中断

这一部分我们将使用按键作为触发源,在产生中断时,实现控制LED灯的亮灭状态切换。

在具体应用前,我们还需先认识认识EXTI。

EXTI

全称为External interrupt/event controller,即外部中断/事件控制器。其管理了20个中断/事件线,每条线都有对应的一个边沿检测器,用于输入信号上升沿和下降沿的检测。如图6-1为stm32参考手册里的EXTI框图。

stm32中断初识与实践(下)
图6-1

图中有两条走向的线路,蓝色线路用于产生中断,绿色线路产生事件。我们从右往左看图。

查阅按键原理图可知,按键按下时,电平状态由低变高,会在输入线呈现出一个上升沿信号,这个信号到达边沿检测电路后,会被上升沿触发选择寄存器(EXTI_RTSR)检测并触发,输出有效信号1给编号3电路,否则输出无效信号0。如果电平由高变低,则会被下降沿触发选择寄存器(EXTI_FTSR)检测触发。

触发的信号到达编号3电路,这是一个或门电路,它的输入信号除了来源于边沿检测电路,还有来自软件中断事件寄存器(EXTI_SWIER)。无论是来自EXTI_SWIER或边沿检测电路的信号,只要有一个是有效信号1,那么便可以输出有效信号1给编号3电路。编号3电路之后,分为两条线,一条产生中断,一条产生事件。

信号沿着蓝色线路产生中断,编号3输出信号到编号4。编号4是一个与门电路,它的另一个信号来源是中断屏蔽寄存器(EXTI_IMR)。众所周知,与门电路要求输入信号都为1才能输出1,换言之,如果EXTI_IMR置为0,那么编号4电路输出的信号都为0,只有EXTI_IMR置1时,编号4输出的信号才由编号3决定。这样一来我们可以通过EXTI_IMR来控制是否产生中断。随后,编号4电路输出的信号会被保存到挂起寄存器(EXTI_PR)内。最后将EXTI_PR里的值输出到NVIC,实现中断控制。

信号沿着绿色线路产生事件,最终会输出一个脉冲信号。编号3输出信号到编号5,编号5也是一个与门电路,信号来源于编号3电路和事件屏蔽寄存器(EXTI_EMR)。和编号4的与门电路一样,我们可以通过EXTI_EMR来控制是否产生事件。当编号5输出有效信号1时会在脉冲发生器(Pulse generator)输出一个脉冲信号(无效信号不会输出脉冲)。这个脉冲信号可以给其他外设电路使用,如TIM、ADC等等,一般用来触发TIM或ADC开始转换。

EXTI的中断/事件线

EXTI有20条中断/事件线,其中有16条用于GPIO线上的外部中断/事件,占用EXTI0~EXTI15,其他4条用于特定外设的外部中断/事件。如图6-2。

stm32中断初识与实践(下)
图6-2

可以通过操作AFIO的四个外部中断配置寄存器(AFIO_EXTICR1~AFIO_EXTICR4)的EXTIx[3:0]位选择配置PAx、PBx、PCx...PGx等引脚。如图6-3为AFIO_EXTICR1寄存器描述。

stm32中断初识与实践(下)
图6-3

EXTI_InitTypeDef

EXTI_InitTypeDef是EXTI初始化结构体,其定义在stm32f10x.h文件中,如图6-4所示。

stm32中断初识与实践(下)
图6-4

有四个结构体成员,

  •  EXTI_Line:中断/事件线,可选择EXTI0~EXTI19,如图6-2所示;
  •  EXTI_Mode:EXTI模式,可设置产生中断(EXTI_Mode_Interrupt)或产生事件(EXTI_Mode_Event);
  •  EXTI_Trigger:EXTI边沿触发,可选择上升沿触发(EXTI_Trigger_Rising)、下降沿触发(EXTI_Trigger_Falling)或者上升沿下降沿都触发(EXTI_Trigger_Rising_Falling);
  •  EXTI_LineCmd:使能(ENABLE)/失能(DISABLE)EXTI线。

开始实验

按键按下时,产生电平变化,EXTI检测到上升沿信号,触发中断,执行中断服务函数,实现LED灯的亮灭切换。

简要分析下编程要点:

  •  初始化产生中断的外设(GPIO);
  •  配置NVIC;
  •  初始化EXTI;
  •  中断服务函数;
  •  main函数

NVIC配置

我们先对NVIC进行配置,将其封装为函数NVIC_Configuration(),供后续调用。

/**
* @brief NVIC配置
* @param 无
* @retval 无
*/
static void NVIC_Configuration(void)
{
NVIC_InitTypeDef NVIC_InitStructure;

NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); // 配置优先级分组

NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn; // 配置按键中断源
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; // 抢占优先级为1
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; // 子优先级为1
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; // 使能中断寄存器

NVIC_Init(&NVIC_InitStructure);
}
NVIC配置部分,需要配置优先级分组、中断源、抢占优先级、子优先级以及使能中断寄存器等。关于优先级分组配置以及NVIC_InitTypeDef结构体分析,已在
上篇文章里详细说明,读者可点击进入阅读。

EXTI中断配置

/**
* @brief EXTI按键中断配置
* @param 无
* @retval 无
*/
void EXTI_Key_Config(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
EXTI_InitTypeDef EXTI_InitStructure;

/* 调用函数配置NVIC */
NVIC_Configuration();

/* 初始化GPIO */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_AFIO, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; // 浮空输入
GPIO_Init(GPIOA, &GPIO_InitStructure);

/* 初始化EXTI */
// 配置中断线的输入源
GPIO_EXTILineConfig(GPIO_PortSourceGPIOA, GPIO_PinSource0);

EXTI_InitStructure.EXTI_Line = EXTI_Line0; // 配置中断线为EXTI0
EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; // 配置为中断模式
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising;// 上升沿触发中断
EXTI_InitStructure.EXTI_LineCmd = ENABLE; // 使能中断
EXTI_Init(&EXTI_InitStructure);
}
这个配置函数里用到了GPIO和EXTI两个初始化结构体,对其分别进行初始化配置,同时调用NVIC_Configuration()函数配置NVIC。

其中,

  •  GPIO_EXTILineConfig()固件函数是对AFIO_EXTICR1的操作,所以我们需要开启AFIO时钟;
  •  需要把GPIO配置为输入模式(浮空输入),由外部电路决定引脚状态;
  •  通过查阅按键原理图可得,按键引脚为PA0,可得GPIO端口源和引脚源,并将其中断线配置为EXTI0;
  •  由按键原理图可得,按键按下时为高电平,所以使用上升沿触发中断。

中断服务函数

上篇文章里已经说明中断服务函数名应在启动文件里找到,并统一写在stm32f10x_it.c文件中。

/**
* @brief EXTI0线中断服务函数
* @param 无
* @retval 无
*/
void EXTI0_IRQHandler(void)
{
if(EXTI_GetITStatus(EXTI_Line0) != RESET) // 确保产生了EXTI0线中断
{
LED_TOGGLE; // LED灯状态切换
EXTI_ClearITPendingBit(EXTI_Line0);// 清除中断标志位
}
}
需要先确保是否产生了中断,这一步我们直接调用stm32f10x_exti.c文件里的库函数EXTI_GetITStatus(),通过其返回值判断。EXTI_GetITStatus()函数操作的是中断屏蔽寄存器(EXTI_IMR)和挂起寄存器(EXTI_PR),通过两个寄存器的值判断是否产生中断,。由图6-1功能框图可得,如果相应线的EXTI_IMR和EXTI_PR都置1,则返回“SET”,即产生中断。具体的源码实现可查看3.5版本的stm32f10x固件库。

LED_TOGGLE是一个宏,在宏里实现LED状态切换。具体的实现在 专栏(stm32):GPIO输入——按键检测文章里已经有过说明,读者可移步阅读。

中断服务实现后,需要清除该中断线的中断标志位,以免下次程序判断失误。

main函数

int main(void)
{
LED_GPIO_Config(); // LED端口初始化
EXTI_Key_Config(); // EXTI按键中断配置
while(1){} // 等待中断产生
}
当按键按下时,即进入中断,执行中断服务函数,完成实验。

文章转自知乎。

围观 587

stm32中断的讲解我分为两部分,即两篇文章,上半部分做一个总结性的概览,有一个初步认识,下半部分会通过一个实例来讲解中断的应用。本文即为上半部分的总结性概览。
所谓“中断”,通俗地讲,就是CPU在遇到一个需要即时处理的情况时,暂时中止当前程序的执行,转而处理新情况。

在stm32参考手册中的中断和异常向量表里可查阅到,其内核的异常响应系统里有10个系统异常(含Reset和HardFault),60个外部中断。具体的定义可在库文件stm32f10x.h头文件的IRQn_Type枚举里查到。如图5-1。

stm32中断初识与实践(上)
图5-1

在进行中断配置前,有两个概念需要先弄清楚——NVIC、优先级定义及分组。

NVIC

NVIC即为嵌套向量中断控制器,控制着整个芯片的中断相关,是Cortex-M3内核里的一个外设。其在库文件core_cm3.h里定义如下:

stm32中断初识与实践(上)
图5-2

其中ISER(中断使能寄存器NVIC_ISERx)、ICER(中断清除寄存器NVIC_ICERx)、IP(8bit中断优先级寄存器NVIC_IPRx)会在配置中断的时候用到。我们可在core_cm3.h库文件里找到相关寄存器操作的函数声明,如操作ISER的NVIC_EnableIRQ()函数,操作ICER的NVIC_DisableIRQ()函数,操作IP的NVIC_SetPriority()函数等。

优先级定义及分组

NVIC里有一个中断优先级寄存器NVIC_IPRx,用来配置外部中断的优先级。IPR的宽度为8bit,而ST公司的F103芯片只用了高4bit来配置优先级,即每个外部中断可配置的优先级为0~15。这4bit被分组为抢占优先级(pre-emption priority)和子优先级(subpriority),数值越小,优先级越高。首先会比较抢占优先级,如果相同则比较子优先级,还是相同则继续比较各自的硬件中断编号(编号可在参考手册里的异常向量表查到,编号越小,优先级越高)。

优先级分组由内核外设SCB的AIRCR(应用程序中断及复位控制寄存器)的PRIGROUP[10:8]位决定,在F103里分成了5组。如图5-3。

stm32中断初识与实践(上)
图5-3

上图中的表格里显示了5组的优先级,由于只用了高4位,所以级数最多为16(0~15,有16个级数)。优先级分组配置可调用NVIC_PriorityGroupConfig()函数实现,函数声明和定义分别在库文件misc.h和misc.c中。该函数便是封装了对SCB_AIRCR寄存器的操作。

中断配置编程

经以上了解后,可以开始进入程序环节了。一般中断编程按以下四点来完成:

1. 使能外设中断。具体由相应外设的相关中断使能位控制,如串口收/发完成中断等。

2. 配置中断优先级分组。前文已经说明可以调用NVIC_PriorityGroupConfig()函数实现。

3. 初始化NVIC_InitTypeDef结构体。用于设置抢占优先级和子优先级,及使能中断。

4. 编写中断服务函数。启动文件中已经预先为每个中断定义了一个空的中断服务函数,用于初始化中断向量表。而实际中我们需要重新定义这些函数,可统一定义在stm32f10x_it.c中。
其中,

在第3点,NVIC_InitTypeDef结构体是在库文件misc.h中定义的。如图5-4。

stm32中断初识与实践(上)
图5-4

由图中库函数源码可知,

  •   NVIC_IRQChannel:中断源。每个中断都有其单独的中断源,不能写错,否则会致不响应中断,程序也不会报错。具体配置如图5-1的IRQn_Type枚举类型定义,这个枚举类型包含了所有的中断源。

  •   NVIC_IRQChannelPreemptionPriority:抢占优先级。由前文描述可知,可配置的优先级为0~15,有16个优先级数。

  •   NVIC_IRQChannelSubPriority:子优先级。同抢占优先级。

  •   NVIC_IRQChannelCmd:使能(ENABLE)或失能(DISABLE)中断寄存器。操作的是NVIC_ISER和NVIC_ICER寄存器。

在第4点,需要注意的是,函数名必须和启动文件里设置的一样,否则系统无法在中断向量表里找到中断服务函数入口,便会转而跳到启动文件里的空函数,从而进入死循环。如图5-5为启动文件预先定义的函数。

stm32中断初识与实践(上)
图5-5

至此,对中断已经有了一个大致的认识,第一步算是圆满完成啦。那么接下来的下半部分会开始借用一个实例来帮助巩固实践。

转自:fire909090

围观 361

瑞萨电子RH850系列32位MCU符合ISO26262的要求,满足汽车安全等级ASILB -ASILD等级的控制芯片,在全球汽车电子市场上得到广泛应用,获得著名汽车厂商的认可。

本文向工程师简单介绍RH850系列MCU的中断部分,以帮助工程师更好的使用RH850系列MCU进行开发。

RH850的中断从功能上分为三种,FE级不可屏蔽中断,FE级可屏蔽中断,以及EI级可屏蔽中断。其中FE级代表芯片功能性的中断,以辅助工程师了解MCU内部出错的来源。EI级可屏蔽中断中断是我们定义的各个功能模块所产生的中断。

三者的优先级顺序为:FE级不可屏蔽中断 > FE级可屏蔽中断 > EI级可屏蔽中断。

FE级不可屏蔽中断:在芯片R7F7010323中表现为两个WDT中断,任何情况不可屏蔽。

FE级可屏蔽中断:包括位错误,RAM错误,以及低压检查等中断,可设置PSW.NP=1来屏蔽该种类型中断。

EI级可屏蔽中断:即是我们定义的功能性中断如CAN接收中断,定时器中断等。

其中EI级可屏蔽中断即是我们最常接触的中断,在RH850中最高可分为16个优先等级。每个EI级中断,以功能模块命名,如定时器TAUD0的通道2中断命名为INTTAUD0I2。中断配置相关的寄存器为ICTAUD0I2。

系统中默认以优先级形式进入中断入口,中断入口函数定义可参照如下程序:

#pragma interrupt priority7_interrupt( enable=false , priority=EIINT_PRIORITY7 , callt=false , fpu=false )
void priority7_interrupt( uint32_t regEIIC_value )
{
test = regEIIC_value;
    switch ( regEIIC_value )
    {
       	case 0x0000100AUL: /* INTADCA0I0 *
               */
        break;
}

此外系统中也定义了宏定义来方便我们处理中断操作:
DI():关闭EI级中断
EI():允许EI级中断

也可以调用以下内置函数set_il_rh来配置中断优先级和屏蔽使能功能:

1、函数__set_il_rh(int interrupt-priority-level, void* address of interrupt control register);设置对应地址中断的中断优先级,
interrupt-priority-level 范围0~15。

2、以上的函数 interrupt-priority-level值如下表格时,对应的功能如下:

RH850系列32位MCU三种中断功能,你知道么?

图1:中断屏蔽功能选项

来源:世强元件电商

围观 1509

一、stm32的中断和异常

Cortex拥有强大的异常响应系统,它能够打断当前代码执行流程事件分为异常和中断,它们用一个表管理起来,编号为0~15为内核异常,16以上的为外部中断,这个表就是中断向量表。而stm32对这个表重新进行了编排,把编号从-3~6定义为系统异常,编号为负的内核异常不能设置优先级,从编号为7为外部中断,这些中断的优先级可自行进行设置。我们一般在starup_stm32f10x_hd.s中查找中断向量,而且在编写中断函数时也要在这个文件里查找中断服务函数的函数名。如下图所示:

stm32之中断配置

二、NVIC中断控制器

1、stm32提供了强大的中断控制器NVIC,NVIC属于Cortex内核器件,不可屏蔽中断(NMI)和外部中断都由它来管理,而SYSTICK不由它管理。

在misc.h文件中我们对NVIC进行了结构体定义,我们找到NVIC_InitTypeDef结构体就可进行定义,结构体中包含四个成员,分别是:

  NVIC_IRQChannel :需要配置的中断向量,比如EXTI0_IRQn,不同的中断向量我们在stm32f10x.h这个文件中可以找到。

  NVIC_IRQChannelPreemptionPriority :配置相应中断向量抢占优先级。

  NVIC_IRQChannelSubPriority :配置相应中断响应优先级。

  NVIC_IRQChannelCmd :使能或关闭响应中断向量中断。

2、对于中端配置主要的内容是配置中断优先级,stm32有两种中断优先级,我们该怎么配置呢?

中断向量有两个属性,抢占式优先级和响应式优先级,编号越小,优先级越高。当两个中断抢占式优先级相同,则响应式中断优先级高的先执行。

3、NVIC中断优先级组

NVIC只可以配置16种中断优先级,也就是说抢占式优先级和响应式优先级由四位数字来决定,总共可以有5种配置方式,在misc.h文件中我们可以看:

stm32之中断配置

stm32的所有GPIO口都可以配置为EXTI外部中断模式,来捕捉信号,可以上升沿检测,下降沿,上升沿下降沿检测。PA0~PG0连接到EXTI0,PA1~PG1连接到EXTI1,PA2~PG2连接到EXTI2等

三、中断程序编写

我们需要自己建一个.c和.h文件来写中断配置这一块的代码。配置NVIC和中断函数如下所示:

static void NVIC_Configuration(void)
{
  NVIC_InitTypeDef NVIC_InitStructure;            //NVIC_InitTypeDef这个结构体我们在misc.h文件中可以找到
  /* Configure one bit for preemption priority */
  NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);        //配置为第2种中端配置方式,即1bits配置抢占式,3bits配置响应式,这个函数在misc.c文件中,组别在misc.h文件中
  /* 配置中断源 */
  NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn;       //外部中断0用这种表示方法,中断0~4表示方法都类似,中断5~9表示方式统一为EXTI9_5IRQn,中断10~15统一为EXTI15_10IRQn
  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //抢占式优先级0
  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;     //响应式优先级0
  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;           //使能中断
  NVIC_Init(&NVIC_InitStructure);
}
void EXTI_PA0_Config(void)
{
    GPIO_InitTypeDef GPIO_InitStructure;
    EXTI_InitTypeDef EXTI_InitStructure;          //这个结构体在stm32f10x_exti.h中有定义
    /* config the extiline clock and AFIO clock */
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO,ENABLE);                                 
    /* config the NVIC */
    NVIC_Configuration();
    /* EXTI line gpio config*/ 
      GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;      
      GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;          // 上拉输入
      GPIO_Init(GPIOA, &GPIO_InitStructure);
    /* EXTI line mode config */
      GPIO_EXTILineConfig(GPIO_PortSourceGPIOA, GPIO_PinSource0);
      EXTI_InitStructure.EXTI_Line = EXTI_Line0;          //外部中断0,其他的以此类推
      EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;     //配置为中断模式
      EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling; //下降沿中断
      EXTI_InitStructure.EXTI_LineCmd = ENABLE;
      EXTI_Init(&EXTI_InitStructure);
} 

中断配置完了以后就要真正写代码了,我们的中断处理函数都写在stm32f10x_it.c文件中,示例代码如下:

void EXTI0_IRQHandler(void)
{
    if(EXTI_GetITStatus(EXTI_Line0) != RESET) //确保是否产生了EXTI Line中断
    {
        // LED1 取反     
        LED1_TOGGLE;
        EXTI_ClearITPendingBit(EXTI_Line0);//清除中断标志位
    } 
}

本文转载自: xtusir

围观 515

所有的中档系列PIC单片机,PORTB端口最高的4个引脚(RB7~RB4)在设为输入模式时,当输入电平由高到低或由低到高发生变化时,可以让单片机产生中断。这就是通常所说的引脚状态变化中断。

在设计引脚中断程序时,有三个需要特别注意的地方。

一是,在清除P0RTB中断标志位RBIF之前,必须安排一条必不可少的,以PORTB端口数据寄存器PORTB为源寄存器的读操作指令。放置这一指令的目的有时并不只是为了读取有用的数据,而是为了取消状态变化的硬件信号,以便顺利清除RBIF标志位,为下一次中断做好准备。

二是,由于端口PORTB是引脚电子变化中断,即无论引脚出现上升沿还是下降沿都会产生中断请求,所以必须处理好不需要的虚假中断。

三是,一般都利用PIC单片机的引脚功能来检测按键,所以必须处理好按键消抖的问題。

在主程序里先设置有关的寄存器。

◇设置TRISB寄存器,使RB7~RB4相关的引脚处于输入状态;

◇如果需要弱上拉,通过OPTION_REG的第7位设置;

◇RBIF=O;

◇RBIE=1;

◇GIF=1。

响应状态变化后的中断服务程序。

◇检查RBIF是否为l,为l则是引脚变化引起的中断;

◇调用延时程序,延时20~30 ms,目的是为了按键去抖;

◇判断是引脚出现上升沿还是下降沿引起的中断;

◇调用按键处理程序;

◇读PORTB口的值,取消状态变化的硬件信号;

◇清除RBIF标志。

笔者认为上面程序设计最大的问题是在中断程序里调用延时程序。大家知道,中档PIC单片机只有8层深度的硬件堆栈,在中断里调用于程序出现极易堆栈溢出的情况。另外,PIC单片机中断程序人口只有一个,在响应中断的请求时,PIC单片机就会自动把全局中断的使能位(INTCON的第7位GIF)清除,这样其他中断就暂时不能被响应(此时,如果别的中断发出的中断请求,标志位将一直保留着),直到这个中断程序退出后才会得到响应。这就要求我们设计中断程序的时候必须尽量短,避免调用子程序,更不要在中断里进行复杂的运算。

下面给出笔者设计程序时的思路。

当引脚状态变化引起中断时,在中断子程序里首先判断引起中断的原因是不是我们需要的变化引起的中断。如果是,不要在这里延时,而是设置一个标志位,接着清除中断标志,退出中断。中断程序如下:

else if((RBIE&RBlF)==1){ //如果引脚变化引起中断

if(RB4==0){ //RB4上的按钮接地

key=1; //按键标志位置位

}

RBIF=0; //清除引脚中断标志位

}

其中,if(RB4==0)语句相当于读取了PORTB端口数据寄存器,取消了状态变化的硬件信号。

下面详细介绍怎么样进行按键去抖。

首先,在定时器中断里设置一个lms的时间基准标志位“SYSlms”,每到lms,“SYSlms”便置位。程序如下:

unsigned char count;

if((ToIE&TOIF)==1){ //定时器中断

TMRO+=0x09; //每250μs中断一次

if(count==4){

count=0;

SYSlms=l; //系统时间标志

couot++;

}

T0IF=0; //清除时钟中断标志位

}

有了这个时间基准,便可以在主程序里进行按键去抖处理了。为了更好地利用这个时间基准,定义一个消息标志SYSTime,笔者把它称作时间消息。为了让这个消息有自我发布和自我消失的功能.定义了如下一个宏:

bit SYSTime;

#defincTimeEnahle()SYSTime=0,if(SYSlms){SYSTime=l;SYSlms=0;)

可以把TimeEnable()放到主程序死循环的任何地方,每当程序执行这个宏,SYSTime就会清零,这就是标志位的自我消失.如果在定时器时间基准标志位SYSlms已经置位的话,SYSTime就会置1,这样别的程序就可以利用这个时间消息了,这就是消息的自我发布。下面就是利用这个时间消息来进行按键延时去抖的,首先看一下按键扫描子程序;

void seaakey(){

unsigned char KeyTime,KeyTask;//定义任务时间参数、

//任务参数

switch(KeyTask){

case0:if(key){

KeyTime=30; //准备延时30 ms

KeyTask++; //准备好下一个任务

kcy=0;

}

break;

case I:KeyTime--; //延时30 ms

if(KeyTime==0)Key+ask++;

break;

case2;if(RB4==o){

//调按键处理程序

KeyTask=0;

}

else KeyTask=0;//退出任务

break;

}

}

在主程序的死循环中这样用:

while(1){

TimeEnable();

If(SYSTime==1){scankey();)

//在此可以添加其他程序

只有有时问消息的时候才执行按键扫描程序。可以看到,进入扫描程序执行第一次的时候,程序首先判断按键标志位有没有置位,置位的话(也就是有按键按下的话),任务时间参数(KeyTime)赋值为30,这是延时30ms,去抖,当然你也可以设置为其他的时间值;同时任务参数 (KeyTask)加1。1ms后,再进入扫描程序,这个时候扫描程序执行casel的语句,这样30次后(延时了30ms),任务参数(KeyTask)加1,值为2。lms后,再进入扫描程序,将执行case 2的语句,首先在这里再次判断是不是按键还在按下,如果是就调按键的处理程序,如果不是。就退出按键扫描程序。在这里,还可以加入按键是否抬起的判断程序。

这样设计的引脚变化程序,CPU开销小,效率高,不会出现堆浅溢出的问题,提高了系统的实时性。

来源:畅学电子网

围观 512

一、比较器简介

在实际应用过程中有时候我们需要去判断两个变化的电压大小,在不同变化时需要做出不同的反应,这时候我们就可以用到比较器。MM32系列芯片内嵌两个通用比较器COMP1和COMP2, 比较器为通用的可编程电压比较器,支持两个独立的比较器。可独立使用(适合所有终端上的I/O),也可与定时器结合使用。它们可用于多种功能,包括:
• 由模拟信号触发低功耗模式唤醒事件
• 调节模拟信号
• 与 DAC 和定时器输出的 PWM 相结合,组成逐周期的电流控制回路

本文主要介绍一下如何通过比较器产生中断。

二、比较器功能描述

1、比较器输入输出介绍:

比较器框图如下,以COMP1为例,从图中可以看出PA0 – PA7口可连接到比较器的正向输入端,PA4 - PA7口及内部参考电压和三个等分电压值(1/4, 1/2, 3/4)可连接到比较器的反向输入端。比较器输入的 I/O 引脚必须在 GPIO 寄存器中设置为模拟模式。输出端可以重定向到一个 I/O 端口或多个定时器输入端,从而触发不同事件。

MM32如何使用比较器产生中断

2、 比较器时钟:

COMP 时钟控制器提供的时钟与 PCLK 同步(APB2 时钟)。在使用比较器之前,要先使能 RCC 控制器中的时钟使能控制位。

3、 比较器的中断:

比较器的输出可以内部连接到外部中断和事件控制器。每个比较器有自己的 EXTI 信号,能产生中断或事件。COMP1对应外部中断线19,COMP2对应外部中断线20。

4、 功耗模式:

在具体应用中可以通过调整比较器功耗和响应时间得到最优的结果。

COMPx_CSR 寄存器的 MODE[1: 0]位有下面几种设置:
• 00:高速/高功耗
• 01:中速/中等功耗
• 10:低速/低功耗
• 11:极低速/极低功耗

5、 比较器锁定机制:

比较器能用于安全的用途,比如过流或者过热保护。在某些特定的安全需求的应用中,有必要保证比较器设置不能被无效寄存器访问或者程序计数器破坏所改变。为了这个目的,比较器控制和状态寄存器可以设为写保护(只读)。一旦设置完成, LOCK 位必须设为 1,这导致整个 COMPx_CSR 寄存器变成只读,包括 LOCK 位在内。写保护只能被 MCU 复位所清除。

6、 迟滞现象:

比较器的可配置迟滞电压能防止无效的输出变化产生的噪声信号。在不需要强制迟滞电压的情况下迟滞现象可以被禁止。通过配置COMPx_CSR 寄存器 HYST[1:0]可以设置比较器迟滞电压。

MM32如何使用比较器产生中断

比较器的迟滞现象如下图:
MM32如何使用比较器产生中断

三、比较器触发中断实验主要代码分析

本实验以MM32L073为例,比较器配置代码如下图:

MM32如何使用比较器产生中断

中断配置及中断服务子函数如下图所示:
MM32如何使用比较器产生中断

四、实验结果

理论分析:使用信号发生器通过PA1输入频率为1Hz,高电平1.2V,低电平0V的方波,在输入信号由低电平变化为高电平(大于1/4Vrefint)时比较器会产生一个上升沿信号输出高电平,在输入信号由高电平变化为低电平(小于/4Vrefint)时比较器会产生一个下降沿输出低电平,由于设置的外部中断为上升下降沿触发,所以Led会以每0.5S翻转一次。

实验现象:LED以0.5s闪烁,可以通过示波器观察时间,与理论分析符合。

转自: 灵动MM32

围观 618

ARM中有5种异常模式,有7种中断源。这7种中断源中有些中断是我们希望发生的,但有些中断是我们不希望发生的。

我们希望发生的中断:

软中断:属于svc模式,通过SWI指令便可以产生软中断,进入到svc模式。

irq中断:属于irq模式,当产生普通的外部中断时,处理器便进入到IRQ模式。

fiq中断:属于fiq模式,当产生高优先级外部中断时,处理器便进入到FIQ模式。

我们不希望发生的中断:

复位:属于svc模式,当系统上电时便会产生复位中断,系统进入到svc模式。复位中断不需要中断返回。

取指中止中断:属于abt模式,当预取指发生错误时,便产生取指中止中断,进入到abt模式。

数据中止中断:属于abt模式,当访问数据存储器时,便产生数据中止中断,进入到abt模式。

未定义指令中断:属于und模式,当执行到一条未定义指令时,便产生未定义指令中断,系统进入到und模式。

中断的优先级:

ARM中有6个优先级。各个中断的优先级顺序如下:(1 6 6s 5 2 4 3)

复位: 1
数据中止中断:2
fiq中断:3
irq中断:4
预取址中止中断:5
未定义指令中断和软中断:6

关于各种中断在中断返回时还需要给LR减去一个不同的偏移量的问题我觉得没必要深入研究了,这还要涉及到ARM指令的流水线技术,平时写中断代码都是用C写的,没必要知道这个。用到时再去查表即可。

ARM中的异常和中断

处理器在进入异常和退出异常时所做的工作:

进入异常时:

1、将要返回处的地址保存在对应异常模式的LR中。(复位不需要保存返回地址)
2、将cpsr的内容复制到对应异常模式的spsr中。
3、强制修改cpsr的内容,进入到相应异常模式以及根据需要修改某些位。
4、强制PC从相应的中断向量地址处进行取址。

注:以上这些步骤都是有cpu自动完成的,也就是当有中断产生时,硬件就会自动完成上述步骤。

退出异常时:

1、将LR中保存的地址赋给PC。
2、将spsr的内容恢复给cpsr。
3、将irq中断禁止位清零。

注:只需要在异常处理程序中写一句返回指令(如上面的表4.1所示)即可全部实现上述的步骤。

转自: frank_yxs

围观 482

ARM单片机是大多数新手选择的入门切入点,但由于知识的不足,在设计过程中新手们经常会遇到这样或那样的问题,ARM异常中断返回就是这样一种令人头疼的问题。在ARM的使用问题中异常中断返回是新手们较为苦恼的问题,本文就将对ARM异常中断的集中情况进行总结,并给出了一些解决方法。

在正式介绍之前,要为大家补充一些较为重要的基础知识。首先R15(PC)总是指向“正在取指”的指令,而不是指向“正在执行”的指令或正在“译码”的指令。一般来说,人们习惯性约定将“正在执行的指令作为参考点”,称之为当前第一条指令,因此PC总是指向第三条指令。当ARM状态时,每条指令为4字节长,所以PC始终指向该指令地址加8字节的地址,即:PC值=当前程序执行位置+8;而ADS中的pc,是为了调试看着方便而修改过的,它指向的是正在执行的指令,即“真正pc-8”!

SWI和未定义指令异常中断的返回

指令地址:

A PC-8当前指令为SWI或未定义指令,此时发生中断.PC的值还没有更新。

A+4 PC-4中断时处理器将PC-4保存到LR。;r!

A+8 PC

返回时,从发生中断的指令A(PC-8)的下一条指令A+4(PC-4)处开始执行,所以直接把LR的值赋给PC就行了,具体指令为MOV PC,LR(PC=A+4=LR)。

白话解释:对于SWI和未定义指令发生异常时pc没有更新,根据ARM的三级流水线原理,pc没有更新,仍然等于(A+8);lr = pc – 4(这时处理器决定的,无法更改!)即A+4。

由于这类异常返回后应执行下一条指令(A+4),所以返回时,pc=lr即可。

IRQ 和FIQ异常中断处理的返回指令地址对应于PC A,PC-8执行此指令完成后(!)查询IRQ及FIQ,如果有中断请求则产生中断。

A+4 PC-4

A+8 PC ;lr!

(此时PC的值已经更新,指向A+12.将当前PC-4,即A+8)。

保存到LR.返回时,要接着执行A+4(LR-4)处的指令,所以返回指令为:

SUBS PC,LR,#4(PC=A+4=LR-4)

白话解释:对于普中断和快中断异常,中断必须在一条指令执行完以后被检测到,如正在执行指令甲时发生了中断,不等指令甲执行完是不会处理该中断的,发生异常时pc已经更新(A+12); lr=pc– 4(这时处理器决定的,无法更改!)即A+8返回后,应执行被中断而没有执行的指令(上面的A+4),所以返回时,pc= lr-4。

指令预取中止异常中断处理的返回

指令地址:

A PC-8 执行本指令时发生中断,A+4 PC-4处理器将A+4(PC-4)保存到:

LR. ;lr!A+8 PC

返回时,发生指令预取中止的指令A(PC-8)处重新执行,所以返回指令为SUBS PC,LR,#4(PC=A=LR-4)。

白话解释:对于预取指令中止异常发生预取指令异常时,是在执行时发生的异常,pc未更新,即pc=A+8;lr=pc – 4(这时处理器决定的,无法更改!)即A+4。

由于这类异常返回后应重新执行异常的那个指令(A),所以返回时,pc = lr-4。

数据访问中止异常中断处理的返回

指令地址:

A PC-8 本指令访问有问题的数据,产生中断时,PC的值已经更新。

A+4 PC-4 中断发生时PC=A+12,处理器将A+8(PC-4)保存到LR.。

A+8 PC ;lr!

返回时,要返回到A处继续执行,所以指令为SUBS PC,LR,#8.(PC=A=LR-8)

白话解释:对于数据访问中止异常时,是在执行时访问数据错误。

导致的异常,pc已经更新,即pc=A+12。

lr=pc–4(这时处理器决定的,无法更改!)即A+8。

由于这类异常返回后应重新执行异常的那个指令(A),所以返回时,pc=lr-8。

总结

引起PC更新的原因一种是数据中止,还有就是中断了。

中断必须是在一条指令执行完毕后才能被检测到,所以它中断的只是还未执行的那条。指令(pc-8),所以pc=lr – 4;

与中断相同,SWI和未定义指令异常也是返回到下一条指令(pc-4),只是他们在执行时,PC的值并没有更新,所以pc= lr。

预取指令中止异常,也没有发生pc更新,但它还得重新执行发生异常的那条指令,所以pc=lr–4。

数据访问中止异常,发生了pc更新,并且它也需要重新执行发生异常的那条指令,所以pc=lr–8。

通过以上的介绍,可以看到造成单片机中断返回的原因非常多,每种方法的应对方案都不尽相同。在ARM芯片调试过程中遇到中断返回问题的朋友不妨仔细阅读本文,相信会从中找到问题的解决方法。

转自: 玩转单片机

围观 413

有客户需要用到MM32L073,需要通过IAP进行固件升级,在FLASH里面要烧录两份代码:一个Boot loader,一个用户应用程序。在开发应用程序时,使用中断函数不能相应中断。

在开发IAP的用户应用程序时,必须得重新映射中断向量表,中断向量表即某个中断服务程序的入口地址的集合。

在Cortex-M3内核的MCU上可以通过设置SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET;该寄存器的值来实现中断向量表的重定义。但用户反馈在MM32L0xx系列以Cortex-M0为内核的单片机中却怎么也找不到这个设置中断向量表的寄存器,用户可以通过以下方法来实现中断向量表重定义。

实现方法基本思想:

1、将中断向量表放入到RAM的起始地址(只需要在应用程序中保留RAM起始地址的0x100大小不使用即可)。
2、在bootload中将应用程序的中断向量表从Flash中拷贝到RAM中。
3、设置MM32L073中断向量表位于RAM中。

MM32 IAP中断向量表重定义

0x20000000是SRAM的起始地址,0x08010000是应用程序的起址地址,从0x08010000开始的字节,存放应用程序的中断向量表。

应用程序代码及自身中断矢量表存放在离0X08000000加某个地址偏移量的地方,即从0x08000000+偏移量的地址开始存放APP代码及中断矢量。这个偏移量要大于IAP的程序空间,防止程序覆盖重定义的中断向量表的数据。在本程序中的偏移量为0x10000,即APP程序的起始地址为0x08010000。

当应用程序发生中断时,内核就从地址0x00处的向量表取相应中断的入口地址,即相当于从0x20000000处的向量表取中断入口地址,当然也相当于从0x08010000处的向量表取中断入口地址,然后去执行相应中断程序。

可以根据startup_MM32L0xx.s的中断函数的入口地址数计算需要预留的空间大小。

MM32 IAP中断向量表重定义

如上图所示,每一个DCD都代表一个中断向量。
例如:
DCD WWDG_IRQHandler ; Window Watchdog
“WWDG_IRQHandler "其实就是WWDG中断服务函数WWDG_IRQHandler的入口地址。

中断向量的集合定义了一张中断向量表,这张表包括48个元素,每个元素是一个长度为4字节的地址。除了第一个地址是SP(堆栈指针)外,其它的地址都是某个中断服务程序的入口地址。中断向量表的所占内存大小为48*4=180(0xC0)个字节。

转自: 灵动MM32

围观 1441

页面

订阅 RSS - 中断