大多数充电站,表5为特斯拉电池和充电参数。

表5电池和充电参数

动力电池总成参数

0.8C快充参数(90kW充电)

电池类型

额定电压

电压范围

总容量

电压

电流

功率

NCA

424.8V

324.5-495.6V

200.1Ah

500V

160A

80kW

改进NCA

356.4V

272.25-415.8V

238.7Ah

420V

192A

80kW

特斯拉具有5种充电方式,采用普通110/220V市电插座充电,30小时充满;集成的10kW充电器,10小时充满;集成的20kW充电器,5小时充满;一种快速充电器可以装在家庭墙壁或者停车场,充电时间可缩短为5小时; 45分钟能充80%的电量、且电费全免,这种快充装置仅在北美市场比较普遍。

特斯拉使用太阳能电池板遮阳棚的充电站,既可以抵消能源消耗又能够遮阳。与在加油站加油需要付费不同,经过适当配置的 MODEL S 可以在任何开放充电站免费充电。

特斯拉充电技术特点可总结如下两点:1)特斯拉充电站加入了太阳能充电技术,这一技术使充电站尽可能使用清洁能源,减少对电网的依赖,同时也减少了对电网的干扰,国内这一技术也能实现。 2)特斯拉充电时间短也不足为奇,特斯拉的充电机容量大90~120kWh,充电倍率0.8C,跟普通快充一样,并没有采用更大的充电倍率,所以不会影响电池寿命;20分钟充到40%,就能满足续航要求,主要原因是电池容量大。

4.2充电解决方案

图7充电系统组成

图7充电系统组成

图7为一种可参考的新能源汽车充电解决方案,充电系统组成:配电系统(高压配电柜、变压器、无功补偿装置和低压开关柜)、充电系统(充电柜和充电机终端)以及储能系统(储能电池与逆变器柜)。无功补偿装置解决充电系统对电网功率因数影响,充电柜内充电机一般都具备有源滤波功能、解决谐波电流和功率因数问题。储能电池和逆变器柜解决老旧配电系统无法满足充电站容量要求、并起到削峰填谷作用,在不充电时候进行储能,大容量充电且配电系统容量不足时释放所储能量进行充电。如果新建配电系统容量足够,储能电池和逆变器柜可以不选用。风力发电和光伏发电为充电系统提供清洁能源,尽量减少从电网取电。

5总结

从消费者和技术角度分别对新能源汽车结构进行归纳分类,分析各种结构的优势,以及国内外各主机厂的应用情况。分析新能源汽车的模块组成和平台架构,详细介绍了三级模块体系中相关的执行系统和控制系统。分析VCU、MCU和BMS的结构组成及关键技术,以及世界主流供应商的技术参数和发展动态。对特斯拉成功的解决方案进行分析,并提出新能源汽车的充电解决方案。

作者:杨伟斌
来源:
第1电动

围观 682

ARM表示OpenSynergy公司正在为其最先进的实时安全处理器ARM® Cortex®-R52 开发业界第一款软件管理程序。该管理程序可将任何基于Cortex-R52的芯片变为虚拟机,并能同时执行不同的软件任务。针对诸如无人驾驶和工业控制系统等设备中芯片不断提升的复杂性,该方法可以将安全性至关重要的功能与无需严格控制的功能相隔离。此外,它能够将应用程序整合到更少的电子控制单元(ECU),以便管理复杂性并降低成本。

ARM嵌入式营销副总裁Richard York表示:“面向大众市场的无人汽车将被赋予大幅增强的ECU计算能力和安全管理更复杂软件栈的能力。为此,Cortex-R52应运而生,借助管理程序实现软件隔离,从而保护重要的安全功能,并同时确保任务的快速执行。这样对于高性能车,我们将能放心地把驾驶任务交给自动驾驶系统。”

OpenSynergy首席执行官Stefaan Sonck Thiebaut表示:“Cortex-R52将虚拟化技术可应用于更广泛的汽车设备。对此,我们非常期待为下一代汽车架构提供支持。”

Cortex-R52不仅将硬件的虚拟化支持导入Cortex-R处理器系列,还维持硬实时操作系统(hard real-time systems)的所有必要功能。在虚拟机中维持绝对执行性的特色,对于协助各式机器人相关应用同时运行多个实时操作系统所面临的挑战,提供了最佳解决方案。

OpenSynergy软件架构适用于诸如域控制器(domain controllers)之类的微控制器。虚拟机管理程序技术支持多个实时操作系统和不同ASIL级别的AUTOSAR系统在ARM Cortex-R52上的同时运行。

围观 466

来源:SiliconLabs

近期,SiliconLabs(芯科科技)发布了汽车级EFM8 MCU,超低功耗的EFM8SB1 Sleepy Bee和EFM8BB1/BB2 Busy Bee。这些新型的汽车级8位MCU专为车内触摸界面和汽车电动控制应用而设计,有三个改变车内镜子,顶灯和座椅的主要原因。

优异的性能

AEC-Q100认证的EFM8SB1系列提供了先进的片上电容触摸技术,以取代物理按钮。与所有EFM8 MCU一样,这些器件通过先进的特性和功能提供同类最佳的8位性能,包括高速流水线8051内核,超低功耗,精密模拟和增强型通信外设,片上振荡器,小型 -footprint封装和获得专利的交叉开关架构,支持灵活的数字和模拟外设多路复用,以简化PCB设计和I / O引脚布线。汽车级EFM8SB1设备支持从零下40 到零上85 oC的外部温度,内核速度高达25MHz,闪存达8 kB。该MCU集成了12位模数转换器(ADC),高性能定时,温度传感器,和增强型SPI,I2C 和 UART序列端口。片上高精度电容到数字转换器提供了超低的,小于1 µA的唤醒触摸功能和12个强大的电容触摸通道,无需在许多应用中使用on/off开关。

EFM8BB1/ BB2器件支持零下40至零上125 oC的温度范围,适用于必须满足严
格的汽车认证,在不同温度范围内工作,同时在各种温度下都能提供高性能的应用。EFM8BB1器件为成本敏感型设计提供最优的性价比,而BB2产品则提供增强的模拟和数字外设性能。这些MCU是模拟密集型车身控制应用(例如座椅调节,风扇控制,车窗升降器和油箱传感器)的不错选择。

领先的性价比

EFM8BB1/ BB2 Busy Bee MCU为成本敏感型应用提供了性能,能效和价值的平衡。随着核心速度扩展到50 MHz和2-64 kB闪存大小,MCU提供了一系列高性能外设,包括高分辨率12位ADC,高速12位DAC,低功耗比较器,电压参考,增强吞吐量通信外设和内部振荡器,封装尺寸小至3 mm x 3 mm。这种独特的单芯片集成消除了对分立模拟组件的需求,降低了系统成本和电路板空间。

大幅简化设计

EFM8SB1系列设计来用于处理各种舱内触摸接口和车身电子电动控制应用,提供先进的片上电容触摸技术,可轻松的替代物理按钮。EFM8BB1 / BB2 Busy Bee系列具有高性能模拟和数字外设,使这些设备成为控制电动后视镜,头灯和座椅的通用选择。

SiliconLabs支持触摸感应接口设计,其电容感应库在Simplicity Studio™开发工具套件中可获得,提供了将电容感应接口添加到汽车应用所需的所有功能和算法。Simplicity Studio为设计人员提供了立即可用于生产的固件,从扫描按钮到过滤噪声。通过使用电容传感分析器可视化实时数据和电容传感按钮的噪声电平,开发人员可以轻松地定制触摸和无触摸阈值和噪声过滤设置,大大简化了对车载用户界面添加电容触摸。

欲了解更多SiliconLabs汽车级EFM8系列MCU的更多技术信息,请访问:http://cn.silabs.com/products/mcu/8-bit/efm8-busy-bee/pages/efm8-busy-be...

围观 301



新型汽车级8位MCU瞄准车内触摸界面和电机控制应用

Silicon Labs(亦名“芯科科技”,NASDAQ:SLAB)宣布推出两个系列的汽车级EFM8 微控制器(MCU)产品,设计旨在满足广泛的车内触摸界面和车身电子电机控制应用。经过AEC-Q100认证的、超低功耗的新型EFM8SB1 Sleepy Bee系列产品提供先进的片上电容式触摸技术,可以实现用触摸控制来轻松地替代物理按钮。

EFM8BB1/BB2 Busy Bee系列产品拥有高性能的模拟和数字外设,从而使这些器件可以作为一种通用的选择,来控制电动后视镜、车头灯和座椅等。

此次发布的所有EFM8 MCU都基于8051内核并实现了不同功能和性能的组合,这些功能包括高速流水线8051内核、超低功耗、精度模拟、增强的通信外设、片上振荡器、小尺寸封装,以及拥有专利的Crossbar架构,该架构可提供灵活的数字和模拟外设管脚复用,从而简化印制电路板(PCB)设计和I/O引脚路由。

EFM8SB Sleepy Bee MCU系列是Silicon Labs最节能的8位MCU,提供无与伦比的触摸性能、超低的休眠模式能耗(在内存内容保持和掉电检测使能条件下仅50nA)和快速的2μs唤醒时间。汽车级EFM8SB1器件支持-40℃~+85℃的环境温度范围,内核速度高达25MHz,闪存容量高达8KB。该系列MCU集成了12位模数转换器(ADC)、高性能定时器、温度传感器,以及增强型SPI、I2C和UART串行端口。片上高分辨率电容数字转换器(CDC)提供超低功耗的触摸唤醒能力(<1µA)和12路可靠的电容触摸感应通道,可以替换许多应用中的物理按键开关。该MCU非常适合用于基于触摸的控制装置,如顶灯和头顶按钮。电容式触摸控制为当今装载电子系统的车辆提供了更持久耐用且防潮的用户界面,以及更时尚的观感。

Silicon Labs利用集成在SimplicityStudio™开发工具套件中的Capacitive Sense Library(电容感应功能库)来支持触摸感应界面设计,提供了在汽车应用中添加电容感应按键所需的所有逻辑算法。SimplicityStudio为设计人员提供了可即刻用于量产的固件,包括从扫描按键到噪声滤波等。通过使用Capacitive Sense Profiler工具能够将实时数据和电容触摸按键的噪声等级可视化,开发人员可以轻松地自定义触摸和非触摸门限及噪声过滤配置,极大地简化了在车载用户界面中添加电容触摸功能的难度。

EFM8BB1/BB2 Busy Bee MCU系列为成本敏感型应用提供了高性能、能效和价格等方面的良好平衡。除了高达50MHz的内核速率、2-64KB的闪存,该系列MCU还可在小至3mm x 3mm的封装内提供一系列高性能外设,包括高分辨率的12位ADC、高速的12位数模转换器(DAC)、低功耗比较器、内置基准电源、增强了吞吐量的通信外设和内部振荡器。这种非凡的单芯片集成设计消除了对分立模拟元器件的需求,同时缩减了系统成本和电路板占用空间。

由于支持-40℃~+125℃的宽温度范围,EFM8BB1/BB2器件适合于那些必须满足严格的汽车资格认证,可在宽温度范围内工作,同时在所有温度下都可提供高性能的应用。EFM8BB1器件可为成本敏感型设计提供最优的性价比,而EFM8BB2产品可提供增强的模拟和数字外设性能。对于模拟密集型的汽车车身控制应用,诸如座椅调整、风扇控制、车窗升降和燃料箱传感器,EFM8BB1/BB2 MCU是一种良好的选择。

Simplicity Studio中的配置工具(Configurator)和能耗分析工具(Energy Profiler)等都可帮助开发人员加速设计进程,并优化能源效率。EFM8客户可以从Silicon Labs官方网站 www.silabs.com/simplicity-studio 免费下载Simplicity Studio工具。

价格和供货

现已可提供多种采用空间紧凑型QFN封装的汽车级EFM8SB1和EFM8BB1/BB2 MCU的样片,并可批量供货。在一万片采购量时,EFM8SB1 MCU单价为每片0.59美元起,EFM8BB1 MCU的单价为每片0.47美元起,EFM8BB2 MCU的单价为每片0.71美元起。这些汽车级MCU的入门级开发套件定价为每套29美元(厂商建议零售价)。关于经AEC-Q100认证的新型EFM8 MCU的更多信息,或者订购产品样片和入门套件,请浏览网站: www.silabs.com/efm8

围观 280

页面

订阅 RSS - 汽车