微处理器

什么是消防控制器?

1、消防控制器通过实时监测环境中的异常情况,发出警报和指令,控制消防设备的工作,从而实现智能化的火灾防控。六大消防报警系统包括:火灾报警控制系统、气体灭火控制系统、消防照明疏散系统、防火门监控系统、电气火灾监控系统、消防电源监控系统。

2、消防报警控制器按外形可分为:壁挂式、柜式、台式等。

什么是消防回路板?

1、消防回路板的主要功能是将来自探测器、手动按钮等设备的信号传递给主机。

2、消防回路板通过消防二总线采集探测器、手动按钮等设备的信号,通过CAN总线传递给消防控制器。消防回路板可以认为是消防控制器到节点的通讯转换桥。

新唐 MA35D0 系列微处理器

NuMicro MA35D0系列产品拥有两颗 64 位 Arm Cortex-A35 内核,执行速度可达 650 MHz。为了简化系统设计和生产,MA35D0系列提供了 LQFP 封装,并内嵌 DDR,最大容量达 256MB,能够显著的减少 PCB 层数、面积,以及降低电磁干扰。MA35D0系列提供多组高性能的通讯接口,如百兆以太网、SDIO3.0、高速 USB 2.0、CAN-FD 等。MA35D0系列支持 LCD 显示控制器,分辨率可达 1920 x 1080 每秒 60 帧,内嵌图形加速器、JPEG译码器等,带来更好的图形人机接口效果。

1.png

MA35D0 与 MA35D1 系列型号及封装

MA35D0 在消防控制器应用中的优势

1、内嵌较大DDR内存,方便进行硬件设计。

MA35D0内嵌DDR内存达 256MB,提供了 LQFP 封装,方便硬件设计。

2、内嵌较大DDR内存,支持RGB888接口,跑LINUX+QT,方便HMI设计。

支持较新版本LINUX。支持QT、LVGL、EMWIN等GUI。

3、3个CANFD、2个百兆以太网、11个UART等丰富接口。

CANFD接口可以配置成CAN接口,所以硬件不需要修改,就可以把CAN通讯可靠的升级到CANFD通讯。新唐M2L31系列产品支持CAN与CANFD通讯,可以实现消防回路板功能。

4、很好的兼容MA35D1系列产品,方便进行性能升级。

MA35D1支持更高的性能,内嵌DDR内存最高可达512MB,支持BGA封装,更多PIN脚,更小封装。

2.png

消防控制器项目框图

来源:新唐MCU

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 17

来源:意法半导体博客

微控制器 (MCU)和微处理器(MPU)有哪些不同之处?简单来说,两者都是嵌入式系统的大脑。几年前,两者之间有非常明显的区别,功能截然不同,对开发者的研发技能要求也大不相同。如今,这两个术语仍然存在,但创新使得两者之间的分界线日趋模糊。以前只用 MCU 的系统集成商现在发现,用MPU更容易,ST也注意到了这一点。微处理器已经成为某些开发者手中的秘密武器,借助其原生的功能或运行嵌入式 Linux 的能力,他们能够开发新的应用或进入新的市场。因此,让我们一起深入研究一下这个新趋势。

故事的开头

MCU的出现是替代 MPU

当业界在上个世纪七十年代推出首个微控制器时,人们希望找到一种替代耗电量太大且设计复杂的 MPU 的产品。MCU虽然计算吞吐量要小很多,但将存储器、处理器、外设和时钟整合在一起,可以运行实时操作系统。工程师只需用一个微控制器即可构建确定性系统,这使得微控制器在汽车和电机控制应用中非常受欢迎。如今,从智能手机到医疗设备或家电,MCU可谓无处不在。相反,MPU芯片空间都用于容纳计算单元,用牺牲功耗或集成度换来了更高的算力。当需要运行多个线程或更复杂的操作系统时,例如,嵌入式 Linux,算力更高的MPU更具吸引力。

1.png

弄清楚MCUMPU之间的区别

根据应用需求选择 MCU MPU

虽然有阐述详尽的MPUMCU 选择攻略,但工程师最终还是不知所措,无法确定选谁。但是,开发者常问一些问题,例如,算力要求。如果一个应用需要性能强大的神经处理单元或者多个计算核心和高性能GPU,又或者执行上下文计算,可能对存储空间有要求,那么, MPU 是一个显而易见的选择。相反,如果应用是一个小软件,偶尔唤醒,检查一次传感器值,或需要几纳秒的确定性响应时间,那么,微控制器是一个正确的选择。因此,在许多情况下,目的决定手段是否正当简而言之,工程师应根据要运行的具体应用来选择一个合适的硬件平台。

影响选型的另一个因素可能是系统的图形需求。过去,具有复杂 3D 动画的人机界面 (HMI)、高分辨率显示屏、与用户界面同时运行的复杂应用,将倾向于选用微处理器的GPU 和存储控制器,而动画和图形更简单的 HMI 越来越依赖于MCUTouchGFX 等框架和 NeoChrom GPU 等硬件 IP 不断优化那些可以在微控制器上运行的应用。同样,嵌入式系统MPU支持更高的分辨率,因为GPU的处理性能更强大。因此,虽然每种产品的功能越来越多,但界定两者的区别仍然非常简单。

根据成本和功耗选择MCU还是MPU

除了计算吞吐量,开发人员还会考虑其他重要指标,例如,功耗、易失性存储器、非易失性存储器需求、所需外设和引脚数量。当工程师设法应对成本限制时,这些选择标准变得至关重要,因为它们会影响整体 PCB 设计和物料成本 (BOM)。例如,许多闪存和附加组件将需要多个 PCB 板层,这会增加交货时间和成本。因此,长期以来,这个选择标准相对简单明了。关注成本或低功耗的系统集成商会选择微控制器。

MCU MPU 之间的界限日趋模糊

21 世纪初以来,MPU 经历了重大变革。系统级模块 (SoM) 和系统级封装 (SiP) 的广泛应用是MPU行业最具颠覆性的技术创新之一。过去,集成商必须围绕微处理器设计整个系统,这意味着要处理更复杂的电源管理系统和繁琐的外部存储器等问题。事实上,使用大容量DDR外存需要反复微调和丰富的专业知识,这可能是阻碍MPU应用的一大障碍,然而,SoM SiP 的出现让所有这些复杂问题都迎刃而解,这两种组装技术安全地将所有必要组件都整合到一个封装或模块内。

此外,ST的一些最新的微处理器已经更接近微控制器的功耗水平。现在,微处理器可以运行实时操作系统,使得 MPU MCU 之间的界限进一步模糊。以前,执行实时应用,例如,电机控制应用,必须使用微控制器。如今,工程师已开始采用 MPU,在不影响执行时间的情况下,获得更强大的计算能力和更大的存储容量,是一举两得的好事。简而言之,一些集成商正在充分利用 MPU的技术创新,当竞争对手还在用 MCU时,他们已经掌握了MPU这个新的秘密武器。

故事的发展

STM32H7还是STM32MP1?

过去几年,高性能 MCU 和入门级 MPU 之间的界限非常模糊,使得 STM32MP13 等产品成为嵌入式系统开发人员的新宠。像STM32H7 一样,STM32MP13 本身也支持 Eclipse ThreadX。因此,给了从未接触过微处理器的开发人员一个熟悉的开发环境,可以去调用 FileXNetDuoX USBX 的应用程序。因此,无需重新培训团队或大幅增加物料成本,就可以享有更高的性能。

此外,STM32 工程师还拥有额外的优势,因为 STM32Cube工具生态系统同时支持MCU MPU,从而进一步降低了进入门槛。例如, STM32CubeMX 上初始化引脚配置和时钟树希望在 STM32 MPU 上实现安全密钥配置的开发人员可以选用 STM32CubeProgrammer,这款工具使安全固件安装 (SFI) 也更容易。因此,ST的生态系统用户有更多的动力去探索 MPU,将其用作支持新应用的秘密武器,因为他们已经熟悉ST的许多开发工具和产品概念。

STM32MP13STM32MP15

对于许多嵌入式系统开发人员来说,问题不再是是否要涉足 MPU 领域,而是深入到何种程度,以及从哪里开始。ST 合作伙伴计划的许多成员都推出了采用 STM32MP13 SiP SoM,因此,对于任何希望将MPU作为秘密武器的团队来说,STM32MP13都是一个绝佳起点。这款微处理器搭载一颗1 GHz Cortex-A7内核,对那些寻求设计简单但性能强大的开发者有很大的吸引力。不是多核,意味着功耗更低(27µW),而且能够将STM32MP13集成到简单的四层 PCB上。

那些追求更强性能的人会选择 STM32MP15该产品搭载两颗Cortex-A7内核和一颗Cortex-M4内核,使得在模糊MCU MPU之间的界限的同时推动开发人员深入MPU阵营。例如,可以关闭 Cortex-A7内核,只开启Cortex-M4内核,将其用作传统 MCU,记录传感器数据,同时消耗更少的电能。此外,这款产品的 3D GPU 符合 OpenGL 标准,允许开发人员运行更高级的用户界面。该产品还配备了更多的显示接口和外设。因此,STM32MP15 可以帮助集成商扩展系统。

让我们以一家开发工业用设备(例如,可编程逻辑控制器)的公司为例。开发者可以使用 STM32MP13 设计一个功能强大的无显示屏产品。此后,开发者可以把原始设计迁移到STM32MP15上,增装一块分辨率1080 x 720的显示屏,给PLC控制器增加一个人机界面 (HMI)因为这家公司最初使用的是STM32 MPU,所以,他们可以使用相同的嵌入式 Linux 发行版,并轻松地将应用从一个 MPU 移植到另一个 MPU。该操作系统还运行先进的 UI 框架,例如,以可移植性而闻名的QtCrank

另一个例子是智能恒温器,其中用户界面是产品体验的重要组成部分。厂商一直在寻求产品差异化,使用不同级别的 UI 和屏幕尺寸来吸引更广泛的客户群。从 STM32MP15 迁移到 STM32MP13,开发者可以运行相同的底层应用,还可以选用很多不同的附加功能,创建涵盖更广泛的需求和价位的产品组合。

STM32MP15STM32MP25

开发人员越来越关注如何设计使用寿命更长的产品,并在边缘设备上引入机器学习。MPU 的最新进展可以提供更大的存储灵活性,帮助开发者满足这些需求,这也解释了为什么许多人经常采用 STM32 MPU,以保持竞争优势。例如,新款 STM32MP25 ST第一款除DDR3外还支持 DDR4 LPDDR4 MPU64 位架构还意味着它可以为音视频处理和网络设备等应用提供更多的存储空间,或者同时运行多个软件,以节省资源,提高效率。

大多数工业应用使用相同的存储器接口长达十年或更久,因此,微处理器必须提供灵活性更高的存储控制器(与消费市场相比),这就是为什么 ST MPU 始终支持多个存储器接口,并且ST确保最广泛的兼容性,STM32MP25就是一个这样的产品,它使系统支持变得更加高效,同时也便于进行设计更新和升级

同样,许多人都希望从边缘机器学习中获益。STM32MP25 是第一款支持 64 位架构的 STM32产品,搭载了两颗 Cortex-A35内核,这是目前Arm最高效的内核。因此,这款产品可以运行更强大的应用,同时保持较低的功耗。神经处理单元 (NPU)的处理速度达到1.35 TOPSVulkan 兼容GPU能够在全高清显示屏上轻松运行新颖的用户界面。因此,ST的新 MPU 为一些要求最苛刻的应用带来了机会,例如,能够进行人数统计或物体检测的智能相机,以及空间计算等新系统。

未来将会怎样?

ST决定发布更多的 STM32MP2 MPU,帮助开发人员根据实际需求定制应用。确实,同一系列微控制器通常包含很多不同的产品型号,而微处理器却没有那么多产品型号,因为微处理器制造难度更大。然而,随着制造能力不断优化,ST计划尽快发布更多产品,并使其中多个产品的引脚兼容。ST已经预发布了STM32MP21 STM32MP23STM32MP21搭载Cortex-A35Cortex-M33两个内核、两个以太网控制器和一个摄像头接口,可以满足有成本要求边缘计算机视觉应用。STM32MP23定位在STM32MP25 STM32MP21之间,它的双 Cortex-A35内核可以实现丰富的 UI,同时兼顾成本。

2.png

STM32 MPU产品系列

围观 37

优化的集成化电源管理芯片,内置保护功能,驱动MPU及外设

意法半导体 STM32MP2 微处理器配套电源管理芯片STPMIC25 现已上市。新产品在一个便捷封装内配备 16 个输出通道,可为MPU的所有电源轨以及系统外设供电,完成硬件设计仅需要少量的外部滤波和稳定功能组件。评估板STEVAL-PMIC25V1现已上市,开发者可立即开始开发应用。

1.jpg

新电源管理芯片包含七个 DC/DC 降压转换器和八个低压差 (LDO) 稳压器,还有一个额外的 LDO稳压器为系统 DDR3 和 DDR4 DRAM 提供参考电压 (Vref)。在八个 LDO稳压器中有一个3.3V 通道专用稳压器,用于为 USB 高速和 Type-C PHY IC 供电,还有通用 LDO稳压器,可分配给电源电路,例如,存储卡接口和以太网端口。

降压转换器经过优化设计,可为 MPU 的 CPU、核心电路、GPU、I/O 和模拟电源域供电,并具有给DDR RAM 供电的附加通道和通用辅助输出。转换器采用快速瞬态响应和低纹波设计,适用于各种工作条件,可满足 MPU 电源域的特定需求。所有转换器均采用自适应恒定导通时间控制,以实现高能效,并采用扩频频率调制和相移开关及先进的同步技术来最大限度地降低 EMI干扰。此外,每个转换器都有高低功耗工作模式,可通过应用软件控制模式转换,允许主机系统最大限度地降低转换器静态电流,提高节能效果。所有降压转换器和 LDO 都可以独立启用和禁用。

STPMIC25现已投入生产,采用 6.5mm x 6.5mm 56 引脚 WFQFN 封装,厚度仅为 0.9mm。STEVAL-PMIC25V1 电路板可在 eSTore或通过代理商购买。

详情访问www.st.com/STPMIC25

关于意法半导体

意法半导体拥有5万名半导体技术的创造者和创新者,掌握半导体供应链和先进的制造设备。作为一家半导体垂直整合制造商(IDM),意法半导体与二十多万家客户、成千上万名合作伙伴一起研发产品和解决方案,共同构建生态系统,帮助他们更好地应对各种挑战和新机遇,满足世界对可持续发展的更高需求。意法半导体的技术让人们的出行更智能,让电源和能源管理更高效,让云连接的自主化设备应用更广泛。意法半导体承诺将于2027年实现碳中和(在范围1和2内完全实现碳中和,在范围3内部分实现碳中和)。详情请浏览意法半导体公司网站:www.st.com.cn

围观 20

实时计算密集型应用(如智能嵌入式视觉和机器学习)正在推动嵌入式处理需求的发展,要求在边缘实现更高的能效、硬件级安全性和高可靠性。Microchip Technology Inc.(微芯科技公司)近日发布PIC64系列产品,进一步扩大计算范围,满足当今嵌入式设计日益增长的需求。PIC64系列支持需要实时和应用级处理的广泛市场,使Microchip成为MPU领域的单一供应商解决方案提供商。PIC64GX MPU是即将发布的新产品系列中的首款产品,可支持工业、汽车、通信、物联网、航空航天和国防领域的智能边缘设计。

1.jpg

Microchip首席执行官兼总裁Ganesh Moorthy表示:“Microchip是8 位、16位和32位嵌入式解决方案的领导者,随着市场发展,我们的产品线也必须随之发展。新增的64位MPU产品组合使我们能够提供低、中、高端计算处理解决方案。PIC64GX MPU 是多款64位 MPU中的首款产品,旨在支持智能边缘,满足所有细分市场的广泛性能需求。” 

智能边缘通常需要具有非对称处理功能的64位异构计算解决方案,以便在具有安全启动功能的单处理器集群中运行Linux®、实时操作系统和裸机。Microchip的PIC64GX 系列采用具有非对称多处理(AMP)和确定性延迟的64位RISC-V®四核处理器,可满足中端智能边缘计算需求。PIC64GX MPU是首款具有AMP功能的RISC-V®多核解决方案,适用于混合关键性系统。它采用四核设计,具有支持 Linux 的中央处理器(CPU)集群、第五微控制器级显示器和 2 MB 灵活的二级缓存,运行频率为625 MHz。

PIC64GX系列引脚与Microchip的PolarFire® SoC FPGA器件兼容,为嵌入式解决方案开发提供了极大的灵活性。此外,该款产品可利用 Microchip 易于使用的工具和支持软件生态系统,包括一系列强大的流程,帮助配置、开发、调试和验证嵌入式设计。 

作为 Microchip首批64位产品之一,PIC64高性能航天计算(PIC64-HPSC)系列也即将推出。这些太空级64位多核 RISC-V MPU旨在将计算性能提高100倍以上,同时为航空航天和防御应用提供前所未有的耐辐射和容错能力。美国国家航空航天局喷气推进实验室(NASA-JPL)于2022年8月宣布选择Microchip开发HPSC处理器,作为该实验室推进商业合作努力的一部分。PIC64-HPSC系列代表着NSAS-JPL以及更广泛的防御和商业航空航天产业进入了自主空间计算的新时代。 

随着PIC64产品组合的推出,Microchip 已成为唯一一家同时开发全系列 8位、16位、32位和64位单片机 (MCU)和微处理器(MPU)的嵌入式解决方案供应商。未来的PIC64系列将包括基于RISC-V或Arm® 架构的器件,嵌入式设计人员将能够利用Microchip的端到端解决方案(从芯片到嵌入式生态系统),加快设计、调试和验证速度,缩短产品上市时间。如需了解更多信息,请访问Microchip 64位产品网页。

开发工具

PIC64GX系列由PIC64GX Curiosity 评估工具包提供支持,并将与 Microchip的面向VS Code®的 MPLAB® 扩展(MPLAB Extensions)集成。PIC64 MPU 还得到Linux4Microchip资源和Linux代理商(如 Canonical® Ubuntu® OS、Yocto Project® 和 Buildroot)的支持,同时支持 Zephyr®实时操作系统和相关软件协议栈。

供货与定价

PIC64GX Curiosity工具包现已上市,设计人员可开始进行评估。如需了解更多信息或购买,请联系Microchip销售代表、全球授权分销商或访问 Microchip采购和客户服务网站 www.microchipdirect.com

来源:Microchip微芯

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 19

全新的MCX A系列融合了恩智浦通用MCU的特点,适用更为广泛的通用应用,实现了低成本,低功耗,高安全性和高可靠性。MCXA153是MCX A系列的第一款产品,已于2024年1月份上市,为低成本入门MCU应用提供了丰富的功能和特性。后续MCX A系列还会继续推出新产品,为客户提供持续的硬件和软件的可扩展升级路径。

系统启动(System Boot)是指MCU从复位到执行应用主程序Main函数的整个过程,它涉及到客户产品开发调试,系统稳定性和后续软件升级,MCXA153的系统启动还包含了信息安全(Security),包括生命周期管理(Lifecycle Management)、代码保护禁读(Read Out Protection)等特性。

今天,我们来一起了解一下MCXA153的系统启动。

MCXA153的系统启动三部曲   

1. ROM启动:在MCU复位后,将首先执行MCXA153 ROM中的代码

2. 扩展引导程序启动:ROM启动完成后,跳转到扩展引导程序(Extended Bootloader)

3. 跳转到用户应用程序

1.png

图中虚线箭头表示扩展引导程序和用户应用程序可以调用ROM提供的Flash API,来操作Flash,用户应用程序也可以调用runBootloader API来跳转到ROM当中。   

ROM启动   

在MCU复位之后(包括上电复位POR、复位引脚引起的复位、深度掉电模式唤醒复位等),MCU将首先进入ROM启动流程。ROM启动将完成以下功能:

  • 检查生命周期 Lifecycle

  • 通过调试接口处理调试邮箱请求(Debugger Mailbox)

  • 通过MBC配置Flash的访问权限 (读、写、执行权限)

  • 根据唤醒源执行代码完整性检查

  • 在跳转到扩展引导程序之前,隐藏ROM启动关键部分

详细的ROM启动流程如图所示,蓝色箭头表示默认的执行流程,一开始,ROM将执行初始化,并检查扩展引导程序是否存在,然后检查MCU的生命周期,ROM将根据唤醒源,检查扩展引导程序的CRC,用于检测程序的完整性。CRC检查之后,ROM将检查用户程序的堆栈指针(SP)和程序(PC)是否合法,然后隐藏自己并跳转到扩展引导程序。 

2.png 

扩展引导程序启动  

扩展引导程序是将ROM中的部分功能分离出来,放在IFR0 (Implicit-protected Flash Region)区域,在NXP工厂生产时烧录,从NXP出厂后,无法被删除或修改。扩展引导程序主要功能是ISP (In System Programming),可通过ISP接口(USB、LPUART0)更新Flash中的用户应用程序固件。

具体的扩展引导程序启动流程如图所示,首先进行初始化并检查唤醒源,如果MCU不是从深度掉电(Deep Power Down)模式唤醒,它将初始化MCU。接下来如果ISP引脚是低电平,它将进入ISP路径,更新用户应用程序固件。如果ISP引脚为高电平,则跳转到正常启动路径,跳转到用户应用程序。

3.png

今天给大家介绍了MCX A153的系统启动,后续我们将继续深入,为大家带来更多详尽,专业的特性介绍,帮助大家对MCX A系列有个快速而全面的了解,敬请期待!

来源:恩智浦MCU加油站

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 36

开发一款电子产品,基本都需要一个单片机或微处理器。当在两者之间选择其一时,需要考虑一些因素。

考虑选择微处理器(MPU)或者单片机(MCU)时,应用类型通常是关键因素。另一方面,最终选择取决于诸如操作系统和内存之类的因素。不过,有时可以将微处理器和单片机内核结合使用,这称作异构架构。

操作系统

对于一些基于Linux或安卓等操作系统的计算机密集型工业和消费类应用,需要大量高速连接或功能范围广泛的用户接口,微处理器就是最佳选择。这是因为大多数单片机都没有操作系统,而只有裸机程序,借助于顺序处理循环和状态机,几乎无需任何人工干预即可运行程序。然而,许多高性能单片机可以支持诸如FreeRTOS之类的实时操作系统(RTOS),从而以确定性方式实时响应需要硬实时行为的应用程序。

作为具有许多免费软件、广泛硬件支持和不断发展的生态系统的通用操作系统,嵌入式Linux取得了巨大的成功。它的另一个优点就是没有用户或授权许可费用。不过,与嵌入式Linux一起运行的应用程序至少需要300至400 DMIPS(ARM-Dhrystone MIPS)性能,因此较适合使用微处理器。单片机没有足够的计算能力和内存来应付此类应用。

如果是用于复杂或对实时性要求高的控制系统, RTOS则很有用,但至少要配合50 DMIPS的高性能单片机。这比嵌入式Linux所需的性能要求要少得多。传统的RTOS设计精简,因此可以在单片机上运行。针对实时计算硬件时,这是合理的,例如用于车辆的防抱死系统,若响应时间过长会带来致命的后果。即使必须支持大量的功能、中断源和标准通信接口,也建议使用带有RTOS的单片机。

内 存

微处理器与单片机之间的另一个主要区别是,微处理器依赖外部存储器来保存和执行程序,而单片机则依赖嵌入式闪存。在微处理器中,程序通常存储在非易失性存储器中,例如eMMC或串行闪存。在启动过程中,将其加载到外部DRAM中并在此执行启动程序。DRAM和非易失性存储器都可以具有几百兆甚至几千兆字节容量,这意味着微处理器几乎从来不受存储容量限制。但有一个潜在缺点:外部存储器或许会使得PCB布局的设计变得更加复杂。

即使是当前的高性能单片机,例如由意法半导体(STMicroelectronics)生产的STM32H7,最多也仅提供2 MB程序内存,对于许多需要操作系统的应用而言可能不足。由于程序位于片上内存中,因此其优点是执行启动和重置过程的速度明显更快。

计算能力

计算能力是典型的选择因素。不过,在这方面,微处理机与单片机之间的界线变得模糊了。例如,如果你将ARM体系结构视为单片机和微处理器市场中分布最广泛的体系结构之一,这就变得显而易见了。
ARM提供了不同的处理器体系结构以满足各种要求:

  • Cortex-A提供了最高性能,并且已经针对综合操作系统进行了优化。它们主要部署在功能强大的设备中,比如智能手机或服务器。
  • Cortex-M较小,具有更多的片上外设,但是能耗较低,并且针对嵌入式应用进行了优化。

Dhrystone是比较不同处理器性能的测试基准。根据该基准,普通平价单片机具有30 DMIPS,而当前性能最高的单片机(包括嵌入式程序闪存)与这些平价单片机的差距高达1027 DMIPS。相比之下,微处理器的起步点约为1000 DMIPS。

能 耗

单片机在能耗方面表现出色,要比微处理器低很多。尽管微处理器具有节能模式,但其能耗仍然比典型的单片机高得多。而且,微处理器使用外部存储器,因此较难切换到节能模式。对于需要较长的电池运行时间,并且很少使用或没有用户接口的超低功耗应用,单片机是更好的选择,尤其是对于消费类电子产品或智能电表来说。

连接性

大多数单片机和微处理器都配备了所有常规外围设备接口。但是,如果用户需要的是超高速外围设备,在单片机里是找不到例如千兆以太网这种相关接口的。尽管这实际上已成为微处理器中的标准功能单片机。这是十分合理的,因为单片机几乎无法处理这些高速接口所产生的数据量。一个关键问题是:是否有足够的带宽和通道来处理爆发的数据量?

实时表现

当实时性能是最重要的考虑因素时,单片机绝对是首选。凭借处理器内核、嵌入式闪存和软件(RTOS或裸机OS),单片机可以出色地完成实时任务。因为Cortex-A微处理器使用高性能的流水线,用户可以看到在跳转和中断期间,随着流水线的深度不断增加,延迟时间也随之升高。由于OS与微处理器一起执行多任务,因此很难实现硬实时操作。

系统基础IC

由于电源已经集成在单片机中,因此它们仅需要一个单电平电源。另一方面,微处理器需要许多不同电压的电源来为内核和其它组件供电,所以通常需要一个特殊配置的电源管理IC(即所谓的系统基础芯片)来进行供电管理。

结 语

很难说微处理器或单片机哪个才是更好的选择,但经验法则是,你应该始终权衡各种利弊条件。以下几点可以用作大致指导:

  • 单片机非常适合以能耗为主要关注点,且价格较低的移动应用以及具有实时需求的应用。
  • 微处理器则非常适合与操作系统一起运行并需要高速接口的密集计算应用。游戏和其他图形密集型应用使用特殊的微处理器进行联网处理。

来源:网络
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 21

微处理器的存在看似理所应当。很多不太涉足技术领域的人可能根本没有意识到,微处理器早已遍布日常生活的每个角落,不只是电脑,还有无数其他每天都会使用的设备。

“庆祝微处理器诞生黄金五十周年"

什么是微处理器?

微处理器将以下三大基本要素集成在单个芯片上:

  • 中央处理器(CPU):实际执行运算的引擎。
  • 存储器:用于存放运算所需输入和输出数据。
  • 输入/输出(I/O)功能:让微处理器能获得工作所需数据(输入)并读出工作的结果(输出)。

纯粹从解析角度来看,这样的定义似乎有些模糊。真正让微处理器(主要基于逻辑构建)区别于其他逻辑芯片的一个关键点在于,它们的功能是由软件定义的。

那么,单芯片处理器是什么时候诞生的?最早商用的处理器是英特尔4004,于1971年上市,距今正好50年。

持续进化

和最初诞生时相比,如今的微处理器已经有了翻天覆地的变化。随着单芯片晶体管数量的提升,微处理器的架构变得越来越复杂。尽管“最佳”架构始终取决于微处理器的使用场景,我们还是可以总结出微处理器进化的四大路径。

“位宽”提升

这里的“位”是指最小数据块的尺寸。一般来说,数据块越大,在给定时间内可以完成的工作就越多。从最早的4位开始,位宽已经经历过8位、16位、32位和64位。除特殊专用处理器可能有更高位宽以外, 64位已经成为当今通用的高性能数据传输位宽。

“管线”长度

为了让处理器以更快的速度工作,人们想到的一个主要办法就是将一个运算任务分为多个子任务。这个方法的原理在于,子任务越小,这部分的工作就能越快完成,这意味着整个运算将更快得出结果。

特殊加速功能

举例来说,以前需要电脑程序进行一项运算,除非实际运行了该程序,否则我们无法知道这个运算的结果。然而,如今更先进的处理器可以预测运算的结果,提前做好准备并加快处理速度。

“多核”计算

超过1个CPU,即“多核”计算。这背后的原理很简单:一个CPU 可以在一定时间内完成一项工作,同时投入更多的CPU就能更快地完成同一项工作。尽管道理很明显,但要真正实现它还是会遇到问题,因为在执行某些任务时多个CPU可能很难形成“合力”。尽管如此,今天主流的微处理器通常都包含不止一个 CPU。

新设备、新任务与新重点

当然,只追求速度的时代已经过去。特别是对于电池供电的设备,我们还需要关注功率,而对于智能手表这种空间受限的设备,我们则需要关注体积。另外还有已广泛用于大量设备的微控制器,它们需要更多存储和专业化的辅助电路,因此更需要同时兼顾速度、功率和体积。

总而言之,现在我们使用的几乎所有电子设备都包含微处理器。尽管其形态各异,但它们都始于50年前。

来源: 泛林半导体设备技术
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 43

每项新应用设计都需要一个单片机或微处理器。当在两者之间选择其一时,需要考虑一些因素。以下是微处理器、单片机的概述和对比。

考虑选择微处理器(MPU)或者单片机(MCU)时,应用类型通常是关键因素。另一方面,最终选择取决于诸如操作系统和内存之类的因素。不过,有时可以将微处理器和单片机内核结合使用,这称作异构架构。

操作系统

对于一些基于Linux或安卓等操作系统的计算机密集型工业和消费类应用,需要大量高速连接或功能范围广泛的用户接口,微处理器就是最佳选择。这是因为大多数单片机都没有操作系统,而只有裸机程序,借助于顺序处理循环和状态机,几乎无需任何人工干预即可运行程序。然而,许多高性能单片机可以支持诸如FreeRTOS之类的实时操作系统(RTOS),从而以确定性方式实时响应需要硬实时行为的应用程序。

作为具有许多免费软件、广泛硬件支持和不断发展的生态系统的通用操作系统,嵌入式Linux取得了巨大的成功。它的另一个优点就是没有用户或授权许可费用。不过,与嵌入式Linux一起运行的应用程序至少需要300至400 DMIPS(ARM-Dhrystone MIPS)性能,因此较适合使用微处理器。单片机没有足够的计算能力和内存来应付此类应用。

如果是用于复杂或对实时性要求高的控制系统, RTOS则很有用,但至少要配合50 DMIPS的高性能单片机。这比嵌入式Linux所需的性能要求要少得多。传统的RTOS设计精简,因此可以在单片机上运行。针对实时计算硬件时,这是合理的,例如用于车辆的防抱死系统,若响应时间过长会带来致命的后果。即使必须支持大量的功能、中断源和标准通信接口,也建议使用带有RTOS的单片机。

内 存

微处理器与单片机之间的另一个主要区别是,微处理器依赖外部存储器来保存和执行程序,而单片机则依赖嵌入式闪存。在微处理器中,程序通常存储在非易失性存储器中,例如eMMC或串行闪存。在启动过程中,将其加载到外部DRAM中并在此执行启动程序。DRAM和非易失性存储器都可以具有几百兆甚至几千兆字节容量,这意味着微处理器几乎从来不受存储容量限制。但有一个潜在缺点:外部存储器或许会使得PCB布局的设计变得更加复杂。

即使是当前的高性能单片机,例如由意法半导体(STMicroelectronics)生产的STM32H7,最多也仅提供2 MB程序内存,对于许多需要操作系统的应用而言可能不足。由于程序位于片上内存中,因此其优点是执行启动和重置过程的速度明显更快。

计算能力

计算能力是典型的选择因素。不过,在这方面,微处理机与单片机之间的界线变得模糊了。例如,如果你将ARM体系结构视为单片机和微处理器市场中分布最广泛的体系结构之一,这就变得显而易见了。ARM提供了不同的处理器体系结构以满足各种要求:

  • Cortex-A提供了最高性能,并且已经针对综合操作系统进行了优化。它们主要部署在功能强大的设备中,比如智能手机或服务器。
  • Cortex-M较小,具有更多的片上外设,但是能耗较低,并且针对嵌入式应用进行了优化。

Dhrystone是比较不同处理器性能的测试基准。根据该基准,普通平价单片机具有30 DMIPS,而当前性能最高的单片机(包括嵌入式程序闪存)与这些平价单片机的差距高达1027 DMIPS。相比之下,微处理器的起步点约为1000 DMIPS。

能 耗

单片机在能耗方面表现出色,要比微处理器低很多。尽管微处理器具有节能模式,但其能耗仍然比典型的单片机高得多。而且,微处理器使用外部存储器,因此较难切换到节能模式。对于需要较长的电池运行时间,并且很少使用或没有用户接口的超低功耗应用,单片机是更好的选择,尤其是对于消费类电子产品或智能电表来说。

连接性

大多数单片机和微处理器都配备了所有常规外围设备接口。但是,如果用户需要的是超高速外围设备,在单片机里是找不到例如千兆以太网这种相关接口的。尽管这实际上已成为微处理器中的标准功能单片机。这是十分合理的,因为单片机几乎无法处理这些高速接口所产生的数据量。一个关键问题是:是否有足够的带宽和通道来处理爆发的数据量?

实时表现

当实时性能是最重要的考虑因素时,单片机绝对是首选。凭借处理器内核、嵌入式闪存和软件(RTOS或裸机OS),单片机可以出色地完成实时任务。因为Cortex-A微处理器使用高性能的流水线,用户可以看到在跳转和中断期间,随着流水线的深度不断增加,延迟时间也随之升高。由于OS与微处理器一起执行多任务,因此很难实现硬实时操作。

系统基础IC

由于电源已经集成在单片机中,因此它们仅需要一个单电平电源。另一方面,微处理器需要许多不同电压的电源来为内核和其它组件供电,所以通常需要一个特殊配置的电源管理IC(即所谓的系统基础芯片)来进行供电管理。

结 语

很难说微处理器或单片机哪个才是更好的选择,但经验法则是,你应该始终权衡各种利弊条件。以下几点可以用作大致指导:

  • 单片机非常适合以能耗为主要关注点,且价格较低的移动应用以及具有实时需求的应用。
  • 微处理器则非常适合与操作系统一起运行并需要高速接口的密集计算应用。游戏和其他图形密集型应用使用特殊的微处理器进行联网处理。

本文转载自:21ic
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 42

器件采用PowerPAK® 5 mm x 6 mm封装,内置电流和温度监测功能,满足基础设施、云计算和图形卡应用需求

日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,推出九款采用热增强型5 mm x 6 mm PowerPAK® MLP56-39封装,集成电流和温度监测功能的新型70 A、80 A和100 A VRPower® 智能功率模块。Vishay Siliconix SiC8xx系列智能功率模块提高能效和电流报告精度,降低数据中心和其他高性能计算,以及5G移动基础设施通信应用的能源成本。

产品编号

PWM电平

电流

输入电压

SiC822

5 V

70 A

4.5 V - 16 V

SiC822A

3.3 V

SiC820

5 V

80 A

SiC820A

3.3 V

SiC840

5 V

100 A

SiC840A

3.3 V

SiC832

5 V

70 A

4.5 V - 21 V

日前发布的功率模块含有功率MOSFET和先进的驱动IC。为提高能效,器件内部MOSFET采用先进的TrenchFET® Gen IV技术,这一技术确立行业性能基准,显著降低开关和传导损耗。SiC8xx智能功率模块各种应用条件下峰值能效可达93 %以上。轻载时可启用二极管仿真模式,提高全负载范围的效率。

采用电感器DCR监控功耗的解决方案,电流报告精度为7 %,而SiC8xx 系列器件采用低边MOSFET进行检测,精度误差小于3 %。从而有助于提高Intel、Advanced Micro Devices, Inc. 和 Nvidia Corporation等公司大电流处理器和片上系统(SoC)性能,改进热管理。器件适用于同步降压转换器、CUP和GPU的多相VRD、存储器以及DC/DC VR模块。

SiC8xx功率模块输入电压为4.5 V至21 V(如表中所示),开关频率高达2 MHz。故障保护功能包括高边MOSFET短路和过流报警、过热保护和欠压锁定(UVLO)。 SiC8xx系列支持3.3 V和5 V 三态PWM逻辑电平,兼容各种PWM控制器。

智能功率模块现可提供样品并已实现量产,供货周期为16周。

VISHAY简介

Vishay 是全球最大的分立半导体和无源电子元件系列产品制造商之一,这些产品对于汽车、工业、计算、消费、通信、国防、航空航天和医疗市场的创新设计至关重要。服务于全球客户,Vishay承载着科技基因——The DNA of techÔ。Vishay Intertechnology, Inc. 是在纽约证券交易所上市(VSH)的“财富1,000 强企业”。有关Vishay的详细信息,敬请浏览网站 www.vishay.com

围观 27

每项新应用设计都需要一个单片机或微处理器。当在两者之间选择其一时,需要考虑一些因素。以下是微处理器、单片机的概述和对比。

考虑选择微处理器(MPU)或者单片机(MCU)时,应用类型通常是关键因素。

另一方面,最终选择取决于诸如操作系统和内存之类的因素。不过,有时可以将微处理器和单片机内核结合使用,这称作异构架构。

1、操作系统

对于一些基于Linux或安卓等操作系统的计算机密集型工业和消费类应用,需要大量高速连接或功能范围广泛的用户接口,微处理器就是最佳选择。

这是因为大多数单片机都没有操作系统,而只有裸机程序,借助于顺序处理循环和状态机,几乎无需任何人工干预即可运行程序。

然而,许多高性能单片机可以支持诸如FreeRTOS之类的实时操作系统(RTOS),从而以确定性方式实时响应需要硬实时行为的应用程序。

作为具有许多免费软件、广泛硬件支持和不断发展的生态系统的通用操作系统,嵌入式Linux取得了巨大的成功。

它的另一个优点就是没有用户或授权许可费用。不过,与嵌入式Linux一起运行的应用程序至少需要300至400 DMIPS(ARM-Dhrystone MIPS)性能,因此较适合使用微处理器。单片机没有足够的计算能力和内存来应付此类应用。

如果是用于复杂或对实时性要求高的控制系统, RTOS则很有用,但至少要配合50 DMIPS的高性能单片机。这比嵌入式Linux所需的性能要求要少得多。传统的RTOS设计精简,因此可以在单片机上运行。

针对实时计算硬件时,这是合理的,例如用于车辆的防抱死系统,若响应时间过长会带来致命的后果。即使必须支持大量的功能、中断源和标准通信接口,也建议使用带有RTOS的单片机。

2、内存

微处理器与单片机之间的另一个主要区别是,微处理器依赖外部存储器来保存和执行程序,而单片机则依赖嵌入式闪存。

在微处理器中,程序通常存储在非易失性存储器中,例如eMMC或串行闪存。在启动过程中,将其加载到外部DRAM中并在此执行启动程序。DRAM和非易失性存储器都可以具有几百兆甚至几千兆字节容量,这意味着微处理器几乎从来不受存储容量限制。

但有一个潜在缺点:外部存储器或许会使得PCB布局的设计变得更加复杂。

即使是当前的高性能单片机,例如由意法半导体(STMicroelectronics)生产的STM32H7,最多也仅提供2 MB程序内存,对于许多需要操作系统的应用而言可能不足。由于程序位于片上内存中,因此其优点是执行启动和重置过程的速度明显更快。

3、计算能力

计算能力是典型的选择因素。不过,在这方面,微处理机与单片机之间的界线变得模糊了。例如,如果你将ARM体系结构视为单片机和微处理器市场中分布最广泛的体系结构之一,这就变得显而易见了。ARM提供了不同的处理器体系结构以满足各种要求:

Cortex-A提供了最高性能,并且已经针对综合操作系统进行了优化。它们主要部署在功能强大的设备中,比如智能手机或服务器。
Cortex-M较小,具有更多的片上外设,但是能耗较低,并且针对嵌入式应用进行了优化。

Dhrystone是比较不同处理器性能的测试基准。根据该基准,普通平价单片机具有30 DMIPS,而当前性能最高的单片机(包括嵌入式程序闪存)与这些平价单片机的差距高达1027 DMIPS。相比之下,微处理器的起步点约为1000 DMIPS。

4、能耗

单片机在能耗方面表现出色,要比微处理器低很多。尽管微处理器具有节能模式,但其能耗仍然比典型的单片机高得多。

而且,微处理器使用外部存储器,因此较难切换到节能模式。对于需要较长的电池运行时间,并且很少使用或没有用户接口的超低功耗应用,单片机是更好的选择,尤其是对于消费类电子产品或智能电表来说。

5、连接性

大多数单片机和微处理器都配备了所有常规外围设备接口。但是,如果用户需要的是超高速外围设备,在单片机里是找不到例如千兆以太网这种相关接口的。尽管这实际上已成为微处理器中的标准功能单片机。这是十分合理的,因为单片机几乎无法处理这些高速接口所产生的数据量。一个关键问题是:是否有足够的带宽和通道来处理爆发的数据量?

6、实时表现

当实时性能是最重要的考虑因素时,单片机绝对是首选。凭借处理器内核、嵌入式闪存和软件(RTOS或裸机OS),单片机可以出色地完成实时任务。

因为Cortex-A微处理器使用高性能的流水线,用户可以看到在跳转和中断期间,随着流水线的深度不断增加,延迟时间也随之升高。由于OS与微处理器一起执行多任务,因此很难实现硬实时操作。

7、系统基础IC

由于电源已经集成在单片机中,因此它们仅需要一个单电平电源。另一方面,微处理器需要许多不同电压的电源来为内核和其它组件供电,所以通常需要一个特殊配置的电源管理IC(即所谓的系统基础芯片)来进行供电管理。

8、总结

很难说微处理器或单片机哪个才是更好的选择,但经验法则是,你应该始终权衡各种利弊条件。以下几点可以用作大致指导:

单片机非常适合以能耗为主要关注点,且价格较低的移动应用以及具有实时需求的应用。
微处理器则非常适合与操作系统一起运行并需要高速接口的密集计算应用。游戏和其他图形密集型应用使用特殊的微处理器进行联网处理。

免责声明:本文内容来源于网络,版权归原作者所有。如涉及作品版权问题,请联系删除。

围观 33

页面

订阅 RSS - 微处理器