微控制器

英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)与全球领先的图形用户界面(GUI)设计和开发工具提供商Altia近日宣布双方达成合作。2023年初,Altia CloudWare™软件平台开始支持英飞凌TRAVEO™ T2G-C系列微控制器(MCU),赋能显示器相关应用。在近期举办的2023年国际消费电子展(CES 2023)上,全球电源系统和物联网领域的半导体领导者英飞凌和Alita分别展示了TRAVEO™ T2G-C系列微控制器和CloudWare™软件平台,并进行了相关演示。

1.jpg

英飞凌科技产品营销和业务发展总监Marcelo Williams Silva表示:英飞凌十分高兴能够与Altia开展密切合作,采用其基于云端的CloudWare软硬件解决方案。英飞凌的TRAVEO T2G微控制器产品,可推动车载显示屏技术在商用车、建筑车辆、农业用车、私家车等各种车辆的应用和发展。在显示器上生成图形,过程通常十分复杂。很快,客户便可以将英飞凌的评估板、基于TRAVEO T2G-C系列微控制器的人机交互(HMI)图形显示系统与Altia简单易用的CloudWare软件解决方案相结合,加速图形生成过程。

借助Altia CloudWare,客户能够对英飞凌的TRAVEO评估板进行测试,并利用Altia的软件开发人机交互功能,快速将各种嵌入式显示屏推向市场。客户可以使用Altia基于云端的CloudWare解决方案,轻而易举地对TRAVEO T2G微控制器进行配置,通过为基于 TRAVEO硬件的GUI设计基准测试和其他相关测试提供专门的开发接口,加快设计速度。在使用虚拟的CloudWare解决方案之后,用户将不再需要单独的编译器、程序或调试器,就可开展工作。

1673581716992651.jpg

英飞凌的TRAVEO T2G 系列微控制器采用Arm® Cortex®-M4/M7内核,具有高性能、增强型HMI、高安全性等特点,并支持先进的网络协议。TRAVEO T2G系列微控制器专为广泛的汽车应用量身打造,适用于包括汽车电气化、车身控制模块、网关、车载信息娱乐等在内的各种应用。

供货情况

英飞凌和Altia联合开发的解决方案将于2023年初上市。

如需进一步了解英飞凌如何推动未来出行,请访问:https://www.infineon.com/cms/en/discoveries/new-mobility/

关于Altia

Altia 是一家软件公司,可提供图形用户界面设计和开发工具,用于初始概念设计及最终产品的代码编写等。Altia 生成的图形代码正在驱动着全球数百万台显示器——从汽车仪表盘、HUD 和收音机到恒温器、洗衣机和医疗设备等。 Altia的使命是以最低成本的硬件在最短的时间内将用于汽车、 医疗和消费电子设备的最好接口投入生产。

Altia 成立于 1991 年。其客户包括汽车 OEM 和一级供应商,如大陆汽车集团、电装、菲亚特克莱斯勒汽车公司、福特汽车、通用汽车、本田、雷诺、玛涅蒂马瑞利、日本精机、法雷奥、伟世通等,以及伊莱克斯、惠而浦、诺迪克等众多领先的消费电子设备制造商。

关于英飞凌

英飞凌科技股份公司是全球电源系统和物联网领域的半导体领导者。英飞凌以其产品和解决方案推动低碳化和数字化进程。该公司在全球拥有约56,200名员工,在2022财年(截至930日)的收入约为142亿欧元。英飞凌在法兰克福证券交易所上市(股票代码:IFX),在美国的OTCQX国际场外交易市场上市(股票代码:IFNNY)。

更多信息请访问www.infineon.com

更多新闻请登录英飞凌新闻中心https://www.infineon.com/cms/cn/about-infineon/press/press-releases/

英飞凌中国

英飞凌科技股份公司于1995年正式进入中国大陆市场。自199510月在无锡建立第一家企业以来,英飞凌的业务取得非常迅速的增长,在中国拥有约3,000多名员工,已经成为英飞凌全球业务发展的重要推动力。英飞凌在中国建立了涵盖研发、生产、销售、市场、技术支持等在内的完整的产业链,并在销售、技术研发、人才培养等方面与国内领先的企业、高等院校开展了深入的合作。

围观 6

英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)与嵌入式安全领域的全球领导者Green Hills Software展开合作,为汽车行业高级安全应用的开发和部署提供完善的生态系统。该项合作结合了英飞凌领先的TRAVEO T2G车身及仪表盘微控制器系列产品,以及Green Hills经过生产验证、全面的软件解决方案,其中包括:

通过整合相关专有技术,英飞凌和Green Hills为整车厂(OEM)提供了一套完整的解决方案。借助该方案,整车厂能够利用可靠的生产就绪型软件,加快汽车应用的安全构建和部署。

1673505290545860.jpg

随着汽车行业智能网联化的发展,以及电动汽车产品的持续迭代,整车厂迫切希望通过开发新的创新应用,为消费者提供差异化的汽车产品。同时,整车厂还需要确保汽车应用的安全性。基于此次合作,英飞凌与Green Hills能够在保证性能,且不增加汽车应用内存需求的情况下,帮助整车厂解决这两大难题。现在,整车厂可以借助这套易于部署的、全面的解决方案,降低成本、提高开发人员的工作效率,并加快产品的上市速度。

英飞凌TRAVEO T2G车身微控制器系列适用于各种汽车应用,包括车身控制模块、车门、车窗、天窗和座椅控制单元,以及车内智能手机终端和无线充电单元等。用于汽车仪表盘的英飞凌TRAVEO T2G-C系列微控制器(MCU),可为常规仪表盘、混合型仪表盘和虚拟仪表盘等汽车显示系统提供更加稳健、功能更加丰富的图形引擎,使其具有高度扩展性。

1673505266335948.jpg

Green Hillsµ-velOSity实时操作系统具有体积小巧、易于编程、内存管理高效等特点。该操作系统应用广泛,适用于要求通过ASIL认证的相关应用。µ-velOSity仅需借助几千字节的ROM(只读存储器),便可在最短的处理器周期内快速启动。该操作系统(OS)的上下文切换时间超短,并且能够快速调用内核服务,这些特性使其成为支持实时汽车功能的理想选择。此外,该操作系统还拥有简单明了的应用编程接口(API),可缩短产品开发时间,提高产品的可维护性,从而降低成本并加快产品的上市速度。µ-velOSity还为独立开发者或者原本采用无操作系统配置的开发着提供了完善的迁移路径。

使用英飞凌TRAVEO T2G车身微控制器系列的开发者,可利用Green Hills MULTI先进的、集成式开发工具,包括经过优化的Green Hills C/C++编译器等,大幅提升工作效率。Green Hills的编译器和运行时库性能优越,且通过了ASIL认证,这些优势让Green Hills成为了C/C++编译器的业界标杆。开发者可借助MULTI先进的多核、多操作系统调试及可视化功能,更快速地发现和修复漏洞,降低处理器内存的占用,并减少软件召回数量,以降低成本。

此次将英飞凌的TRAVEO T2G 系列微控制器与Green Hills经过生产验证的、全面的软件解决方案相融合,是专为汽车电气化、车身控制模块、网关、车载信息娱乐系统等各种汽车应用量身定制。英飞凌与Green Hills合作,为汽车主机厂提供了一套可快速部署的、完整的集成解决方案,该解决方案具有高品质、高性能和高系统可靠性以及低内存占用等特点。

供货情况

英飞凌和Green Hills联合开发的解决方案现已上市。如需了解更多信息,请访问https://www.ghs.com/partners/infineon_partner.html

如需进一步了解英飞凌如何推动未来出行,请访问:https://www.infineon.com/cms/en/discoveries/new-mobility/

关于Green Hills Software

Green Hills Software 成立于 1982 年,是嵌入式安全领域的全球领导者。2008 年,Green Hills INTEGRITY®-178 RTOS 成为全球第一套、也是唯一一套获得 NIAP ( NSA NIST组成的国家信息保证联盟) EAL 6+ 合格认证的高稳健性 (High Robustness) 操作系统,这是软件产品可取得的最高等级安全性认证。我们基于开放式架构的集成式开发解决方案适用于需要绝对信息安全和高可靠性的各种深度嵌入式应用,涵盖军事/航空电子、医疗、工业、汽车、网络、消费电子等需要行业认证解决方案的市场。Green Hills Software 总部位于美国加州圣塔芭芭拉市,欧洲总部位于英国。更多信息,请访问https://www.ghs.com/

关于英飞凌

英飞凌科技股份公司是全球电源系统和物联网领域的半导体领导者。英飞凌以其产品和解决方案推动低碳化和数字化进程。该公司在全球拥有约56,200名员工,在2022财年(截至930日)的收入约为142亿欧元。英飞凌在法兰克福证券交易所上市(股票代码:IFX),在美国的OTCQX国际场外交易市场上市(股票代码:IFNNY)。

更多信息请访问www.infineon.com

更多新闻请登录英飞凌新闻中心https://www.infineon.com/cms/cn/about-infineon/press/press-releases/

英飞凌中国

英飞凌科技股份公司于1995年正式进入中国大陆市场。自199510月在无锡建立第一家企业以来,英飞凌的业务取得非常迅速的增长,在中国拥有约3,000多名员工,已经成为英飞凌全球业务发展的重要推动力。英飞凌在中国建立了涵盖研发、生产、销售、市场、技术支持等在内的完整的产业链,并在销售、技术研发、人才培养等方面与国内领先的企业、高等院校开展了深入的合作。

围观 6

随着汽车行业不断加速发展,Arm Cortex-M CPU 成为车内微控制器 (MCU) 的理想之选。本文将为您详细阐述背后的原因。

在软件定义汽车 (SDV)[1]  的新时代,为了应对供应安全方面的挑战,汽车行业正在经历一场前所未有的变革。这使得整个行业的计算架构和供应链也随之演变。

核心计算组件

SDV 的计算平台由三个核心组件组成。用于高级驾驶辅助系统 (ADAS) 的中央计算,可提高自动驾驶能力,并实现一般的车辆计算功能;多个区域控制器,可充当配电和数据连接枢纽,并支持各种实时汽车功能;最后,还有多个集成到电子控制单元 (ECU) 中的终端微控制器,可支持整个计算平台的单功能操作,包括传感器、驱动和硬件控制。

1.png

汽车计算平台内部一览

所有 MCU 控制器将成为汽车计算平台中重要的一环,而采用 Arm Cortex-M CPU[2] 的 MCU 在这之中将发挥决定性作用。这些 MCU 将提供所需的功能、功耗、可扩展性和通用架构,为汽车行业的计算转型提供支持。

软件定义汽车

在深入研究 MCU 和 Cortex-M CPU 的作用之前,有必要先思考一下 SDV 的决定因素。我们预计 SDV 提供汽车软件更新的方式将类似于如今在智能手机上进行的定期更新,其中包括对系统的更新通知,或是可能由驾驶员要求的车辆功能改进。例如,可以升级转向系统以实现更灵敏的“运动型”操控,也可以向 ADAS 添加新功能以获得更多驾驶辅助,或者升级电池管理系统以增加汽车的续驶里程。为了实现这些更新,SDV 还将需要一个云原生环境,能够先在云端创建和测试软件,然后再将其部署到汽车中。

2.png

展望未来 SDV 的内部情况

MCU 的崛起

尽管新车的电子/电气 (EE) 架构趋于集中化,但在整个汽车行业中,MCU 的销量和功能都将有所增加。据 Strategy Analytics[3] 分析,在 2021 年至 2026 年期间,MCU 的销量将增长约 8%,超过汽车产量的增速。这些 MCU 将推动远程边缘传感点的部署,以低功耗和高效率控制车内的特定操作,并适配 SDV 的新软件架构。

MCU 的功能和计算能力一直在更新迭代。随着需求的持续扩大,MCU 已从 8 位扩展到 16 位,随后又扩展到 32 位。事实上,有许多最小节点在不断地发展并迁移到 32 位控制器,同时,Arm 的汽车合作伙伴也致力于在 2023 年推出新的 32 位产品 (敬请期待后续相关发布)。

由于无线更新 (OTA) 贯穿未来 SDV 的整个生命周期,MCU 需要不断提供可信的执行环境和更强大的安全功能,以防止恶意软件非法访问隐私、法律或财务等方面的重要信息,或导致可能致命的严重事故。功能安全也是汽车的重要标准。对于可能提供关键测量和作动功能的终端 MCU 而言,功能安全更是至关重要,因此,这些 MCU 必须具备功能安全特性。

Cortex-M 的作用

Cortex-M CPU 可提供未来汽车计算平台中 MCU 所需的各项功能。汽车合作伙伴之所以为其 MCU 选择 Cortex-M,是因为该产品系列能够提供通用架构、功能安全、先进的信息安全以及广泛的生态系统支持。例如,Elmos[4]就计划在其新一代汽车 MCU 中采用一系列 Cortex-M 产品。

通用架构

近期的全球供应状况已经对汽车行业产生影响。有时,终端 MCU 的供应不足会导致汽车无法出货。由于替代控制器的选择很少,汽车需要等到这些关键组件有货后才能出货。因此,部署标准化 MCU 计算架构有助于提高灵活性,可填补供应缺口。

凭借 30 年来与汽车行业伙伴的合作经验,Arm 拥有多样化且可扩展的计算核心产品组合,从高性能中央计算到高能效终端 MCU,可满足各种汽车应用的需求。这就提供了一种通用架构,设计公司和开发者得益于各种汽车应用中所使用的可扩展硬件和软件,节省了工程时间和成本。展望新的 SDV,拥有这种通用架构将有助于实现软件开发和部署以及 OTA 更新。

功能安全

功能安全能够为汽车系统中的安全关键型应用提供支持,通过侦测和报告可能导致危险情况的故障,帮助降低对人和环境造成的风险。随着自动驾驶等新技术的出现,功能安全愈发重要,同时继续为确立已久的安全关键型需求提供支持。对功能安全的需求还扩展到了工业、航空航天和轨道交通等汽车以外的其他应用市场。

Cortex-M 系列可为嵌入式控制器的所有性能点提供安全功能,使 Arm 的合作伙伴能够开发可扩展的安全关键型系统。合作伙伴可借助 Cortex-M85[5]、Cortex-M55[6] 和 Cortex-M23[7] 自带的诸多功能安全特性,有效地实现安全方面的目标。

来自广泛软件生态系统的支持则为基于 Cortex-M CPU 的安全关键型开发提供了大量经安全认证的软件和工具。而 Arm 的合作伙伴以及更广泛的开发者社区可以轻松获取这些软件和工具。Arm 还为安全工具和软件提供原生支持,例如 Arm 的功能安全运行时系统 (FuSa RTS)[8]、软件测试库[9]和 Arm 嵌入式编译器[10]

3.png

信息安全

正如功能安全一样,市场对加强网络安全的需求也在与日俱增,以防范对乘用车构成严重威胁的恶意软件攻击。如今,黑客攻击已经造成严重的安全隐患,尤其随着汽车自动驾驶水平的提高,情况更是如此。在防止未经授权的信息访问方面,信息安全同样必不可少。Upstream 发布的《2022 年全球汽车网络安全报告》[11]指出,在 2020 年和 2021 年报告的安全事故中,有 87.7% 源于车辆数据和代码受到的威胁。

联网 SDV 遭到的攻击面有所增加,因此需要考虑整个车辆的信息安全,而不仅仅是高性能节点的信息安全。必须在汽车的整个生命周期内考虑对边缘 MCU 的保护,同时还需考虑汽车的其他部分,包括软件更新在内。

在处理器层面,这意味着要能够信任正在执行的代码,并具备信息安全以减少虚假软件攻击。Cortex-M CPU 被越来越多地用于在中央和区域计算架构中执行安全系统管理和启动管理服务。通过 Armv8-M 架构,TrustZone[12] 被引入整个 Cortex-M 系列中。Cortex-M23 和 Cortex-M33[13] 是率先支持由 TrustZone 提供的硬件强制分离及安全性的处理器。这可确保包括软件、CPU、互连、存储器和外围设备在内的整个系统的安全。

通过 Armv8.1-M 架构,处理器中还添加了更多增强型的信息安全功能。Cortex-M85 中包含指针身份验证代码 (PAC) 和分支目标识别 (BTI),有助于抵御返回导向和跳转导向的软件攻击。

4.png

Arm 生态系统

随着 SDV 继续在汽车行业发挥更加重要的作用,一级供应商、车厂和开发者正在设法优化软件开发时间和成本。Arm 架构迄今已完成逾 2,000 亿次部署,这一庞大规模促使工具、操作系统和软件库供应商在其产品中增加 Arm 支持,从而实现经济高效的软件开发。对于 Cortex-M 处理器,Arm 的生态系统合作伙伴可为 IDE、编译器、调试和追踪工具及软件提供广泛支持。Arm 还制定了通用微控制器软件接口标准 (CMSIS)[14],从而提供一致且标准化的软件构建块。基于上述这些,汽车开发者可以从众多选项中进行选择,以缩短上市时间并降低开发风险。

推动汽车行业发展

新型 SDV 的计算要求将促使汽车行业对于在车辆计算平台中部署大量 MCU 提出更加广泛且持续的需求,并要做到“所有控制器齐头并进”。Cortex-M CPU 所具备的高能效计算、可扩展性、功能安全和信息安全等功能将为 MCU 的广泛普及提供助力。除产品功能以外,Arm 还拥有全球最大的软件生态系统之一,可为实现无缝集成和出色开发体验提供更广泛的支持。基于 Cortex-M 的 MCU 有助于推动 SDV 等新型汽车的发展,这将使 Arm 成为汽车行业未来发展的重要基石。

备注:[1] - [14] 的来源可参见原文,欢迎点击阅读原文:https://www.arm.com/blogs/blueprint/cortex-m-automotive-microcontrollers

本文作者:Arm 汽车事业部产品管理总监 James Scobie

来源:Arm社区

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 25

本应用笔记与 STM32U575/585 微控制器(MCU)中嵌入的通用 DMA(GPDMA)相关。GPDMA 是一种系统外设,是 AHB 总线上的双端口主设备。它被用于通过链表在外设和/或存储器之间传输数据。所有 GPDMA 可编程传输均在系统层面提供更高性能,并使 CPU 无需执行这些数据传输任务。

详阅请点击下载《如何使用 STM32U575/585 微控制器的 GPDMA》

来源:STM32单片机

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 8

MathWorks公司和英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)近日宣布推出用于MathWorks Simulink®产品的硬件支持包,旨在为英飞凌最新的AURIX™ TC4x系列汽车微控制器提供支持。在获得硅片之前,汽车工程师就可以使用该硬件支持包设计先进的电动汽车、传感器融合和雷达信号处理功能。借助该硬件支持包,工程师们可以验证用例、快速自动生成嵌入式软件并测试算法。

1.jpg

英飞凌科技ADAS、底盘和电子电气架构应用微控制器产品营销总监Marco Cassol表示:我们最新的AURIX TC4x系列微控制器将为客户带来无与伦比的实时功能安全和网络安全。MathWorks基于模型的设计功能在业界获得了广泛应用,可为此类芯片提供支持,让工程师在获得硅片之前即可更早地开始软件开发,并通过自动生成代码加快开发速度。这也意味着新产品上市时间将会缩短,由此带来的优势可以极大地帮助我们的客户取得成功。

MathWorks研究员Jim Tung表示:与英飞凌的密切合作将助力我们双方共同的客户加快电动汽车系统的开发步伐。工程师们可以在管控风险的同时处理复杂的系统,增进对系统级行为、持续验证和符合需求的数字主线的理解。能够在这些方面做出贡献,让汽车变得更加清洁、高效和可靠,我们感到非常自豪。

MathWorks公司与英飞凌的合作能够为汽车工程师提供助力,赋能电动汽车和驾驶辅助功能的开发,简化日益复杂的汽车系统开发流程。利用MATLAB®Simulink®进行基于模型的设计,可以让嵌入式系统的开发和验证速度比传统方法提高30%40%。有鉴于此,英飞凌汽车微控制器提供的无缝支持能够为工程师和研究人员创造价值。

这是英飞凌与MathWorks公司之间所开展的一系列合作的最新成果。此外,双方近期还将英飞凌OptiMOS™ 5 MOSFET器件的SPICE模型纳入到MathWorks公司Simscape™软件的物理建模环境中,以此来加快设计速度,并有效控制用于动力总成和冷却系统、泵以及其他汽车控制功能的电机,以提高效率并减少二氧化碳排放。

关于MathWorks

MathWorks是数学计算软件的领先开发商。MATLAB堪称一种工程师和科学家语言,是一个用于算法开发、数据分析、可视化和数值计算的编程环境。Simulink是一个用于多领域和嵌入式工程系统的仿真和基于模型设计的框图环境。世界各地的工程师和科学家都可以依靠这些产品来加速汽车、航空航天、通信、电子、工业自动化和其他产业的发现、创新及发展步伐。MATLABSimulink也是世界各地大学和学习机构的基础教学和研究工具。MathWorks成立于1984年,在全球16个国家拥有5,000多名员工,总部位于美国马萨诸塞州纳蒂克。如需了解更多信息,请访问mathworks.com

关于英飞凌

英飞凌科技股份公司是全球电源系统和物联网领域的半导体领导者。英飞凌以其产品和解决方案推动低碳化和数字化进程。该公司在全球拥有约56,200名员工,在2022财年(截至930日)的收入约为142亿欧元。英飞凌在法兰克福证券交易所上市(股票代码:IFX),在美国的OTCQX国际场外交易市场上市(股票代码:IFNNY)。

更多信息请访问www.infineon.com

更多新闻请登录英飞凌新闻中心https://www.infineon.com/cms/cn/about-infineon/press/press-releases/

英飞凌中国

英飞凌科技股份公司于1995年正式进入中国大陆市场。自199510月在无锡建立第一家企业以来,英飞凌的业务取得非常迅速的增长,在中国拥有约3,000多名员工,已经成为英飞凌全球业务发展的重要推动力。英飞凌在中国建立了涵盖研发、生产、销售、市场、技术支持等在内的完整的产业链,并在销售、技术研发、人才培养等方面与国内领先的企业、高等院校开展了深入的合作。

围观 10

意法半导体最新的 X-CUBE-TCPP软件包增强了公司的 USB Type-C® 端口保护芯片产品组合和STM32 接口IP(知识产权),简化USB Power Delivery产品研发。

111111111111111-min.jpg

USB Power Delivery技术规范支持从传统的 5V/0.5A一直到最新版本 3.1 规范中的 48V/5A(240 瓦)的工作模式。功率增容可以激发产品设计创新,有助于新的可持续发展法律出台,例如,最近欧盟批准USB Type-C 成为所有手机、平板电脑和相机的通用充电端口,以减少电子垃圾。利用 USB Power Delivery 的新产品设计包括移动电源、智能扬声器、PC 外围设备、通信设备、医疗设备、POS 终端、工业显示器和电池供电的嵌入式应用。

意法半导体的X-CUBE-TCPP软件包可以简化在STM32Cube 生态系统中的开发工作,并为意法半导体产品组合中的三个 USB Type-C 端口保护 IC提供软件库。这三款芯片是受电端TCPP01-M12、供电端TCPP02-M18 和双重角色电源 (DRP)TCPP03-M20。

TCPP01-M12TCPP02-M18TCPP03-M20可与意法半导体的STM32G0、STM32G4、STM32L5 和 STM32U5 微控制器 (MCU)的UCPD(USB Type-C和Power Delivery)接口IP配合使用,在标准功率范围内解决 USB 供电问题,最高功率可达 20V-5A(100 W)。把USB Type-C分成微控制器和端口保护芯片两部分可以用双片解决方案,以节省成本,降低开发复杂性,最大限度地减少 PCB 空间。STM32芯片还可用作主MCU。

Additionally, X-CUBE-TCPP assists development on STM32 MCUs that do not contain the Power Delivery PHY, to streamline compliance with the USB Type-C specification.

此外,X-CUBE-TCPP 还有助于在没有 Power Delivery PHY的 STM32 MCU 上开发应用,简化产品的USB Type-C规范合规设计。

用户使用X-CUBE-TCPP 软件库,配合X-NUCLEO-SNK1M1扩展板,选用NUCLEO-G071RBNUCLEO-G474RENUCLEO-L412RB-P任何一款搭载STM32 MCU的STM32 Nucleo-64开发板执行代码,可以加快受电应用开发。

开发供电端应用,X-CUBE-TCPP软件库可与X-NUCLEO-SRC1M1扩展板和任何一款无 Power Delivery的STM32 Nucleo-64 USB Type-C供电端开发板配合使用,或者与有Power Delivery 的NUCLEO-G071RB 或 NUCLEO-G474RE USB Type-C供电开发板配合。

开发有 Power Delivery 的 DRP应用,软件库需要与X-NUCLEO-DRP1M1扩展板和NUCLEO-G071RB 或 NUCLEO-G474RE主板配合使用。

这三块板子已通过 USB Implementers Forum 认证,并具有一个代表符合 USB-C Power Delivery规范的测试ID编号(TID),这确保开发人员开发的产品与现场的其他认证产品互操作。这些板子的 TID测试编号分别是 X-NUCLEO-SNK1M1 (TID 5205), X-NUCLEO-SRC1M1 (TID 7884)和 X-NUCLEO-DRP1M1(TID 6408)。

X-CUBE-TCPP软件包可从 www.st.com 或 GitHub 免费下载。

围观 13

汽车行业正在经历一场巨大的技术变革。为了采用可持续能源解决方案,电动化正在迅速普及。自动驾驶预计将拯救无数人的生命,并减少道路交通事故。车厂希望通过未来的软件定义汽车 (SDV)[1] 为客户提供更好的功能和全新的体验。

上述这些汽车趋势都有一个共同点:它们都需要安全稳定的系统才能成功。包括 Arm 在内的整个汽车供应链都在极力构建适合新一代汽车的安全系统。

Arm Cortex-M 系列被广泛用作汽车微控制器 (MCU) 的主要核心,以及许多汽车 SoC 的配套核心。合作伙伴可借助这些核心自带的诸多安全功能,有效地实现安全目标。近期,Arm Cortex-M55[2] 成为了众多经过安全评估的处理器中的新成员。这让 Arm 的合作伙伴更加确信,Arm 市场领先的产品符合最高的安全标准。

标准推动行业发展

汽车和工业行业依靠功能安全标准将安全相关组件部署到终端产品中。Arm 的安全就绪[3]战略旨在提供基于 ISO 26262 和 IEC 61508 标准的全面产品。这些标准不仅为安全关键系统的开发提供了关键框架、要求和指南,而且提供了基于风险评估分析的不同 ASIL/ SIL 等级,并给出了合规所需实现的具体目标指标。

1.png

为帮助汽车行业打造出色的解决方案,Arm 在安全相关产品方面提供高达 ASIL D 等级的系统能力,并提供基于特定配置的 ASIL B/D 等级的诊断能力。

通过复制来进行诊断

ASIL D 代表最高等级的潜在风险,并需要最严格的方法来管理故障。例如,制动系统、电池管理系统、电动汽车 (EV) 车载充电系统和安全气囊系统就被归类为 ASIL D 等级,因为这些系统一旦出现故障可能会造成严重后果。

为达到这种等级的汽车安全完整性,可采用的一种方法是冗余,这种方法通常被认为是实现 ASIL D 的最有效途径。当一个系统执行一项任务后,能与另一个完成了相同任务的相同系统进行比较,若两者结果相同,则表示该系统的表现跟预期一样;若结果不同,则表示其中一个系统出错了。后续可以设法解决该错误,例如重新启动系统或重新执行任务。

对于需要达到 ASIL D 等级的应用,拥有具备此功能的 CPU 核心意味着您可以轻松地从最底层开始确保安全无虞。Arm Cortex-M55 提供了一个可配置的选项来实现双核锁步 (DCLS),双核锁步设计了计算内核的一个副本。该功能可以有效地创建必要的故障检测,在计算内核层面达到 ASIL D 硬件指标。如此一来,合作伙伴就可以专注于系统层面的安全性。

2.png

Cortex-M55 已通过 Exida 对 DCLS 配置中的 ASIL D 系统和诊断故障进行了评估。Arm 的合作伙伴可以将其集成到自己的系统级评估中,从而更有信心在设计中达到 ASIL D 等级。如此一来,可以更快完成汽车设计,缩短产品上市时间,并使车厂能够实现汽车安全上路。

在较低风险的 ASIL 等级中提高面积效率

ASIL B 系统的风险等级较低,但仍需要采取适当的机制来确保各种故障得到妥善处理。例如,车身控制、照明和发动机控制功能等应用如果出现故障,会增加发生危险的可能性。

DCLS 是芯片集成商实现 ASIL B 等级的一种方法,但如果复制计算内核,则会增加功耗和面积。由于这些都是重要的设计参数,尽管为实现 ASIL D 而增加的成本被普遍接受,但如果 DCLS 方法打破了 ASIL B 等级的面积限制怎么办?因此,结合使用几种安全机制可能是更具成本效益的方法。

为了帮助合作伙伴达到 ASIL B 指标,并使用户能够实现自身的安全目标,Cortex-M55 具有多种不需要完全复制计算内核的功能。其中包括:

瞬时故障保护 (TFP):ISO26262 要求考虑瞬时故障,根据应用情况,可能需要作为设计的一部分加以解决。定期测试并不能找出所有故障,因为它们来去不定,所以需要另一种方法。TFP 提供了一种检测瞬时故障,并在检测到故障时发出错误消息的机制。

紧耦合存储器 (TCM) 和缓存纠错码 (ECC):ECC 提供了一种有效检测存储器故障的方式。通过使用压缩的错误代码来检查数据的有效性,它可以纠正单比特错误。

内存内置自检 (MBIST) 控制器:存储器在系统或组件设计中可能占据较大比例。借助 MBIST 控制器,可以在车辆中的应用运行期间有效地测试存储器和 ECC 逻辑,而不影响功能运行。

软件测试库 (STL) (仍在开发中):STL[4]提供了一种测试处理器功能逻辑的方式,可以检测运行期间的故障。更重要的是,这类测试可以在规定的时间内快速运行,尽可能降低对应用性能的影响。

3.png

除了 STL 之外,Cortex-M55 还具有其他对双核和单核配置均有利的安全功能:

接口保护

设计系统时,内核并非唯一的组件。总线接口保护为系统设计者提供了一种超出处理器边界的保护方式。

内存保护单元 (MPU)

当 MCU 上运行的某个任务从不适合该任务的区域请求数据时,就会发生错误。MPU 可以对内存进行空间分区来执行特定任务,并进行编程,使某些区域被不适当地访问时产生故障。

根据具体的应用情况,适合采用上述一个或多个功能,并且可以与系统级安全功能相结合,以满足 ASIL B 指标要求。Cortex-M 系列的优点在于灵活性,合作伙伴可灵活地在设计中选择要启用或关闭的功能。上述所有安全功能都可自由选择,合作伙伴可以自行决定如何实现自身的安全目标以满足车厂的需求。

Arm 架构是汽车安全的基石

从高性能到高能效 CPU 核心,安全性始终是汽车应用的基础。Cortex-M 系列体现了 Arm 致力于实现高能效的功能安全。Cortex-M55 获得了行业认可的官方认证,这给予了合作伙伴和整个行业更多的信心,让他们能够继续推进基于 Arm 架构的设计、产品和应用。而这也是 Arm 今后持续发力汽车市场的又一个重要里程碑。

备注:[1] - [4] 的来源可参见英文原文,欢迎点击此处。

本文作者:Arm 汽车事业部产品经理 Laura Armitstead

来源:Arm社区

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 28

当车门有自吸功能时 ,关车门时,只需要把门轻轻一带,门就会自动被吸上了,或者是车上有老人或者是小孩子的时候,关门的时候就无需像普通车型那般用力。自吸门可以有效避免大力关门,减轻对车门的损伤,同时减少车内乘客不适感。另外,采用自吸门后,可以有效避免车门没有完全关闭的风险,让驾乘更安全、更放心,获得舒适尊贵的体验。这让自吸门在豪华车及部分电动车上慢慢开始普及。智芯方案应用中心与国内车厂合作,采用智芯的Z20K118M芯片完成了整个自吸门控制器的软硬件开发并量产。

1、硬件框图

1.jpg

2、系统配置表

2.png

3、软件架构

3.png

4、安全策略

 1)机械机构满足30g耐惯性,可靠性高。

 2)解锁状态下,任何时刻可通过内、外把手触发开关打开车门。

 3)断电或短路的情况下,即使在上锁状态,也可以通过紧急内开可靠的打开车门。

 4)车身或遥控器断电等情况下,可以可靠的上锁、解锁、开门。

 5)电吸过程中,电子和机械(紧急外开启)方式均具备电吸中断功能。

 6)车速超5Km/h时,自吸屏蔽。

 7)电压超限值,自吸屏蔽。

 8)防止电机过热,电机操作达10次,将启动电机保护模式。

 9)全锁信号联合判断,确保门关闭到位。

5、模块和控制器实物图

4.png


5.png

6、成功案例

国内某知名造车新势力已经采用本方案实现了量产。

应用中心将在自吸门基础上继续研发基于自吸自开的方案。

6.jpg

来源:智芯SEMI

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 18

通过引入可编程和可重新配置的模拟和数字功能,以及业内标准微控制器架构,2002年推出的PSoC™ 1开启了微控制器的新纪元。灵活和可重新配置的模拟与数字功能,使得嵌入式系统工程师能够将许多硬件电路功能都集成到一颗IC当中。这种集成方法使得BOM成本和电路板尺寸立即大幅降低,且提供了快速便捷的进行最后一刻修改的方法,使得几乎免除了电路板返工。

PSoC™的可编程能力延续至今,使得可为新传感器元件创建模拟前端和信号调节电路,从而使得无需额外的模拟IC,无需增加BOM复杂性,且无需增加电路板面积或层数。通用数字单元(UDB)提供许多逻辑基元功能,它们能够进行配置,以实现特定于应用的门控需求,或独立于PSoC™ MCU内核运行的状态机。

如今,PSoC™家族包含PSoC™ 4和 PSoC™ 6两个系列。它们适用于广泛的消费类应用,包括智能家居、可穿戴设备和个人医疗器械。本文,我们将重点介绍PSoC™ 6系列。PSoC™ 6系列包含通用可编程Arm Cortex-M4微控制器 PSoC™ 61,通用双核可编程微控制器PSoC™ 62,双核、高性能、低功耗、可编程、可重新配置和拥有安全处理环境的微控制器 PSoC™ 64。

专为物联网而打造的解决方案

PSoC™ 6基于40 nm工艺并采用了Arm超低功耗架构。它在有源模式下的功耗仅为22 µA/MHz。150 MHz Arm Cortex-M4和100 MHz Arm Cortex-M0+双核模式,使得嵌入式系统开发人员能够优化其应用的功耗和运算处理性能。由于采用了业界最高水平的安全架构——Arm平台安全架构(PSA),PSoC™是真正专为物联网而打造的解决方案。

通过弥补昂贵、耗电的应用处理器与资源有限的微控制器之间的差距,PSoC™满足了物联网对处理性能、无线连接和低功耗的需求。

PSoC™ 6 MCU还采用了最新一代英飞凌CAPSENSE™电容式感应技术。CAPSENSE™让开发人员能够创建创新直观且稳健可靠的多点触控和基于手势的人机界面(HMI)除了集成的BLE(低功耗蓝牙)功能,PSoC™ 6还可与英飞凌的AIROC™ Wi-Fi、AIROC™ 蓝牙或AIROC™ combos射频模块配对使用。

PSoC™ 6 MCU系列除了具有整个家族通用的一套标准功能之外,还拥有一些特定功能。所有产品都支持从1.7 VDC到3.6 VDC的低功耗模式,6种功耗模式帮助实现了精细化的电源管理方式。在深度睡眠模式下,保留64KB SRAM数据的典型电流消耗只有7uA。

PSoC™ 6的通用功能

◆ 两或三个DMA控制器

◆ 闪存 – 最高容量通常达到2048 KB;确切容量取决于产品

◆ 外部存储器接口 - Quad-SPI (QSPI)和串行存储器接口(SMIF)

◆ CAPSENSE™- 采用了英飞凌的电容式触摸和接近感应sigma-delta技术,从而实现一流的信噪比;并采用了SmartSense自动硬件调谐

◆ 串行通信外设接口

◆ 7或9个运行时间可配置串行通信模块(SCB):6或8个可配置为SPI、 I2C或UART,1个深度睡眠SCB可配置为SPI 或I2C

◆ 1个USB全速接口

◆ 1个SD Host/eMMC/SD 控制器

◆ 可编程GPIO(通用输入输出)– 取决于产品,通常在62到102个之间,部分在MCU深度睡眠期间可用,多达两个过压容忍的引脚

可编程模拟功能包括

◆ 1个12位2-Msps逐次逼近(SAR)模数转换器(ADS),具有差分和单端模式;1个16通道序列发生器,带结果平均功能

◆ 两个低功耗比较器,都支持MCU深度睡眠和休眠模式

◆ 与ADC相连的内部温度传感器

◆ 一系列时钟选项,包括1个精度为+/- 2%的8 MHz主振荡器,1个32 kHz超低功率低速振荡器,以及片上晶体振荡器。时钟可利用内部锁相环(PLL)进行倍频,且主时钟拥有进行时钟倍频的锁频环(FLL)。时钟分频器包含小数和整数分频功能

◆ 计时器和PWM功能包含12个或以上支持中心对齐、边缘和伪随机模式的可配置计时器/计数器/脉宽调制器(TCPWM)

◆ LCD段码驱动器拥有最多63个段码和8个common,支持深度睡眠模式

◆ 用于对称和非对称密码函数(DES、TDES、AES、CRC、 RSA/ECC)的密码加速器,以及真随机数发生器(TRNG)

PSoC™ 6开发资源包

目前 RT-Thread 已全面支持英飞凌PSoC 6系列, 提供完善的外设驱动支持,可让开发者开箱即用,从而免去繁杂的底层软件开发和固件整合工作。配合RT-Thread丰富的组件和软件包,可进一步提升开发效率,让开发者更多专注于应用创新上,提升产品在市场竞争力。现有支持包括:完善的驱动支持、丰富的上层组件和软件包。

1.png

PSoC 6 — CY8CKIT-062S2-43012 BSP 仓库

2.png

RT-Thread Studio 支持英飞凌PSoC,

具备PSoC 6开发,调试,烧录功能

3.png4.png

RT-Thread 文档中心:英飞凌 CY8CKIT-062S2-43012 快速上手指南,方便快速上手开发

5.png

开源参考示例:Infineon + RT-Thread 物联网 DEMO,借助 rw007 模组实现传感器数据快速上云

6.png

7.png

8.png

PSoC硬件支持

PSoC硬件支持:即将推出 Infineon + RT-Thread 纪念板硬件,用于PSoC 6芯片学习与评估。

来源:英飞凌官微

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 11

页面

订阅 RSS - 微控制器