单片机

瑞萨电子微控制器产品重点系列

“瑞萨电子单片机一览"
  • 为满足客户不断增长的需求,瑞萨电子推出的微控制器产品,可让客户充分利用现有资源,同时提供出色的可扩展性。

  • 瑞萨微控制器提供多种存储器和封装选项,具有运行快速、可靠性高、低成本和环保的特性。

  • 融合最新工艺技术、集成大容量闪存、应用范围广泛,包括需要高质量和高可靠性的要求严苛应用领域。

  • 配备强大的支持系统,以帮助减少研发成本,缩短研发时间。包含各种开发工具,包括来自其他公司的产品,并受到广泛的技术文档、软件库和活跃用户社区的支持。作为全球位列前茅的MCU供应商,瑞萨在各种微控制器 (MCU) 的基础上,带来最出色、最强大的解决方案。

RL78系列-真正的低功耗微控制器

“RL78:为下一个十年提供动力"
RL78:为下一个十年提供动力

RL78 8/16位微控制器(MCU)具有业界领先的低功耗特点,正常工作期间功耗可低至41μA/MHz(RL78/G23),时钟工作期间为0.355μA,从而大大提高了电源效率。高精度(±1%)高速片上振荡器、可重写 100 万次的后台操作数据闪存、温度传感器和用于多个电源的接口端口等内置功能有助于降低系统成本和尺寸。

RX系列:性能市场领导者

“瑞萨电子单片机一览"

RX系列由四个产品子系列组成, 可提供从小规模到大规模应用的无缝可扩展性。

  • 旗舰RX700系列,具有最快的性能和最先进的功能。

  • 标准RX600系列和RX200系列,在功率效率和高性能之间实现了最佳平衡。

  • 入门级RX100系列,具有极低的功耗。

RA系列:引领物联网革命

“瑞萨电子单片机一览"
  • 瑞萨电子(RA)32位微控制器(MCU)是业界领先的32位MCU,具有Arm® Cortex®-M33、-M23、-M4处理器内核和PSA认证。

  • 与竞争对手Arm Cortex-M MCU相比,RA通过提供更强的嵌入式安全性、卓越的CoreMark® 性能和超低功耗操作,进而使得自身具有关键优势。PSA认证为客户提供了快速部署安全物联网端点和边缘设备以及面向工业4.0智能工厂设备的信心和保证。

  • RA系列MCU的独特之处在于极低功耗、一流的安全选项,包括Arm TrustZone®技术以及支持所有RA系列产品的瑞萨电子灵活软件程序(FSP)。

  • FSP包括高效的驱动程序和中间件,以简化通信和安全性的实施。FSP的GUI简化并加速了开发过程。它支持灵活使用旧代码,并可与其他RA系列设备轻松兼容和扩展。使用FSP的设计人员还可以访问广泛的Arm生态系统、提供广泛的工具、帮助加快上市时间以及瑞萨电子广泛的合作伙伴网络。

RA:灵活的软件包 (FSP),支持安全设备和物联网连接

生产就绪型外设驱动程序

- 用于访问MCU外设和所需功能的HAL API,ARM 信任区已启用

- 直观的配置器和代码生成器

- 经过测试的单元和系统

- 使用行业标准工具进行静态和动态分析

使用实时操作系统

- 最新的Azure RTOS、FreeRTOS和Flexible软件包集成

- 工具可配置的RTOS资源(线程、互斥锁等)

- 包括裸机支持

连接

- 包括Azure RTOS NetX Duo&add-ons、FreeRTOS TCP/IP stack、Secure Sockets、Wi-Fi&BLE

- 包括MQTT和TLS

- 支持与所有主要云平台的连接

- 用于CDC、MSC、HID(主机和外设)的USB中间件

安全性

- 基于Arm Mbed PSA、NetX Crypto和FSP Crypto API的加密API

- 支持加密硬件加速

- PSA 2级认证

- 安全调试

Renesas MCU生态系统:以技术为导向的广泛应用

“瑞萨电子单片机一览"

瑞萨电子正在实现一个全面的合作伙伴生态系统,以提供一系列软件和硬件构建模块,这些构建模块将与瑞萨电子MCU一起开箱即用。瑞萨电子MCU生态系统将有助于加速物联网应用的开发,包括安全性、连接性和HMI等核心技术。

来源:瑞萨MCU小百科
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 195

QueueForMcu

基于单片机实现的队列功能模块,主要用于8位、16位、32位非运行RTOS的单片机应用,兼容大多数单片机平台。

开源代码:https://github.com/xiaoxinpro/QueueForMcu

一、特性

  • 动态创建队列对象
  • 动态设置队列数据缓冲区
  • 静态指定队列元素数据长度
  • 采用值传递的方式保存队列数据

二、快速使用

#include "queue.h"

#define Q_UART_BUFFER_SIZE  1024

QUEUE_HandleTypeDef qUartTx;
QUEUE_DATA_T BufferUartTx[Q_UART_BUFFER_SIZE];

int main(void)
{
  QUEUE_DATA_T temp;
  
  //初始化队列
  Queue_Init(&qUartTx, BufferUartTx, Q_UART_BUFFER_SIZE);
  
  while(1)
  {
    //入队
    Queue_Push(&qUartTx, 'Q');
    Queue_Push(&qUartTx, 'u');
    Queue_Push(&qUartTx, 'e');
    Queue_Push(&qUartTx, 'u');
    Queue_Push(&qUartTx, 'e');
    
    //出队
    Queue_Pop(&qUartTx, &temp);
    Queue_Pop(&qUartTx, &temp);
    Queue_Pop(&qUartTx, &temp);
    Queue_Pop(&qUartTx, &temp);
    Queue_Pop(&qUartTx, &temp);
  }
}

三、配置说明

目前QueueForMcu只有一个静态配置项,具体如下:

在文件 queue.h 中有一个宏定义 QUEUE_DATA_T 用于指定队列元素的数据长度,默认是 unsigned char ,可以根据需要更改为其他数据类型。

四、数据结构

队列的数据结构为 QUEUE_HandleTypeDef 用于保存队列的状态,源码如下:

typedef struct QUEUE_HandleTypeDef{
    unsigned int head;                      //队列头指针
    unsigned int tail;                      //队列尾指针
    unsigned int buffer_length;             //队列缓存长度(初始化时赋值)
    QUEUE_DATA_T * buffer;                  //队列缓存数组(初始化时赋值)
}QUEUE_HandleTypeDef;

其中 QUEUE_DATA_T 为配置项中自定义的数据类型。

五、创建队列

1、创建队列缓存

由于我们采用值传递的方式保存队列数据,因此我们在创建队列前要手动创建一个队列缓存区,用于存放队列数据。

QUEUE_DATA_T BufferUartTx[1024];

以上代码即创建一个大小为 1024 的队列缓存区。

2、创建队列结构

接下来使用 QUEUE_HandleTypeDef 创建队列结构,用于保存队列的状态:

QUEUE_HandleTypeDef qUartTx;

3、初始化队列

准备好队列缓存和队列结构后调用 Queue_Init 函数来创建队列,该函数原型如下:

void Queue_Init(QUEUE_HandleTypeDef * hqueue, QUEUE_DATA_T * buffer, unsigned int len)

参数说明:

参数名 描述
hqueue 需要初始化的队列结构,如果二次初始化将清空原队列的内容。
buffer 队列缓存的首地址指针
len 队列长度,不能比队列缓存长度还要大。

参考代码:

Queue_Init(&qUartTx, BufferUartTx, Q_UART_BUFFER_SIZE);

六、压入队列

1、单数据压入

将数据压入队列尾部使用 Queue_Push 函数,该函数原型如下:

QUEUE_StatusTypeDef Queue_Push(QUEUE_HandleTypeDef * hqueue, QUEUE_DATA_T data)

参数说明:

参数名 描述
hqueue 需要压入数据的队列结构。
data 待压入队列的数据。

返回值说明:

该函数会返回一个 QUEUE_StatusTypeDef 枚举数据类型,返回值会根据队列状态返回以下几个值:

返回值 描述
QUEUE_OK 数据压入队列成功。
QUEUE_OVERLOAD 未压入数据到队列中,原因队列已满。

参考代码:

Queue_Push(&qUartTx, 'Q');
Queue_Push(&qUartTx, 0x51);
Queue_Push(&qUartTx, 81);

2、多数据压入

若需要将多个数据(数组)压入队列可以使用 Queue_Push_Array 函数,原理上循环调用 Queue_Push 函数来实现的,函数原型如下:

unsigned int Queue_Push_Array(QUEUE_HandleTypeDef * hqueue, QUEUE_DATA_T * pdatas, unsigned int len)

参数说明:

参数名 描述
hqueue 需要压入数据的队列结构。
pdatas 待压入队列的数组首地址。
len 待压入队列的数组长度。

当数组长度大于队列剩余长度时,数组多余的数据将被忽略。

返回值说明:

  • 该函数将返回实际被压入到队列中的数据长度。

  • 当队列中的剩余长度富余时,返回值将等于参数 len 的值。

  • 当队列中的剩余长度不足时,返回值为实际被压入到队列的数据长度。

七、弹出队列

1、单数据弹出

将队列头部数据弹出队列使用 Queue_Pop 函数,需要注意的是,弹出的数据将从队列中删除,该函数原型如下:

QUEUE_StatusTypeDef Queue_Pop(QUEUE_HandleTypeDef * hqueue, QUEUE_DATA_T * pdata)

参数说明:

参数名 描述
hqueue 需要弹出数据的队列结构。
pdata 用于保存弹出数据变量的指针。

返回值说明:

该函数会返回一个 QUEUE_StatusTypeDef 枚举数据类型,返回值会根据队列状态返回以下几个值:

返回值 描述
QUEUE_OK 数据弹出队列成功。
QUEUE_VOID 未弹出数据到队列中,原因队列为空。

参考代码:

QUEUE_DATA_T temp;
if(QUEUE_OK = Queue_Pop(&qUartTx, &temp))
{
    // temp 为队列弹出的数据
}
else
{
    // 弹出数据失败
}

2、多数据弹出

若需要将多个数据弹出队列可以使用 Queue_Pop_Array 函数,原理上循环调用 Queue_Pop 函数来实现的,需要注意的是,成功弹出的数据将从队列中删除,函数原型如下:

unsigned int Queue_Pop_Array(QUEUE_HandleTypeDef * hqueue, QUEUE_DATA_T * pdatas, unsigned int len)

参数说明:

参数名 描述
hqueue 需要弹出数据的队列结构。
pdatas 用于保存弹出数据数组的首地址。
len 需要弹出数据数组的长度。

当需要弹出数据的长度大于队列中的数据长度时,弹出数组多余的空间将不会被赋值。

返回值说明:

  • 该函数将返回实际从队列中弹出的数据长度。

  • 当队列中的数据长度足够时,返回值将等于参数 len 的值。

  • 当队列中的数据长度不足时,返回值为实际从队列中弹出的数据长度。

3、单数据复制

当需要从队列头部获取数据,但又不希望数据从队列中删除时,可以使用 Queue_Peek 函数来实现,该函数的参数与返回值与 Queue_Pop 完全相同。

使用 Queue_Peek 和 Queue_Pop 函数的区别在于:

  • Queue_Pop 得到队列中的数据后会删除队列中的数据。
  • Queue_Peek 得到队列中的数据后会保留队列中的数据。

4、多数据复制

当需要从队列头部获取多个数据,但又不希望数据从队列中删除时,可以使用 Queue_Peek_Array 函数来实现,该函数的参数与返回值与 Queue_Pop_Array 完全相同。

使用 Queue_Peek_Array 和 Queue_Pop_Array 函数的区别在于:

  • Queue_Pop_Array 得到队列中的数据后会删除队列中的数据。
  • Queue_Peek_Array 得到队列中的数据后会保留队列中的数据。

八、其他功能

1、清空队列

当需要清空队列数据时,无需弹出所有数据,只需要调用 Queue_Clear 即可快速清空指定队列,在创建队列时会调用此函数来初始化队列,因此对于刚创建完成的队列无需调用清空队列函数。

函数原型:

void Queue_Clear(QUEUE_HandleTypeDef * hqueue)

参数说明:

参数名 描述
hqueue 需要清空的队列结构。

2、获取队列数据数量

当需要获取队列中的数据长度时,调用 Queue_Count 函数,函数原型如下:

unsigned int Queue_Count(QUEUE_HandleTypeDef * hqueue)

参数说明:

参数名 描述
hqueue 需要获取数据长度的队列结构。

返回值说明:

  • 该函数将返回队列中的数据长度。
  • 返回值范围在0到创建队列时的长度之间。

License

Copyright © 2020 QueueForMcu Released under the GPL-3.0 License.

来源:嵌入式大杂烩
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 46

在单片机系统里对模拟量的处理要比数字量稍显复杂,但是只要掌握了使用技巧,使用起来也很简单,很多朋友一开始比较纠结于单片机的底层语言,非要先弄个明白才罢休,其实大可不必,重要的是我们要先学会怎么应用。

现以铅酸电池电压检测及充电电流检测为例讲解模拟量的硬件和程序的设计。

如图1为28节铅酸电池的电压检测电路,1--14节组成电池组1,15--28节组成电池组2;第1节正极为BAT+,14与15节之间为BATM,第28节负极为BAT-。输入端的8个二极管的作用是钳位作用;电路计算如图所示。

“图1:电池组电压检测电路"
图1:电池组电压检测电路

如图2为铅酸电池的充电电流检测电路,TA1为工频电流互感器,输入的4个二极管为整流二极管,电流流过R37(510Ω)形成压差△V。电路计算如图所示。

“图2:电池组充电电流检测电路"
图2:电池组充电电流检测电路

如图3为单片机STM32F103CBT6,图1和图2的模拟信号输入至单片机的PA5、PA6、PA7。

“图3:STM32F103CBT6单片机"
图3:STM32F103CBT6单片机

由于代码较多,为便于浏览,我就把其中一部分以截图的形式展示

如图4为单片机adc.c文件的底层配置,把PA5、PA6、PA7端口配置成模拟输入模式。

“图4:配置端口模式"
图4:配置端口模式

如图5对以上三个模拟量进行模数转换并缓存入数组ADC_ConvertedValue[3],得到的AD值的范围是0~4096。

“图5:模数转换并缓存"
图5:模数转换并缓存

如图6把以上两个配置函数整合在一起,定义成模拟量的初始化函数void ADC1_Init(void)。

“图6:初始化"
图6:初始化

如图7在adc.h文件里声明函数void ADC1_Init(void),另外几个函数也在adc的c文件里定义的,后面附上源程序(非截图)。

“图7:声明函数"
图7:声明函数

如图8在main()主函数里调用ADC1_Init()初始化函数(要去掉void),初始化函数一定要放在while(1)的前面,表示在进入while(1)无限循环前只执行一次。Analog_Processing()为模拟量处理函数,要放在while(1)无限循环里面(该函数在下面讲)。

“图8:函数调用"
图8:函数调用

以下为模拟量在main.c文件里的定义。

s16 Charging_Current;		 //充电电流实际值
s16 Battery1_Voltage;		 //电池组1电压实际值
s16 Battery2_Voltage;		 //电池组2电压实际值
s16 Battery_Voltage; 		 //电池组总电压值

下面三个函数的定义都在adc.c文件里面定义的。

以下代码为模拟量处理函数:①对数组ADC_ConvertedValue[3]缓存值进行滤波处理;②对滤波后的AD值转换为实际值。

/******************************
模拟量处理函数
******************************/
void Analog_Processing(void)
{
//对AD值进行滤波
ADC_Charging_Current=Filter(ADC_ConvertedValue[0],ADC_Charging_Current,1,10);
ADC_Battery1_Voltage=Filter(ADC_ConvertedValue[1],ADC_Battery1_Voltage,1,10);
ADC_Battery2_Voltage=Filter(ADC_ConvertedValue[2],ADC_Battery2_Voltage,1,10);
//AD值转换为实际值
Charging_Current = Adc_To_Act(ADC_Charging_Current, 10, 4096, 0, 220);//22.0A
Battery1_Voltage = Adc_To_Act(ADC_Battery1_Voltage, 10, 4096, 0, 267);//267V
Battery2_Voltage = Adc_To_Act(ADC_Battery2_Voltage, 10, 4096, 0, 267);//267V
//两组电压相加得到总电压
Battery_Voltage = Battery1_Voltage + Battery2_Voltage;
}

以下代码为滤波函数,滤波函数有很多,采用合适的才是最实用的(该函数滤波后的值是连续变化的,有些滤波函数滤波后的值是跳变的)。

/******************************
滤波函数(base/k越大,容性越大)
该函数相当于是一个电容,通常取值k=1,base=10
******************************/
u16 Filter(u16 NewData, u16 OldData, u8 k, u8 base)
{
	u16 uiResult;
	if (NewData > OldData)
	{
		uiResult = NewData - OldData;
		uiResult *= k;
		uiResult += base >> 2;
		uiResult /= base;
		uiResult = OldData + uiResult; 
	}
	else if (OldData > NewData)
	{
		uiResult = OldData - NewData;
		uiResult *= k;
		uiResult += base >> 2;
		uiResult /= base;
		uiResult = OldData - uiResult; 
	}
	else
	{
		uiResult = NewData;
	}
	
	return(uiResult);
}

使用方法如下:NewData表示最新采用的模拟量;OldData表示滤波后的模拟量。

ADC_Battery1_Voltage=Filter(ADC_ConvertedValue[1],ADC_Battery1_Voltage,1,10);

为便于逻辑计算、控制及显示,以下代码是把AD值转换为实际值,

/******************************
AD值转换实际值函数
******************************/
s16 Adc_To_Act(s16 Adc_Value, s16 Pre_Adc_Min, s16 Pre_Adc_Max, s16 Pre_Act_Min, s16 Pre_Act_Max)
{
s32 _temp;
s32 _range;
_temp = (s32)((Adc_Value - Pre_Adc_Min) * (Pre_Act_Max - Pre_Act_Min) / (Pre_Adc_Max-Pre_Adc_Min)) + Pre_Act_Min;
_temp = Adc_Value - Pre_Adc_Min;
_range = Pre_Act_Max - Pre_Act_Min;
_temp = _temp * _range;
_range = Pre_Adc_Max - Pre_Adc_Min;
_temp = _temp + _range / 2;
_temp = _temp / _range;
_temp = _temp + Pre_Act_Min;
return(_temp);
}

使用方法如下:Adc_Value表示要转换的模拟量;Pre_Adc_Min表示模拟量AD值的最小值;Pre_Adc_Max表示模拟量AD值的最大值;Pre_Act_Min表示转换后实际值的最小值;Pre_Act_Max表示转换后实际值的最大值;(以下最大实际值220表示22.0A,是因为数码管显示需要小数表示)。

Charging_Current = Adc_To_Act(ADC_Charging_Current, 10, 4096, 0, 220);//22.0A

要点:

① 模拟量的采样电路,我多采用运放的差分放大电路,原因是被测电压可以和运放不用共地,且可有效抑制共模噪声,可达到较高的精确线性测量,比如以上电池组的被测电压的误差与实际相差在0.3V左右;

② 电池组输入至运放的8个1M的电阻是两个为一组的,且功率至少1/4W以上,因为在高压下的电阻容易老化,为保险起见,通常一个电阻的最大压差在100V以下为宜;

③ 电池组分为两组检测,一是为了降低元件所承受的电压,二是为了监视两组电池电压之间是否平衡,达到保护电池目的。

④ 函数应功能模块化,且具备通用性质,便于移植和调用,对于很多朋友应先学会如何使用,底层代码只要会配置就完全足够了。

当然,以上提供的设计是我通常的做法,能满足大多数的常规应用。

来源:今日头条(版主:电卤药丸)
链接:
https://www.toutiao.com/a6635851850929144323/
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 65

续接上期说的华大单片机设计特别注意事项

6. 使用内部RC主时钟RCH切换频率

方案一:切换RCH时必须遵循逐级调高4M->8M->16M->22.12M/24M,或者逐渐降低22.12M/24M->16M->8M->4M的过程,不能一步到位。

方案二:先切到RCL做系统时钟再改RCH。否则会影响产品可靠性,造成大批量时出现不良。

注意:进行时钟切换的时候要把全部中断都关掉。

7. I/O口电压不能大于VCC

华大L110/L13X/L17X/L19X/L07X;F003/F005/F030/F17X/F19X/F07X系列I/O没有5V tolerant功能,所以I/O电压不能大于VCC。

当I/O电压大于VCC时,最先出现的特征是ADC不准。工程师调试时喜欢用PC+USB-UART+串口调试助手来查看UART送出的数据。

这时如果UART电平大于MCU电源电压VCC,ADC数据会不准。

8. I2C模块使用特别注意

I2C模块在初始化的时候,在使能I2C时钟后,对模块进行一次复位,再对I2C其它的寄存器进行初始化。

9. HC32L110/HC32F003/HC32F005复位管脚

HC32L110/HC32F003/HC32F005芯片的RESET管脚可以复用为带上拉的GPIO数字输入端口,外围的复位电路需要保留。

L13X/L17X/L19X/L07X/F030/F17X/F19X/F07X系列芯片RESET管脚不可以利用为GPIO。

10. 低功耗模式程序调试

在应用程序中,如果需要进入低功耗模式,程序将无法进行调试。

如果程序中需要使用该功能,建议在调试开发阶段,在程序一开始添加几秒钟的延时程序,或者添加外部 IO 控制程序等方法来决定是否执行该段程序,或者增加外部唤醒机制,以便在二次调试开发时 SWD 功能能够正常使用。

来源:芯虎论坛-龙飞虎
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 352

各位工程师小伙伴在使用华大单片机设计产品时一定要注意以下事项:

1. Vcap管脚

核电压输出管脚(电压值1.5V左右),必须接电容接地,不能用作其他功能(不可以当参考源给其它电路使用)或悬空。

注意:如果客户希望能采用小一点的电容,L110/F003/F005系列最小4.7uF,L13X/F03X系列最小1uF。

2. MODE(Boot、MD)管脚

(1) L13X/L17X/L19X/L07X/F03X/F17X/F19X/F07X系列正常工作时MODE脚必须接10K电阻接地。MCU上电后检测MODE脚状态,拉低时直接进入用户主程序,拉高时进入华大的引导程序(用于UART口烧录)。

注意:上电时MODE脚不拉低不能进入用户主程序。

(2) L110/F003/F005系列没有MODE脚,默认上电后先执行华大的引导程序,未发现离线烧录器握手信号后自动执行用户主程序(上电到执行用户程序约费时12mS)。

(3)当SWD接口失效无法连接时,需要用UART口才能重新烧录程序。

(4) 造成SWD口失效的情况有:

a. 用户主程序一上电就进入深度休眠模式且不能唤醒;
b. 烧录用户程序并且加密,下一次SWD就无法连接;
c. 用户程序中上电后关掉了SWD功能。

(5) 不建议MODE脚用于其他功能。

3. 离线烧录用的UART口

用于离线烧录的UART口在MCU管脚上是固定的:L110/F003/F005系列对应P35,P36 ;L13X/F03X系列对应PA09,PA10。

注:新版本引导程序中将UART定义到SWD管脚,从而实现SWD和UART用同一个烧录口。有这个需求的请务必和业务人员提出(采购新版引导程序的货)

4. 得到极致的超低功耗

L13X系列为例,我们有28pin-64pin的不同型号,其中28pin/32pin/48pin的型号要按照64pin把未封装出的管脚也设置为输出低。否则小批量时会发现一定比率的芯片表现功耗偏高,且问题跟着芯片走。L110的16pin同理也要按照20pin设置未封装出的管脚。L17X/L19X/L07X同理。相关配置代码可以找华大半导体FAE要。

芯片未使用到的管脚设置为上拉输入,或者输出低电平。

5. 用户程序对内部FLASH擦写特别注意

用户程序需要对内部FLASH擦写时,用户这段擦写程序源代码位置必须定位在0-32K空间内。
对FLASH进行初始化的操作,要把芯片的中断全部关掉。

来源:芯虎论坛-龙飞虎
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 471

首先来说,220V交流电的负载是多大,是感性负载负载还是阻性负载,正常输出功率是多大等这些都要考虑进去。

1、对于阻性负载

比如普通的灯泡,一般是30到40W左右,如果用220V交流电来控制通断,简单点的就用一个双向可控硅直接控制,BT137电流达到7A,耐压值600V,驱动灯泡足够了

“如何用单片机控制220V交流电的通断?"

也可以加一个光耦

“如何用单片机控制220V交流电的通断?"

2、对于感性负载

比如电动机,因为它的内部有线圈,100W的电动机在启动的时候可能达到1000W,因此这类电器电路就要加多一个阻容吸收电路,必要时候同时加一个压敏电阻,可以使10471,根据实际间距选择合适的压敏电阻,因为瞬导通时候电压很高,这样就有起到过压保护,以防一通电或者关断时候产生感应电动势产生的电压把可控硅击穿,有时候还会串联一个电感。

“使用可控硅三极管MOS管的单片机控制220V交流电通断电路图解"
使用可控硅三极管MOS管的单片机控制220V交流电通断电路图解

使用单片机控制220V交流电的通断,方法非常多。使用继电器是最方便的,但是继电器通断会有声音,很不好,而且继电器有次数限制,容易坏。

下面提供几种方法吧,供大家参考

(1)使用双向可控硅,注意是交流电,使用双向可控硅而不是单向可控硅。

“如何用单片机控制220V交流电的通断?"

这种情况比较简单,但是电路可靠性不高,220V和单片机电源必须共地,电路故障很容易高压烧毁低压端的单片机。

“如何用单片机控制220V交流电的通断?"

低压控制高压,最好做隔离,上图为使用光耦隔离的控制方式,也可以使用其它物理隔离芯片。

(2)使用三极管、MOS管的控制方式

“如何用单片机控制220V交流电的通断?"

上图是使用MOS管作开关的电路原理图,因为是交流电,使用两个N沟道的MOS管背靠背连接,该图只是一部分示意图,真正的电路还有很多关键技术,比如采样交流电的极性、判断零点,实现过零开通、断开,以减少对设备的损耗。以及过流、短路保护,区分容性负载上电瞬间的波形与过流、短路波形的区别,防止误保护。使用三极管的原理也是类似的,由于篇幅的原因,就不详细说明。

来源:网络
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 385

单片机应用系统中,常有用单片机的IO口来实现自关机(彻底关机)的功能。一般用单片机的一个IO口控制一个电子开关来实现,因单片机关电后,失去电源,所以在关机时,实现关机的IO口的电平必须用低电平。

但在这里有一个矛盾,就是在电子开关关闭电源时,因有电源滤波电容的存在,单片机系统的电压不是立即变为0,而是慢慢变低,当电压低到一定电压时,单片机 将进入复位状态、或程序跑飞状态、或不确定状态,此时单片机控制关电的IO口也可能变回高电平,将使电子开关重新开通。

解决方法:

一般单片机最低工作电压要比正常工作的电压低一些,我们就用这个差别来设计关机电路,就是让电子开关的开通电压必须大于单片机的最低工作压,这样在单片机 正常工作时,此控制电压较高,能维持电子开关的正常导通,而当单片机在关电过程中因低压而产生的IO口的高电平,因电压较低,不足以维持电子开关的导通, 从而实现彻底的关电。

“单片机自动断电或关机电路图讲解"

在关机状态时:

S1按下,Q2导通,单片机工作后,POWER输出高电平,Q1导通,维持Q2的导通实现开机。
在开机状态时:

  • 软件关机:MCU的POWER引脚输出低电平,Q1截止,Q2关断,关机。(一般用于延时关机,象数字万用表即是)

  • S1按下,低电平通过D3使MCU的输入脚ON-OFF电平为低,MCU检测到后,通过软件关机(如1所述)

D3用于隔离,不然关机状态时MCU的ON-OFF脚为低电平,Q2将导通。

POWER 是单片机输出开关电源的,低电平是0,高电平等于单片机的供电电压(近似)

ON-OFF是单片机的输入脚,用于单片机检测S1的状态,如果不用S1关机ON-OFF脚可以不用。

来源:网络转载
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 158

时钟周期:

时钟周期也叫振荡周期或晶振周期,即晶振的单位时间发出的脉冲数,一般有外部的振晶产生,比如12MHZ=12×10的6次方,即每秒发出12000000个脉冲信号,那么发出一个脉冲的时间就是时钟周期,也就是1/12微秒。通常也叫做系统时钟周期。是计算机中最基本的、最小的时间单位。

在8051单片机中把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示)。

机器周期:

在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。完成一个基本操作所需要的时间,称为机器周期。

一般情况下,一个机器周期由若干个S周期(状态周期)组成。8051系列单片机的一个机器周期同6个S周期(状态周期)组成。前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示),8051单片机的机器周期由6个状态周期组成,也就是说一个机器周期=6个状态周期=12个时钟周期。

在标准的51单片机中,一般情况下,一个机器周期等于12个时钟周期,也就是机器周期=12*时钟周期,(上面讲到的原因)如果是12MHZ,那么机器周期=1微秒。单片机工作时,是一条一条地从RoM中取指令,然后一步一步地执行。单片机访问一次存储器的时间,称之为一个机器周期,这是一个时间基准。

机器周期不仅对于指令执行有着重要的意义,而且机器周期也是单片机定时器和计数器的时间基准。例如一个单片机选择了12MHZ晶振,那么当定时器的数值加1时,实际经过的时间就是1us,这就是单片机的定时原理。

但是在8051F310中,CIP-51 微控制器内核采用流水线结构,与标准的 8051 结构相比指令执行速度有很大的提高。在一个标准的 8051 中,除 MUL和 DIV以外所有指令都需要 12 或 24 个系统时钟周期,最大系统时钟频率为 12-24MHz。而对于 CIP-51 内核,70%的指令的执行时间为 1或2个系统时钟周期,只有 4 条指令的执行时间大于 4 个系统时钟周期。所以在计算定时器的值时要注意这里的变化。

指令周期:

指令周期是执行一条指令所需要的时间,一般由若干个机器周期组成。指令不同,所需的机器周期数也不同。对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。

系统时钟:

系统时钟:系统时钟就是CPU指令运行的频率,这个才是CPU真正的频率。

单片机内部所有工作,都是基于由晶振产生的同一个触发信号源,由这个信号来同步协调工作步骤,我们把这个信号称为系统时钟,系统时钟一般由晶振产生,但在单片机内部系统时钟不一定等于晶振频率,有可能小于晶振频率,也有可能大于晶振频率,具体是多少由单片机内部结构决定,正常情况和晶振频率会存在一个整数倍关系。系统时种是整个单片机工作节奏的基准,它每振荡一次,单片机就被触发执行一次操作。

一般来说,单片机只有一个时钟源.用了外部晶振,就不用内部RC,用了内部RC,就不用外部晶振.振荡器振荡,产生周期波.单片机在这样的周期波的作用一下有规律的一拍一拍的工作,波的频率越高,单片工作得就越快,波的频率越低,单片机工作得就越慢。

有了以上的概念以后,就可以正确的理解定时器的工作原理了,在8051F310单片机中,有3个定时器,如果定时器1工作在模式1下,如工作模式1下,是16位的计时器,最大数值是65535,当再加1时(=65536),就会发生溢出,产生中断,所以如果我们要它计1000个数, 那么定时初值就是65536-1000,结果就是64536,这个值送给TH、TL,因为是16进制的,所以高位是64536/256取商,低位是64536%6取余。

再者,就是每一计数的时间是多久?一般我们取12M晶振时,一个周期刚好是1us,计数1000个就是1ms,这是因为标准的51单片机是12时钟周期的(STC有6时钟和1时钟方式)。那么,如果我们晶振是12M,就比较好算,如果是其它的,就用12去除好了。比如是6M的,那么就是12/6=2,每个计数是2us,那么你要定时1ms就只要计数500个即可以。

定时器的初值跟定时器的工作方式,跟晶振频率都有关系。一个机器周期Tcy=晶振频率X12,计数次数N=定时时间t/机器周期Tcy,那么初值就X=65536-N,得出的数化成十六进制就行了。这里是用定时器O工作方式1做例子,如果是其它工作方式,就不能是65535了。工作方式0是8192,方式2,3是256。这里有一个公式:

TH=(65536-time/(12/ft))/256

其中,time就是要延时的100ms(要取100000us),ft是晶振频率。这个式子又可以简化成

TH=(65536-time*ft/12)/256
TL=(65536-time*ft/12)%6

在一本书上还看到了这样计算定时初值的:

TH0=-(50235/256); //重装100ms定时初值
TL0=-(50235%6); ///这里使用的6M晶体,

这里是6M晶体,延时100ms,那么按上面讲的原理,6M是每个计数为2us,100ms定时就是计数50000个。

那么,定时器初值要 65536-50000=15536,转成16进是3CB0。这就是要送给TH(=3C) 和TL(=B0)的值。

程序中写 TH0=-(50235/256);其实它是这样的TH0=0x100-(50235/256); 在51中,取负数,其结果就是它的值取反+1,也可以用0x100(十进制的256)去减,结果是多少呢?结果就是3C。

以STM32F103为例,进行解析

STM32的TIM一般有高级定时器TIM1,(TIM8只有在互联性产品有),普通定时器TIM2,TIM3,TIM4,(TIM5,TIM6,TIM7有点设备中没有);今天就只介绍普通定时器,因为高级定时器我还不会!每一个普通定时器都有4路通道!

“单片机中各种周期的关系与定时器原理"

1、先看看逻辑图

我们今天先讨论讨论定时器的问题!我用红色笔标过的路线就是定时器的工作路线,时钟有内部时钟产生,到PSC哪里进行分频处理,然后CNT进行计数,上面还有一个自动重装载寄存器APP。

“单片机中各种周期的关系与定时器原理"

这个是分频器的工作原理,我们可以看,分频器设定之前分频系数为1[1],后面的[2][3][4]分频系数为2,分频系数改变后,计数周期也跟着改变了;同时预分频设置生效时,他还会产生一个中断信号,这个中断信号不要管他,一个系统时钟周期后会自动消失,跟I2C的差不多!

“单片机中各种周期的关系与定时器原理"

这个是计数过程,上面说过了,计数跟分频后的周期有关;当计数达到装载的数值之后,系统会产生一个三个信号,其中溢出信号和更新事件一个时钟周期后会自动消失,而这时候触发了更新中断标志位UIF,我们可以用这个UPDATE来做定时器的中断标志信号!

TIM_ITConfig(TIM2, TIM_IT_UPDATE, ENABLE);

2、stm32f103xx器件功能与配置
  

“单片机中各种周期的关系与定时器原理"

3、stm32f103zet6 定时器

大容量的STM32F103XX增强型系列产品包含最多2个高级控制定时器、4个普通定时器和2个基本定时器,以及2个看门狗定时器和1个系统嘀嗒定时器。

下表比较了高级控制定时器、普通定时器和基本定时器的功能:

定时器功能比较:

“单片机中各种周期的关系与定时器原理"

1)计数器三种计数模式

向上计数模式:从0开始,计到arr预设值,产生溢出事件,返回重新计时

向下计数模式:从arr预设值开始,计到0,产生溢出事件,返回重新计时

中央对齐模式:从0开始向上计数,计到arr产生溢出事件,然后向下计数,计数到1以后,又产生溢出,然后再从0开始向上计数。(此种技术方法也可叫向上/向下计数)

2)高级控制定时器(TIM1和TIM8)

两个高级控制定时器(TIM1和TIM8)可以被看成是分配到6个通的三三相PWM发生器,它具有带死区插入的互补PWM输出,还可以被当成完整的通用定时器。四个独立的通道可以用于:

(1)输入捕获

(2)输出比较

(3)产生PWM(边缘或中心对齐模式)

(4)单脉冲输出

配置为16位标准定时器时,它与TIMX定时器具有相同的功能。配置为16位PWM发生器时,它具有全调制能力(0~100%)。在调试模式下,计数器可以被冻结,同时PWM输出被禁止,从而切断由这些输出所控制的开关。很多功能都与标准的TIM定时器相同,内部结构也相同,因此高级控制定时器可以通过定时器链接功能与TIM定时器协同操作,提供步或事件链接功能。

3)通用定时器(TlMx)

在STM32F103XC、STM32F103XD和STM32F103XE增强型系列产品中,内置了多达4 个可同步运行的标准定时器(TIM2、TIM3、TIM4和TIM5)。每个定时器都有一个16位的自动加载递加/递减计数器、一个16位的预分频器和4个独立的通道,每个通道都可用于输入捕获、输出比较、PWM和单脉冲模式输出,在最大的封装配置中可提供最多16个输入捕获、输出比较或PWM通道。它们还能通过定时器链接功能与高级控制定时器共同工作,提供同步或事件链接功能。在调试模式下,计数器可以被冻结。任一标准定时器都能用于产生:PWM输出。每个定时器都有独立的DMA请求机制。

这些定时器还能够处理增量编码器的信号,也能处理1至3个霍尔传感器的数字输出。

4)基本定时器-TlM6和TIM7

这2个定时器主要是用于产生:DAC触发信号,也可当成通用的16位时基计数器。独立看门 狗独立的看门狗是基于一个12位的递减计数器和一个8位的预分频器,它由一个内部独立的40kHz的RC振荡器提供时钟; 因为这个RC振荡器独立于主时钟,所以它可运行于停机和待机模式。它可以被当成看门狗用于在发生问题时复位整个系统,或作为一个自由定时器为应用程序提供超时管理。通过选项字节可以配置成是软件或硬件启动看门狗。在调试模式下,计数器可以被冻结。

5)窗口看门狗

窗口看门狗内有一个7位的递减计数器,并可以设置成自由运行。它可以被当成看门狗用于在发生问题时复位整个系统。它由主时钟驱动,具有早期预警中断功能; 在调试模式下,计数器可以被冻结。

6)系统时基定时器

这个定时器是专用于实时操作系统,也可当成一个标准的递减计数器。它具有下述特性:

(1)24位的递减计数器

(2)自动重加载功能

(3)当计数器为0时能产生一个可屏蔽系统中断

(4)可编程时钟源

7)通用定时器的时钟来源

a:内部时钟(CK_INT)

b:外部时钟模式1:外部输入脚(TIx)

c:外部时钟模式2:外部触发输入(ETR)

d:内部触发输入(ITRx):使用一个定时器作为另一个定时器的预分频器

8)通用定时期内部时钟的产生:

从截图可以看到通用定时器(TIM2-7)的时钟不是直接来自APB1,而是通过APB1的预分频器以后才到达定时器模块。

当APB1的预分频器系数为1时,这个倍频器就不起作用了,定时器的时钟频率等于APB1的频率;

当APB1的预分频系数为其它数值(即预分频系数为2、4、8或16)时,这个倍频器起作用,定时器的时钟频率等于APB1时钟频率的两倍。

“单片机中各种周期的关系与定时器原理"

这里要分析一下几个概念,也是理解定时器的功能的核心概念,通用定时器有些类似于操作系统的定时器节拍,可以在定时器采用的时钟源的基础上再进行分频,然后再设定溢出大小,进而实现定时的功能,当然自动重载功能更不再话下。

预分频的功能是使定时器在APB时钟的基础上再一次分频,使其独立的运行。就像上述代码中举例,预分频系数设定为36000-1,则表示该定时器的 时钟频率就变成了72MHz/36000 = 2KHz,而“计数溢出大小”可以理解为自动装载数值,表示每隔x个计数溢出一次,可以产生1次中断,当然这个频率是经过预分频后的频率。

所以,从上述的分析可知,定时器的定时时间计算为:

Tout = (TIM_Period+1)*(TIM_Prescaler+1)/72000000

在本程序案例中:Tout= 2000*36000/72000000=1s

需要注意的是,公式中的72000000的使用,是因为该定时器采用的时钟源为72MHz,如果配置成别的时钟源,则相应公式也应该改变。

另外,TIM_ClockDivision为时钟分割,这个简单的讲,就是定时器的数字滤波功能,设置成默认即可。

来源:硬件十万个为什么
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 408

页面

订阅 RSS - 单片机