翌创微电子ET6000 MCU/DSP系列芯片内置Arm®/Cortex®-M系列中最高性能的32位处理器内核Cortex®-M7,具有高算力、大容量非易失性嵌入式存储、高性能模拟外设、配置灵活的高精度PWM以及快速关断的系统级保护等特性,提供卓越的实时处理与环路控制性能,特别适用于各种功率转换应用,如光伏逆变、储能变换、电机控制以及充电桩等,同时满足有功能安全要求的汽车级应用,可为客户提供高性能的数字能源主控芯片解决方案。
为更好支持能源客户的产品开发,翌创芯片解决方案部门(AEG)发布了针对户用微型光伏逆变场景的第一代参考设计(微逆1.0)。
应用背景
根据《巴黎气候变化协定》,我国计划到2030年单位GDP的二氧化碳排放比2005年下降60%~65%,到2030年非化石能源在一次能源消费中的比例提高到20%左右。我国太阳能资源丰富,陆地表面年接受太阳能约为50×1018kJ,有2/3面积以上的地区太阳能资源丰富。得益于得天独厚的条件,我国光伏发电技术和产业化应用得到长足发展。
在光伏应用场景,目前常用的光伏并网系统架构主要有集中式逆变器(Centralized Inverter)、串式逆变器(String Inverter)、多串式逆变器(Multi-String Inverter)和交流模块(AC-Module)。
交流模块将光伏组件和逆变器集成为一体化设备(如图1所示),是一个独立的太阳能发电系统,在不需要任何人工干预的情况下,完成将太阳能转换成交流电能馈入电网。智能化、模块化使得它在微小功率分布式并网发电系统中备受青睐,一般它处理的功率等级不超过500W,因此又把这一功率处理单元称作微型逆变器 (Micro-Inverter)或交流模块(AC Modules),后续文章都简称微逆。
图1:微型逆变器的并网架构
反激类变换器通常具有电路结构简单、输入与输出电气隔离、升/降压范围宽和成本低等优点,广泛应用于中小功率开关电源中。因此,光伏并网微型逆变器常以反激式变换器为基础,在反激式变换器输出侧接工频换向桥并网,通过并网电流控制技术、高频PWM调制技术和软开关等技术满足微逆的设计需求。但随着微逆拓扑方案的逐步演进,微逆客户对MCU也提出了更高的要求;ET6000系列产品采用M7架构设计,在性价比上可满足不同类型的开发需求。
微逆1.0方案主要规格
依据各国光伏行业的准入标准以及智能化要求,微逆不仅仅是进行电能转换、最大功率点追踪和并网,还需要考虑孤岛检测、无线通讯、快速保护策略和功率测量等功能。ET6001的M7内核支持单周期乘加,DSP和浮点运算和依托成熟的算法库,可以满足复杂电网场景下的运算需求。
为了验证ET6001在微逆场景下的应用,我们开发了微逆1.0方案(250W基于反激的伪母线方案),实现:
输入范围20V-60VDC,输出范围200V-240VAC;
交错并联有源钳位反激;
M7单核实现单级控制(同步采样、环路计算和PWM更新频率100KHz);
并网功率250W/峰值效率大于92.7%。
图2 微逆1.0方案原理框图
微逆1.0方案主要算法
图2是微逆1.0方案的原理框图,前级实现最大功率点追踪(MPPT)和输出电流的THD调节功能,后级工频管子实现并网功能。通过对光伏组件进行最大功率点追踪,实现光伏组件的最高效率利用,将太阳能量回馈到电网上。反激电路通过SPWM调制,将直流电流转换为正弦电流输出,再通过后级工频管回馈到电网上,实现并网功能。
图3 微逆1.0控制框图
图3则是详细展示了上述控制策略,其中需要调用MPPT(最大效率跟踪)和PLL(锁相环)两个重要子模块。PLL部分采用了基于内积的闭环锁相理念,可支撑无功调节的未来需求。MPPT部分则采用常规的扰动观测法,先扰动输出电压值,然后测其功率变化与扰动之前的功率值比较,不断寻找更大的功率输出点。
微逆1.0方案实物及测试结果
图4展示了微逆1.0方案的实物照片,已完成各类测试。
图3 250W 微逆DEMO
基于以下工作条件: Vin_dc=40V;Vout=220V;Iout=1.14A,我们针对常规的指标(效率、PF、THD)进行了测试,详细数据如下:
微逆方案展望
作为中小功率场景的应用,微逆对拓扑方案的创新在不断往前推进,高频化、GaN也是微逆方案绕不开的研究热点。而阳台光储这类新兴产品需求,也对小功率DC-AC方案提出了双向的开发需求。翌创芯片解决方案部门(AEG)正在开发的微逆2.0方案,会融入更新的产品需求和新的技术应用,期待与大家见面。
来源:翌创微
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。