MEMS 振荡器对机械应力的抵抗能力

judy的头像
judy 发布于:周六, 04/28/2018 - 12:12 ,关键词:

作者: Maurizio Gavardoni Microchip Technology Inc

摘要

MEMS 振荡器已得到了非常广泛的使用,并在很多应用中稳步取代晶体振荡器。MEMS 振荡器与晶体振荡器相比具有诸多显著的优势,例如提高了可靠性和对机械应力的抗力,以及在宽温度范围内保持平稳的性能。MEMS振荡器还具备一定的灵活性,可通过编程和配置生成多个输出时钟。

简介

在过去的数十年,每当有应用需要稳定的低抖动时钟源时,我们都会使用晶体振荡器。

近年来出现了一种使用MEMS来构建谐振器的新技术。MEMS 振荡器与晶体振荡器相比具有一些显著的优势。首先,它们能够抵御机械冲击、振动、挠曲和坠落,因而非常坚固和可靠,这要归功于其封装结构对谐振器形成了一种自然保护。第二,MEMS 谐振器具有伪线性温度系数,因而易于补偿;这可确保谐振器整个温度范围(最高可超过 +125°C)内保持稳定的时钟频率 (意味着低 ppm)。

显而易见,这两种特性让MEMS振荡器非常适合一些环境恶劣的工业和汽车应用。

此外, MEMS 的结构非常紧凑,因而可生产小尺寸封装的振荡器,最小尺寸为 1.6 mm x 1.2 mm。

MEMS 谐振器工作在固定频率,频率非常稳定,但无法进行编程。因此,始终需要使用 PLL 来生成可编程的输出频率。虽然这样可能产生比晶体振荡器更高的相位噪声,但 PLL 在生成宽范围频率方面具有灵活性优势,并且能够在同一器件中提供多个输出时钟。可在同一个PLL 中生成大量时钟,或将多个 PLL 放置在同一个器件中以生成完全独立的输出。因此,MEMS 振荡器可灵活选择并编程多种参数。此特性的另一个例子是此类振荡器能够对与时钟信号的上升和下降时间相关的输出驱动强度进行编程。在对 EMI 敏感的应用中,可通过编程延长上升和下降时间。

MEMS 振荡器已得到了非常广泛的使用,并在很多应用中稳步取代晶体振荡器,包括消费、工业和汽车应用以及部分网络和电信应用。

以下章节将更详细地介绍MEMS振荡器对各类机械应力的抗力。

抗坠落测试

测试所采用的方式是将 MEMS 振荡器放置在 PCB 上,另外增加 200 克重量,让系统从 180 厘米的高度坠落到混凝土表面上。在两次坠落的间隔期间,我们都使用高分辨率的频率计数器对振荡器输出时钟进行三分钟的测量,以检查这段时间内的时钟稳定性。测量结果如图 1所示,该图通过与已测量的初始频率值进行对比来显示器件的频率偏差。

MEMS 振荡器对机械应力的抵抗能力
图1:10 次坠落前后的输出时钟稳定性(与初始频率值进行对比)

MEMS 振荡器输出时钟的偏差小于 3 ppm 的最大值,这一数据突显出 MEMS 振荡器在承受诸如反复坠落到混凝土等硬表面所造成的机械冲击时仍可保持良好的稳健性和弹性。

抗机械挠曲测试

我们还开展了进一步的测试,先将 MEMS 振荡器放在5 cm x 5 cm 的 PCB 上,再将 PCB 的一端固定,同时使用机械力弯曲另一端。MEMS 振荡器的位置与被弯曲一端的距离为 1.5 厘米。PCB 的挠曲半径分别为 3 mm和 6 mm,我们使用高分辨率的频率计数器在挠曲前后和期间对MEMS振荡器的输出时钟进行三分钟的测量。测量结果如图 2 所示,该图通过与已测量的初始频率值进行对比显示器件的稳定性。

MEMS 振荡器对机械应力的抵抗能力
图 2:PCB 弯曲前后和期间的输出时钟稳定性 (与初始频率值进行对比)

MEMS 振荡器的输出时钟的偏差小于 2 ppm 的最大值,这一数据突显出 MEMS 振荡器在承受诸如 PCB 挠曲所造成的机械应力时仍可保持良好的稳健性和弹性。

抗机械冲击测试

我们还根据军用和航空航天标准 MIL-STD-883 提供的指导准则,对 MEMS 振荡器进行了机械冲击测试。这次机械冲击测试遵循 Method 2002 的测试条件 E 中的规定:器件承受五次高达 10,000g 的冲击脉冲,每次持续 0.2 毫秒。

测量结果显示在图 3 中,该图将频率偏差(ppm)与冲击测试前的初始频率值进行对比。假设计算得出的最小值和最大值在 ±3 sigma 的范围内 (99.73%),可以看到最大频率偏差仅为 3.85 ppm。

MEMS 振荡器对机械应力的抵抗能力
图 3:在机械冲击测试 MIL-STD-883,Method 2002 之后的输出时钟稳定性柱状图

抗机械振动测试

我们根据军用和航空航天标准MIL-STD-883提供的指导准则,对 MEMS 振荡器进行了机械振动测试。这次机械振动测试遵循 Method 2007 的测试条件 C 中的规定:在充分保护连接线的前提下将器件刚性固定在振动平台上。器件以简谐运动方式振动,峰值加速度为 70g。振动频率在 20 Hz 至 2,000 Hz 之间按对数变化,持续四分钟。该测试在 X 轴、 Y 轴和 Z 轴方向上各重复 4 次(总计 12 次),总时间为 48 分钟。

测量结果显示在图 4 中,该图将频率偏差(ppm)与振动测试前的初始频率值进行对比。假设计算得出的最小值和最大值在 ±3 sigma 的范围内 (99.73%),可以看到最大频率偏差仅为 5.23 ppm。

MEMS 振荡器对机械应力的抵抗能力
图 4:在机械振动测试 MIL-STD-883,Method 2007 之后的输出时钟稳定性柱状图

冲击和振动前后的稳定性

下面的图 5 显示了机械冲击和振动测试前后的三个样本的频率稳定性,这些测试已在前两节中详述,测试结果如图 3 和图 4 所示。

MEMS 振荡器对机械应力的抵抗能力
图 5:在 25°C 温度下,冲击和振动测试前后的频率偏差

MEMS 振荡器的输出时钟偏差在 1.5 ppm 范围内,这再度突显出 MEMS 振荡器在承受诸如 MIL-STD-883 冲击和振动测试所产生的高机械应力时仍可保持良好的稳健性。

结论

MEMS 振荡器对坠落、挠曲、冲击或振动导致的机械应力具有很强的抵抗能力。这种抵抗能力增强了可靠性,使其非常适合在恶劣环境下使用,例如工业和汽车应用。凭借这种重要的特性以及其他一些优势 (例如宽温度范围下的平稳性、灵活性、可编程性以及小尺寸), MEMS 振荡器得到了非常广泛的使用,并在消费、工业、汽车和电信行业的很多应用中稳步取代晶体振荡器。

有关 Microchip MEMS 振荡器的更多信息,请访问: http://www.microchip.com/design-centers/clock-andtiming/oscillators

来源:microchip.com

围观 463