微处理器

  • 微处理器系列产品列入10年滚动续期工业级供货承诺名单
  • STM32MP1多核架构是在实时和功耗受限的子系统中开发开源软件应用的理想选择
  • OpenSTLinux发行版和经过市场检验的STM32Cube生态系统可缩短研发周期

横跨多重电子应用领域的全球领先的半导体供应商意法半导体 (STMicroelectronics,简称ST;纽约证券交易所代码:STM) 利用多年积累的Arm® Cortex®研发知识扩大STM32 MCU的功能,使这一市场领先的微控制器产品组合覆盖到处理性能和资源要求更高且需要大型开源软件的应用领域。新推出的STM32MP1多核微处理器系列具有计算和图形处理能力,兼备高能效实时控制和高功能集成度,有助于简化工业制造、消费电子、智能家居、医疗应用高性能解决方案的开发。

STM32MP1系列微处理器(MPU)产品依托意法半导体及其合作伙伴共同构建的强大、成熟的STM32 *系列生态系统,包括开发工具和技术支持。STM32系列主要用于解决客户对实时任务和功耗限制的重要要求,OpenSTLinux作为市场上主流的开源Linux发行版发布,将STM32系列从以实时任务和功耗限制为主的应用扩大到更广泛的市场。在MPU和软件的联合支持下,意法半导体提供一个整体方案,满足许多工业和专业应用的供货需求。当然,STM32MP1包含在意法半导体的10年滚动续期供货承诺名单内。

意法半导体微控制器产品部总经理Ricardo De Sa Earp表示:“STM32MP1将STM32的产品优势带到了既需要MPU计算和图形处理,又需要高能效实时控制和高功能集成度的应用领域。我们加大开源Linux软件和微控制器的开发支持力度,辅以消费类微控制器所不具备的长期供货保障,让开发者对使用STM32MP1开发嵌入式MPU项目充满信心。”

现在有了意法半导体全新的整合Arm®Cortex® -A和Cortex® -M两颗不同核心的STM32MP1微处理器系列 (MPU),客户可以在这个新型STM32异构计算架构上开发一系列新的应用设计。这一灵活的异构计算架构在单一芯片上执行快速数据处理和实时任务,始终实现最高的能效。例如,通过停止Cortex-A7执行指令,只让能效更高的Cortex-M4运行,功耗通常可以降至25%。再从这种模式进入待机状态,功耗进一步降至1/2500(两千五百分之一),同时仍然支持1到3秒内恢复Linux执行,具体恢复速度取决于实际应用。

STM32MP1嵌入了3D图形处理器(GPU),以支持人机界面(HMI)显示器;外部存储器支持各种DDR SDRAM和闪存。此外,STM32MP1嵌入了大量外设,可以无缝分配给Cortex-A / Linux或Cortex-M / 实时操作。STM32MP1系列采用多种BGA封装,支持成本最低的PCB板结构,电路板空间占用极小。

意法半导体正在用实际行动兑现其加强软件开发的承诺。为了加快项目开发速度,意法半导体发布了一款主流开源Linux发行版OpenSTLinux Distribution。 OpenSTLinux现已通过了 Linux Foundation、Yoctoproject ®、Linaro等Linux社区的审批。该发行版包含在应用处理器内核上运行软件所需的全部基本组件。

增强型STM32Cube工具是Cortex-M微控制器STM32Cube软件包的特别升级版,具有加快Arm Cortex-A-内核MPU项目开发所需的全部功能和特性。意法半导体解决方案可简化MPU项目创建和片上资源配置。

STM32MP1产品现已量产。新产品将在3月铺货给经销商。了解更多详情,请联系当地意法半导体经销商或访问www.st.com/stm32mp1

两款评估板 (STM32MP157A-EV1 和 STM32MP157C-EV1)和两款探索套件(STM32MP157A-DK1 和 STM32MP157C-DK2)将在 4月投放到经销商渠道。

更多技术信息

STM32MP1系列微处理器集成两颗主频650MHz的Arm Cortex-A7应用处理器内核和一颗运行频率209MHz的高性能Arm Cortex-M4微控制器内核。为防止MPU系统出现性能瓶颈和带宽问题,STM32MP1支持经济实惠的DDR SDRAM存储器,包括DDR3、DDR3L、LPDDR2、533MHz的32/16位LPDDR3。此外,STM32MP1还支持各种闪存产品:eMMC、SD卡、SLC NAND、SPI NAND和Quad-SPI NOR闪存。

3D图形处理单元(GPU)可实现基于OpenGL® ES2.0接口的高级HMI开发以及Linux和各种应用程序框架(包括Android Qt)的本机支持。STM32MP1支持60fps、高达WXGA的 24位并行RGB显示器接口和运行频率1Gbps的有2个数据通道的MIPI® DSI接口。

这款3D图形处理器有助于工业控制面板等设备提升用户使用体验。Crank Software公司是Storyboard™用户界面开发工具套件的开发者,公司总裁Brian Edmond评论说:“STM32MP1平台增强了ST的解决方案的优势,并与Storyboard业界领先的软件系统可伸缩性保持一致。Vivante®强大的3D GPU让Storyboard用户可以创建当今嵌入式市场需要的丰富图形体验。”

此外,ST还与Witekio展开合作,将Android移植到STM32MP1上。Witekio董事长Yannick Chammings表示:“Witekio很自豪能与ST合作将Android移植到STM32MP1上。作为系统软件集成商,Witekio通过开发基于STM32MP1系列的完整软件系统,从Linux或Android定制,到Qt HMI开发和云连接,陪同ST客户开发物联网创新项目。”

为了让客户相信代码是完全可信的并安心使用,STM32MP1系列嵌入了硬件安全加密功能,包括TrustZone、加密算法、哈希、安全启动、防篡改引脚和实时时钟。

STM32MP1还借用了STM32 MCU的先进IP模块。STM32MP1具有37个通信接口,例如,3个 USB2.0(包括2个高速)、1个千兆以太网GMAC、2个CAN FD接口,以及多个标准I²C、UART和SPI接口;还配备了一系列模拟外设,包括2个16位 ADC、2个12位DAC和片上LDO稳压器。STM32MP1支持29个定时器和3个看门狗。根据封装不同,最多支持176个GPIO引脚。

意法半导体为该芯片组开发了一个配套芯片。STPMIC1是STM32MP1专用电源管理IC(PMIC),集成了四个DC / DC降压转换器、六个LDO稳压器、一个DC / DC升压转换器,以及USB VBUS和通用功率开关,节省空间和BOM成本,为STM32MP1和电路板上的其它组件提供所需的电压轨。STPMIC1采用功耗优化技术,是电池供电应用中的STM32MP1系列的理想配套芯片。

OpenSTLinux 发行版支持在STM32MP1的Cortex-A7内核上的开发项目,并包含Linux BSP板级支持包、内核、驱动程序、引导链和安全操作系统(OP-TEE:可信执行环境)等重要组件。

为了优化项目每个阶段的开发工作,用户可以从三个开发者软件包中选择最能满足他们需求的支持功能:

为了帮助使用STM32MP1 MPU开发Linux安全产品的客户加快开发速度,意法半导体与开源软件提供商Timesys展开合作。Timesys首席执行官Atul Bansal表示:“我们很高兴与意法半导体合作,为STM32MP1系列MPU客户加快开发更安全的Linux产品提供所需的工具。 意法半导体在主流STM32MP1系列Yocto BSP板级支持包维护和meta-timeys集成上投入巨大,这可以让客户减少在管理漏洞上花费的时间。”

意法半导体加大软件支持力度的承诺,包括STM32CubeMP1固件包,使STM32MP1从竞品中脱颖而出。STM32CubeMX可简化Cortex-A7和Cortex-M4内核的软硬件配置,处理M4内核的C代码生成、DDR SDRAM接口配置和调试工具,还可以生成Linux Device树形图。

意法半导体为客户提供一系列社区板和第三方的模块上系统(SOM)板。

阅读 STM32MP1博客文章:https://blog.st.com/stm32m1-mpu-stm32mp157a-ev1-stm32mp157c-dk2/

围观 391

2018年非常具有代表性的十大“芯”品盘点

demi的头像

芯片作为微处理器或多核处理器的核心,它可以控制计算机、手机等产品,是它们的“大脑”。近年来,随着各个国家对芯片产业的重视,纷纷加大对芯片的研究力度,芯片热成为2018年整个产业的一大亮点。

设计开发一个芯片需要很多的技术,随着人们对小尺寸和高集成度的要求,芯片越来越小,功能却越来越多。对于芯片制造工艺和设计,市场有很多新的要求。2018年是“芯”品频出的一年,笔者盘点了这一年非常具有代表性的十大新品,它们来自于全球各大知名企业。(排名不分先后)

1、上海贝岭EEPROM存储芯片

2018年7月,在由众多业内媒体策划的第一届“我用中国芯”最佳半导体芯片评选中,上海贝岭股份有限公司的2Mbit的EEPROM BL24CM02芯片荣获存储类的最受欢迎芯片奖和最佳芯片奖。据悉,上海贝岭的EEPROM产品,封装形式从SOP、DIP、TSSOP、UDFN、TSOT23到WLCSP都有,产品特点是零静态功耗、品质可靠等,在网通设备、仪表、CCM等领域都可应用。

2、百度AI芯片“昆仑”

瑞萨电子通过其独家DRP技术以低功耗实现了出色的实时图像处理

全球领先的半导体解决方案供应商瑞萨电子株式会社(TSE:6723)今日宣布,扩展其嵌入式人工智能(e-AI)解决方案,将AI整合到嵌入式系统,从而实现终端设备的智能化。全球10多个国家的约150家公司正在基于这项技术开展包括工具等在内的试验,到目前为止e-AI的实际使用案例已超过30个。瑞萨电子现已开发出全新的 RZ/A2M 微处理器(MPU),把 e-AI 解决方案的使用扩展到高端应用。新款MPU提供的图像处理性能是其前一代产品RZ/A1的10倍(注1),通过采用瑞萨电子独有的动态可配置处理器(“DRP”,注2),能够以低功耗实现实时的图像处理。这样就能够将应用整合到嵌入式设备中,例如智能家电、服务机器人和紧凑型工业机械领域,以便利用摄像头和其他 AI 功能在低功耗条件下进行图像识别,并加速实现终端设备的智能化。

目前,在操作技术(OT)领域中使用 AI存在着诸多挑战,例如难以将大量数据从传感器传输到云端进行处理,以及在等待AI判断结果从云端传输回来时存在延迟。瑞萨电子已经推出了多项 AI 单元解决方案,通过精确分析电机或机器的振荡波形,可以实时检测出以前不可预见的故障。为了进一步扩展人工智能在OT领域的应用,瑞萨电子开发了带DRP功能的RZ/A2M,这让基于图像的AI功能成为可能,而这些功能往往需要比波形测量和分析更大量的数据以及更强大的处理性能。由于可以在非常低的功耗下进行实时图像处理,电池供电的设备可执行如基于相机输入的实时图像识别、采用指纹或虹膜扫描的生物识别认证,以及手持式扫描仪进行的高速扫描等任务。这就解决了与基于云计算的方法相关的诸多难题,如难以实现实时性能、难以保护隐私性以及安全性。

瑞萨电子执行副总裁、工业解决方案业务部总经理横田善和表示:“ 采用e-AI将给便利性、安全性和生产效率方面带来巨大的进步。我们通过使用e-AI成功地提高了自己工厂的产能,从而验证了AI给终端设备带来的优化。我们将继续扩大e-AI应用的范围,将其从色彩、形状和波形等简单属性扩展到复杂图像的实时处理;我们将提供更广范围应用、人人都可以使用的e-AI解决方案,在推动终端设备智能化方面发挥领导作用。”

具有DRP功能的新型RZ/A2M的主要特点

带DRP功能的RZ/A2M是RZ/A系列MPU的新成员,配备了大容量片上RAM,无需外部DRAM。RZ/A系列MPU非常适合采用人机界面(HMI)功能的应用,而RZ/A2M进一步增强了这一特性,它提供了多项非常适合于摄像头应用的功能。它支持广泛用于移动设备的MIPI® 摄像头接口,并配备了DRP,可以通过该接口高速处理图像输入。瑞萨电子通过增加双通道以太网支持增强了网络功能,并通过片上硬件加密加速器增强了安全功能。通过这些功能,新型RZ/A2M可实现安全可靠的网络连接,适合于各种采用图像识别功能的系统,涵盖从家用电器到工业机械的广泛范围。了解更多该款新品规格,请点击此处。

瑞萨电子计划继续扩大其基于DRP技术的e-AI解决方案的范围。在2019年下半年,瑞萨电子将发布一款搭载DRP的AI加速器,其AI处理性能比软件处理快100倍,并且能够通过e-AI进行实时推理。2021年,瑞萨电子将发布下一代AI加速器,其能力是传统MPU的1000倍。借助于这种方式,瑞萨电子将通过AI提升嵌入式设备的价值,让终端设备不但可以进行推理,而且能够进行学习。

上市情况

带 DRP 功能的 RZ/A2M 样片现已上市。瑞萨电子提供开发板、参考软件以及 DRP 图像处理库,使客户能够立即开始评估 HMI 功能和图像处理性能。计划将于 2019 年第一季度开始量产;到 2021 年,所有版本的月产量预计将达到合计 400,000 套。

了解更多e-AI解决方案,敬请访问

e-AI网页:https://www.renesas.com/cn/zh/solutions/key-technology/e-ai.html
e-AI概念:https://www.renesas.com/cn/zh/support/videos/e-ai-overview-video.html

注:

1. 例如,当运行用于检测图像边缘的“Canny边缘检测”算法时,如果采用CPU进行软件处理,RZ/A2M将需要每帧142毫秒(ms);但是,如果采用片上DRP进行硬件处理,则只需要每帧10毫秒。这表明图像处理性能提高了10倍以上。

2. DRP是一套硬件知识产权(IP)模块,能够从一个时钟周期到下一个时钟周期动态地改变其处理电路的配置。在广播设备和数码相机等应用中,DRP已在量产中应用了十多年。这套瑞萨电子独有的技术将硬件性能与软件灵活性相结合,多年来为各种产品带来了附加价值。展望未来,瑞萨电子计划将DRP的使用扩展到e-AI,以提供卓越的功耗性能和无与伦比的灵活性,时刻跟踪并保持与神经网络领域的持续进步。

围观 284

1. 嵌入式微处理器的基本结构

(1)嵌入式硬件系统一般由嵌入式微处理器、存储器和输入/输出部分组成。

(2)嵌入式微处理器是嵌入式硬件系统的核心,通常由控制单元、算术逻辑单元和寄存器3大部分组成:

A、控制单元:主要负责取指、译码和取数等基本操作并发送主要的控制指令。

B、算术逻辑单元:主要处理数值型数据和进行逻辑运算工作。

C、寄存器:用于暂存临时性的数据。

2. 嵌入式微处理器的分类(根据用途)

(1)嵌入式微控制器(MCU):又称为单片机,片上外设资源一般比较丰富,适合于控制。最大的特点是单片化,体积小,功耗和成本低,可靠性高。目前约占70%的市场份额。

(2)嵌入式微处理器(EMPU):又称为单板机,由通用计算机中的 CPU 发展而来,它的特征是具有32位以上的处理器,具有较高的性能。通常嵌入式微处理器把 CPU、  ROM、RAM 及 I/O 等模块做到同一个芯片上。

(3)嵌入式 DSP 处理器(DSP):专门用于信号处理方面的处理器,其在系统结构和指令算法方面进行了特殊设计,使其处理速度比最快的 CPU 还快10~50倍,在数字滤     波、FFT、频谱分析等方面获得了大量的应用。

(4)嵌入式片上系统(SOC):追求产品系统最大包容的集成器件,其最大的特点是成功实现了软硬件的无缝结合,直接在微处理器片内嵌入操作系统的代码模块。

3. 典型的微处理器的结构和特点

(1)8位微处理器:以8051为重点,彻底搞清楚8位单片机的工作原理,外设控制、存储分布 、寻址方式以及典型应用。

(2)16位微处理器:典型的微处理器可以参考 MSP430,找一本这方面的书看看关于 MSP430的结构原理以及典型应用。

(3)32位微处理器:32位处理器采用32位的地址和数据总线,其地址空间达到了2 32 =4GB 。目前主流的32位嵌入式处理器系统主要有 ARM 系列、MIPS 系列、PoewrPC系列等。ARM 微处理器体系结构目前被公认为是嵌入式应用领域领先的32位嵌入式 RISC 处理器结构。按照目前的发展形式,ARM 几乎成了嵌入式应用的代名词。

4、单片机系统的基本概念

(1)单片机组成:中央处理器、存储器、I/O 设备。

(2) 存储器:物理实质是一组或多组具备数据输入/输出和数据存储功能的集成电路,用于充当设备缓存或保存固定的程序及数据。

A、ROM(只读存储器):一般用于存放固定的程序或数据表格等,数据在掉电后仍然会保留下来。
B、RAM(随机存储器):用于暂存程序和数据、中间计算结果,或用作堆栈用等,数据在掉电后就会丢失。

(3) I/O 端口:单片机与外界联系的通道,它可以对各类外部信号(开关量、模拟量、频率信号)进行检测、判断、处理,并可控制各类外部设备。现在的单片机 I/O 口已经    集成了更多的特性和功能,对 I/O端口的功能进行了拓展和复用,例如外部中断、ADC 检测以及 PWM 输出等等。

(4)输出电平:高电平电压(输出“1”时)和低电平电压(输出“0”时)

A、TTL 电平:正逻辑,5V 为逻辑正,0V 为逻辑负,例如单片机的输出。
B、RS232电平:负逻辑,-12V 为逻辑正,+12V 为逻辑负,例如 PC 的输出。

注:因此在单片机和 PC 进行通讯的时候需要一个 MAX232芯片进行电平转换。

(5)堆栈:它是一种线性的数据结构,是一个只有一个进出口的一维空间。

A、堆栈特性:后进先出(LIFO)

B、堆栈指针:用于指示栈顶的位置(地址),当发生压栈或者出栈操作时,导致栈顶位置变化时,堆栈指针会随之变化。

C、堆栈操作:压栈操作(PUSH)和出栈操作(POP)。

D、堆栈类型:“向上生长”型堆栈,每次压栈时堆栈指针加1;“向下生长”型堆栈,每次压栈堆栈时指针减1。

E、堆栈应用:调用子程序、响应中断时,堆栈用于保护现场;还可以用作临时数据缓冲区来使用。

F、使用注意:堆栈溢出问题,压栈和出栈的匹配问题。

(6)定时计数器:实质都是计数器。用作定时器时是对单片机内部的时钟脉冲进行计数,而在用作计数器时是对单片机外部的输入脉冲进行计数,其作用如下:

A、计时、定时或延时控制;

B、脉冲技术;

C、测量脉冲宽度或频率(捕获功能)

(7)中断:优先级更高的事件发生,打断优先级低的时间进程。引起中断的事件称为中断源。一个单片机可能支持多个中断源,这些中断源可以分为可屏蔽中断和非可屏蔽中    断,而这些中断源并不都是系统工作所需的,我们可以根据系统需求屏蔽那些不需要的中断源。

A、中断嵌套:当一个低级中断尚未执行完毕,又发生了一个高级优先级的中断,系统转而执行高级中断服务程序,待处理完高级中断后再回过头来执行低级中断服务程序。

B、中断响应时间是指从发出中断请求到进入中断处理所用的时间;中断处理时间是指中断处理开始到中断处理结束的时间。

C、中断响应过程:

a、保护现场:将当前地址、累加器 ACC、状态寄存器保存到堆栈中。
b、切换 PC 指针:根据不同的中断源所产生的中断,切换到相应的入口地址。
c、执行中断服务处理程序。
d、恢复现场:将保存在堆栈中的主程序地址、累加器 ACC、状态寄存器恢复。
e、中断返回:从中断处返回到主程序,继续执行。

D、中断入口地址:单片机为每个中断源分配了不同的中断入口地址,也称为中断向量。

(8)复位:通过外部电路给单片机的复位引进一个复位信号,让系统重新开始运行。

A、复位发生时的动作:
a、PC 指针从起始位置开始执行(大多数单片机都时从0x0000处开始执行)。
b、I/O 端口设置成缺省状态(高阻态、或者输出低电平)。
c、部分专用控制寄存器 SFR 恢复到缺省状态。
d、普通 RAM 不变(如果时上电复位,则是随即数)。

B、两种不同的复位启动方式:

a、冷启动:也叫上电复位,指在断电状态下给系统加电,让系统开始正常运行。
b、热启动:在不断电的状态下,给单片机复位引进一个复位信号,让系统重新开始。

C、两种类型的复位电路:高电平复位和低电平复位。

D 注意事项:

a、 注意复位信号的电平状态及持续时间必须满足系统要求。
b、 注意避免复位信号抖动。

(9)时钟电路:单片机是一种时序电路,必须提供脉冲电路才能正常工作。时钟电路相当于单片机的心脏,它的每一次跳动(振动节拍)都控制着单片机的工作节奏。振荡得慢时,系统工作速度就慢,振荡得快时,系统工作速度就快(功耗也增大)。

A、振荡周期:振荡源的振荡节拍。
B、机器周期:单片机完成一个基本操作需要的振荡周期(节拍)。
C、指令周期:执行一条指令需要几个机器周期。不同的指令需要的机器周期数不同。

5、 ARM 体系结构的基本概念

(1) ARM :Advanced RISC Machine。

(2) ARM 体系结构中支持两种指令集:ARM 指令集和 Thumb 指令集。

(3) ARM 内核有 T 、 D 、 M 、 I 四个功能模块:

A、T 模块:表示16位 Thumb,可以在兼顾性能的同时减少代码尺寸。
B、D 模块:表示 Debug,内核中放置了用于调试的结构,通常为一个边界扫描链 JTAG。
C、M 模块:表示8位乘法器。
D、I 模块:表示 EmbeddedICE Logic,用于实时断点观测及变量观测的逻辑电路部分。

(4) ARM 处理器有7 种运行模式:

A、用户模式(User):正常程序执行模式,用于应用程序。
D、快速中断模式(FIQ):快速中断处理,用于高速数据传输和通道处理。
C、外部中断模式(IRQ):用于通用的中断处理。
D、管理模式(SVE):供操作系统使用的一种保护模式。
E、数据访问中止模式(Abort):用于虚拟存储及存储保护。
F、未定义指令中止模式(Undefined):当未定义指令执行时进入该模式。
G、系统模式(System):用于运行特权级的操作系统任务。

除了用户模式之外的其他6种处理器模式称为 特权模式,在这些模式下,程序可以访问所有的系统资源 ,也可以任意地进行处理器模式切换,其中,除了系统模式外,其他的5种特权模式又称为 异常模式。处理器模式可以通过 软件控制进行切换,也可以通过 外部中断或异常处理过程进行切换。大多数的用户程序运行在用户模式下,这时,应用程序不能访问一些受操作系统保护的系统资源,应用程序也不能直接进行处理器模式切换。当需要进行处理器模式切换时,应用程序可以产生异常处理,在异常处理中进行处理器模式的切换。这种体系结构可以使操作系统控制整个系统的资源。当应用程序发生异常中断时,处理器进入相应的异常模式。在每一种异常模式种都有一组寄存器,供相应的异常处理程序使用,这样就可以保证进入异常模式时,用户模式下的寄存器不被破坏。系统模式并不是通过异常过程进入的,它和用户模式具有完全一样的寄存器,但是系统模式属于特权模式,可以访问所有的系统资源,也可以直接进行处理器模式切换,它主要供操作系统任务使用。

(5) ARM 处理器共有 37 个寄存器: 31 个通用寄存器和6个状态寄存器

A、通用寄存器包括 R0~R15,可以分为3类:

a、未备份寄存器 R0~R7:在所有的处理器模式下,未备份寄存器都是指向同一个物理寄存器。
b、备份寄存器 R8~R14:
对于 R8~R12来说,每个寄存器对于2个不同的物理寄存器,它们每次所访问的物理寄存器都与当前的处理器运行模式有关。对于 R13、R14来说,每个寄存器对于6个不同的物理寄存器,其中一个是用户模式和系统模式共用。R13在 ARM 指令种常用作堆栈指针。由于处理器的每种运行模式都有自己独立的物理寄存器R13,所有在用户应用程序的初始化部分,一般要初始化每种模式下的 R13,使其指向该运行模式的栈空间。R14又称为连接寄存器(LR),在 ARM 体系种具有下面两种特殊作用:在通过 BL 或 BLX 指令调用子程序时,存放当前子程序的返回地址;在 异常中断发生时,存放异常模式将要返回的地址。
c、程序计数器 R15(PC)。
由于 ARM 采用了流水线机制,在三级流水线中,当正确读取了 PC 的值时,该值为当前指令地址值加8个字节。也就是说,PC 指向当前指令的下两条指令的地         址。在 ARM 指令状态下,PC 的0和1位是0 ,在 Thumb 指令状态下,PC 的0位是0。

B、程序状态寄存器

a、ARM 体系结构包含1个当前程序状态寄存器(CPSR)和5个备份的程序状态寄存器(SPSR),使用MSR 和 MRS 指令来设置和读取这些寄存器。
b、当前程序状态寄存器 CPSR:保存当前处理器状态的信息,可以在任何处理器模式下被访问。
c、备份程序状态寄存器 SPSR:每一种异常处理器模式下都有一个专用的物理状态寄存器。当特定的异常中断发生时,这个寄存器用于存放当前程序状态寄存器的内容,在异常中断程序退出时,可以用 SPSR 中保存的值来恢复 CPSR。
d、由于用户模式和系统模式不属于异常模式,它们没有 SPSR,当在这两种模式下访问 SPSR 时,结果是未知的。

(6) ARM 指令的寻址方式

所谓寻址方式就是处理器根据指令中给出的地址信息来寻找物理地址的方式。

A、 立即寻址:操作数本身就在指令中给出,只要取出指令也就取到了操作数。
       ADD R0, R0, #1 ;R0=R0+1
B、 寄存器寻址:利用寄存器中的数值作为操作数。
       ADD R0, R1, R2 ;R0=R1+R2
C、 寄存器间接寻址:以寄存器中的值作为操作数地址,而操作数本身存放在存储器中。
       ADD R0, R1, [R2] ;R0=R1+[R2]
       LDR R0, [R1]    ;R0=[R1]
       STR R0, [R1]    ;[R1]=R0
D、 基址变址寻址:将寄存器(该寄存器一般称作基址寄存器)的内容与指令中给出的地址偏移量相加,从而得到一个操作数的有效地址。
       LDR R0, [R1, #4]    ;R0=[R1+4]
       LDR R0, [R1, #4]!   ;R0=[R1+4] R1=R1+4
       LDR R0, [R1], #4    ;R0=[R1] R1=R1+4
       LDR R0, [R1, R2]!   ;R0=[R1+R2]
E、 多寄存器寻址:一条指令可以完成多个寄存器值的传送。
       LDMIA R0, {R1, R2, R3}   ;R1=[R0] R2=[R0+4] R3=[R0+8]
F、 相对寻址:以程序计数器 PC 的当前值作为基地址,指令中的地址标号作为偏移量,两者相加之后得到操作数的有效地址。

      BL NEXT ;跳转到子程序 NEXT 处执行
        ……
      NEXT
        ……
      MOV PC, LR ;从子程序返回
G、 堆栈寻址:支持4种类型的堆栈工作方式:

a、 满递增堆栈:堆栈指针指向最后压入的数据,且由低地址向高地址生长。
b、 满递减堆栈:堆栈指针指向最后压入的数据,且由高地址向低地址生长。
c、 空递增堆栈:堆栈指针指向下一个将要放入数据的空位置,且由低地址向高地址生长。
d、 空递减堆栈:堆栈指针指向下一个将要放入数据的空位置,且由高地址向低地址生长。

(7) ARM 的存储方法

A、大端模式:数据的高字节存储在低地址中,低字节存储在高地址中。
B、小端模式:数据的低字节存储在低地址中,高字节存储在高地址中。

(8) ARM 中断与异常

A、ARM 内核支持7种中断,不同的中断处于不同的处理模式,具有不同的优先级,而且每个中断都有固定的中断地址入口。当一个中断发生是,相应的 R14(LR)存储中      断返回地址,SPSR 存储当前程序状态寄存器 CPSR 的值。

B、由于 ARM 内核支持流水线工作,LR 寄存器存储的地址可能是发生中断后面指令的地址,所以不同的中断处理完成后,必须将 LR 寄存器值经过处理后再写P15(PC)      寄存器。

C、ARM 异常的具体含义:

a、复位:当处理器的复位电平有效时,产生复位异常,程序跳转到异常复位异常处理程序处执行。
b、未定义的指令:当 ARM 处理器或协处理器遇到不能处理的指令时,产生未定义指令异常。可以使用该异常机制进行软件仿真。
c、软件中断:该异常由执行 SWI 指令产生,可用于用户模式下的程序调用特权操作指令。可使用该异常机制实现操作系统调用功能。
d、指令预取中止:如果处理器预取指令的地址不存在或该地址不允许当前指令访问,存储器向处理器发出中止信号,但当预取的指令被执行时,才会产生指令预取中止异常。
e、数据访问中止:如果处理器数据访问指令的目标地址不存在,或者该地址不允许当前指令访问 ,处理器产生数据访问中止异常。
f、外部中断请求:当 ARM 外部中断请求管脚有效,而且 CPSR 中的 I 位为0时,产生 IRQ 异常 。系统的外设可以通过该异常请求中断服务。
g、快速中断请求:当 ARM 快速中断请求管脚有效,而且 CPSR 的 F 位为0时,产生 FIQ 异常。

D、ARM 处理器对异常中断的响应过程

a、将下一条指令的地址存入相应的连接寄存器 LR 中。
b、将 CPSR 复制到相应的 SPSR 中。
c、根据异常的类型,强制设置 CPSR 的运行模式位。
d、强制 PC 从相关的异常向量地址取下一条指令执行,从而跳转到相应的异常处理程序处。

E、ARM 处理器从异常中断处理程序中返回

a、恢复中断的程序的处理器状态,将 SPSR 复制到 CPSR 中。
b、若在进入异常处理时设置了中断禁止位,要在此清除。
c、将连接寄存器 LR 的值减去相应的偏移量后送到 PC。

F、复位异常中断处理程序不需要返回。在复位异常中断程序开始整个用户程序的执行。

转自: 沉舟侧畔

围观 418

车辆远程诊断仪的主要功能是导航。导航功能的重点是行车路线设计、自动车辆定位、综合信息服务、路径引导服务等。导航功能是GIS技术、通讯技术、嵌入式技术和GPS定位等技术相结合的综合应用系统。系统通过对GPS定位全天候、高精度、实时性强的特点,可实现对车辆准确实时的跟踪,通过应用GLS技术,则可在电子地图上显示车辆的定位信息,明确用户所在的准确位置。文中在介绍了典型的导航系统软硬件构成的基础上,重点探讨了车载导航电子地图设计和实现,对于车载导航的进一步优化具有现实意义。

1 车载导航电子地图的体系结构

1.1 系统硬件设计方案

嵌入式系统作为电子地图的载体时,硬件系统需采用32位的微处理器,工作频率在400 HMz以上,以便能够处理大量的数据和流畅的运行操作系统。硬件系统需能够支持多媒体功能,支持LCD触摸屏输入、具有大容量SD卡的加载功能,所选取的操作系统应具有信息数据库和地图数据库的管理功能。

SH7764作为诊断仪的核心处理器,其最高工作频率为324MHz,可实现583MI/S的处理性能。FPU支持单、双精度运算,可实现 2.3GFLOPS的最高性能。并具有丰富的硬件资源,包括硬件音频解码功能、正玄/余玄操作以及向量元算操作功能。外设执行存储功能包括NAND闪存控制器和存储卡控制器、以太网控制器(10/100BASE—T)、USB接口(全速/高速)、I2C总线接口、带有FIFO的串行通讯接口,显示支持功能是由2D图形引擎、LCD控制器和数字RGB输出功能提供的。

SH7764高速的数据处理性能和丰富的外设功能,使得SH7764处理器可以低廉的成本构成一个高性能的车载诊断处理系统。使用SH7764构成车载远程诊断仪时,电路框图如图1所示。

图1 使用SH7764构成车载远程诊断仪时的电路框图
 

1.2 操作系统

WinCE操作系统是一个功能强、可裁剪、易移植的系统,且具备了系统所必须的用户信息数据库和数字地图数据库的存储及管理功能。

在WinCE操作系统中,虚拟专用网络(Virtual Private Network,VPN)的操作性和适用性较强,其主要是利用公用网络作为用户信息传输的媒体,通过附加的隧道封装、信息加密、用户认证和访问控制等技术实现对信息传输过程的安全保护,从而向用户提供类似专用网络的安全性能。相对而言安全性大幅提升,因此这种基于网络信息安全系统一般会采用复杂的密码身份验证机制,得以保证系统账户的安全。系统采用严格的权限管理,用以确保系统运行的安全性。

(1)网络操作系统层:通过网络和操作系统的管理机制并借助相应的管理软件和防火墙技术,防止病毒和黑客入侵企业的信息管理网络,对重要的数据和传输的数据进行加密处理,防止非法人员登录数据库和应用系统,保障在网络环境下的各项业务顺利进行。

(2)数据库系统层:通过数据库操作系统ORACLE等管理机制和相应的管理软件,实现对登录数据库用户的检验,数据各种操作权限的控制,数据及时备份和历史数据的管理。

(3)系统应用层:主要是系统平台提供的管理功能测试,有功能权限设置、数据权限设置、时间权限设置、应用控制机制和操作日志管理。

1.3 GIS软件设计

GIS软件的设计基础在于数据结构以及数据库结构的定义两方面,其直接决定了系统的稳定性、合理性、功能完整性、可扩充性等方面。GIS软件所具备的查询检索功能、图像功能、分析功能均依次为基础来进行开发的。

1.3.1 电子地图的文件格式与数据组织

在电子地图地理信息系统中,实行属性数据与空间数据的分开储存。其中,空间数据以电子地图的自身格式在文件中进行保存,而属性则以数据链形式在一份表中实现储存。且两者利用一定索引机制便可有效地关联。电子地图以土层为依据进行地理管理。每个图层均由属性数据表结构文件、属性数据文件、交叉索引文件、空间数据文件多个基本文件构成。空间数据包括空间对象的颜色信息、坐标信息、几何类型等,当用户对索引字段加以规定后,索引文件便会在地理信息系统中自动生成。

电子地图通过“Table”的形式来建立属性数据与空间实体间的对应关系,并以此为基础建立起电子地图的查询检索系统。通过定义空间数据结构,对空间实体类型进行确定。数据库关系模型选用一组逻辑严密、结构简单的二维平面表为操作对象,Table中严禁重复存储,从而保障空间内唯一的实体记录。在描述空间实体类型的多种属性时,将其进行多个Table的分解,从而使其形成多重的链表关系,多个Table属性信息同空间实体发生联系,进而构成属性数据同空间实体间多重对应的关系。

1.3.2 电子地图的数据索引机制

电子地图数据索引机制的索引设计过程如下:当从属性信息中进行空间信息的查询时,电子地图首先应在属性文件中找到数据库中的相应数据。此时就可在索引文件中选取相应指针,其所指的地图对象即为同数据库记录空间相对应的对象。从而能够在空间信息中进行属性信息的查询。(如对于某一空间对象已在地图上查出,电子地图便可在空间文件中读出同空间信息相对应的记录号,以此为依据,便可实现该地图对象底性信息在属性数据文件中的查询。)而 MapInfo地理信息数据格式的应用,则可较好地落实上述索引思路,且能够按照土层间的叠加关系进行存放与显示。

1.3.3 电子地图的图层与图元

在MapX中,对于MapInfo表的地图标示均是以图层的形式进行显示的,这些图层中除有地物元素位置外,默认为透明。叠加图层后,便可看到地图的各种方面。图元则包括区域对象、点对象、线对象。在MapX中,通过对Feature对象的利用便可实现对上述地图对象的房问题,可完成创建、自定义、编辑、显示等操作。

1.3.4 应用Geoset,实现地图管理

对于满意的地图,便可进行保存,在驱动器中将其写入Geoset文件当中。将Geoset文件打开,全部地图的设置和土层均为保存时状态。此时,可应用MapX自带工具Geoset Manager可对.gst文件进行管理,来对管理缩放级别、图层、表和其他属性进行修改。

2 电子地图模块的二次开发

基于Active技术的MapX控件为开发人员的二次开发提供了方便。在VC++等可视化开发环境中,将MapX控件嵌入到窗体中即可进行编程、设置属性等操作,完成空间数据查询,地理空间数据的可视化,编码等地图信息系统功能。

2.1 安装MapX mobile

在MapX安装完毕后,添加MapX空间便可对地图进行显示。具体设计步骤为:建立标准exe于编程环境当中,从“工程”菜单中选取“部件”,随即将“部分对话框打开”,于部件列表内,将“MapX mobile V5.02”找到,完成复选后,点击“确定”。随后工具栏中便会将Map空间图标显示出来,此时,单击“控件”,便完成了工程中Map空间的引入。

2.2 地图的基本操作

车载嵌入式车载导航中,主要通过DataSet对象和Layer对象操作来完成MapX地图操作。对同此类型对象的应用,仍可将地图土层添加到应用程序当中。而属性数据操作的完成,则可通过建立数据绑定、数据源设置的方式实现。而电子地图的加载主要通过以下两种设计形式实现。一是在 MapX中加载一个Geoset对象,加载完成后,MapX将各个图层自动打开,在地图窗口中进行叠加,并对图层属性信息进行设置。二是在MapX中加载一个图层,该种方法是对一个MapInfo文件的直接加载,待图层打开后,其将在地图窗口内完成自动的叠加。

2.3 地图的刷新

MapX首先绘制动态图层以外的全部图层,并在某一地方进行存储,当其他图层未变而动态图层发生变化时,便可通过已存储的动态图层和数据来实施覆盖处理,进而现实处理结果。地图的刷新过程设计为依次全部刷新的形式,从最小外界矩形窗口区域开始,来完成整合刷新过程。该方法的优点是相比于整个地图窗口的刷新形式要更加快速。同时,因受地图刷新速度的影响,MapX难以同时完成多目标的刷新,这时iju可进行统一刷新闹钟的设置,从而使每个一定时间间隔,目标地图便会自动刷新一次。

2.4 地图调用

首先,在工程中加入MaoX.cpp和MapX.h文件。在菜单“Project”中选择“Files”命令,随后将对话框打开选取 MaoX.cpp和MapX.h文件加入到MapX系统当中。将MapX对象头文件加入到视图(包含MapX)中。针对MapX进行一个资源ID的创建,通过“新建一名称输入”的操作来完成。进行消息映射函数SIZE和CREATE的创建,在“视图/类导向”中选择视图类,并将两个信息在消息框中完成分别选择,之后通过函数的条件,来对代码进行编辑,导入地图。通过类向导,来进行SETFOCUS映射函数的创建,使得窗口在获得焦点的同时,地图空间也可获取焦点。

2.5 图层的控制

GIS软件中,通常需对图层属性进行设置,而通过对显示图层控制方法的应用便可实现此项功能,借助于MapX中可选择、可显示、自动标注、可编辑的四种属性设置来实现地理信息维护与查询功能的发挥。

2.6 鹰眼图的实现

鹰眼图是基于嵌入式车载导航电子地图的一项基本功能,其实现思路为:进行一个无模式对话框的创建,确立HAWK为ID。建立MapX空间来对鹰眼图进行控制,并创建一新图层于鹰眼图中,以此添加矩形框,对主视图中地图作出表示,且该矩形框的位置和大小不随主视图边界变化而发生变化。添加一个按钮于对话框,依据按钮下的相应函数来操作鹰眼图MapX空间,从而使其对Map空间的操作得以实现,且当按下对话框按钮后,便可对CLICK信息进行发送。依靠此设计程度的鹰眼图可在EVC模拟器上运行,并具备了车载导航电子地图的基本功能。

3 结束语

嵌入式车载导航在车载导航领域中有广泛的应用,随着社会信息化的发展,嵌入式车载导航电子地图的功能必将进一步完善。因此,嵌入式车载导航的应用前景将十分广阔。

来源: 中电网

围观 400

人机交互界面的种类较多,如键盘、数码管显示器、液晶显示器及带触摸的液晶屏等。决定人机交互接口方式的主要因素是成本和实际应用的需要。近十年来,液晶触摸屏以功耗低、重量轻、精度高和良好的人机界面等技术特点, 在电子设备特别是手持类电子产品中得到了普遍应用。带触摸的液晶屏,只要能测量出触摸点的坐标位置,即可根据屏上对应坐标点的显示内容或图符获知触摸者的意图, 通过微处理器处理声音、图像、文字及触摸输入控制等信息,使之成为能进行信息存取、输入和输出的集成系统。基于微控制器与液晶模块的硬件接口设计及软件编程在智能系统设计中有着重要的应用价值。

ARM 微处理器,运算速度快、资源丰富、性价比高,是当前较为流行的嵌入式控制器。

本文介绍的一款基于ARM7微处理器LPC2148 接口的3.2 寸液晶触摸屏,具有精度高、彩色显示逼真、应用灵活等特点,可作为中高档电子产品字符、图像的显示及人机对话的窗口。

1 总体设计方案
  
系统的总体设计方案如图1 所示。液晶触摸屏系统由31 2寸TFT 液晶屏模块、触摸屏和ARM 微处理器控制板组成。
  
触摸屏由触摸传感部件和触摸屏控制器ADS7843 组成,触摸传感部件安装在LCD 液晶屏前面,用于检测用户触摸位置,用户触摸信息送往ADS7843 控制器,并转换成触点坐标,送给ARM7 控制板,LPC2148 微处理器与液晶及触摸模块相连接,根据接收到的触摸信息,进行信号运算和处理,输出蜂鸣器等控制信号,控制液晶屏实现用户画面和数据的显示。
  

基于ARM微处理器的液晶触摸屏的设计
图1 液晶触摸屏系统总体设计方案

2 电路及原理
  
2.1 液晶触摸屏原理及ADS7843 触摸控制电路
  
原理如图2 所示。
  
U1为3.2 英寸TFT液晶模块,+3.3V 供电;内置SSD1289 液晶控制器;液晶屏分辨率为240×320 像素;屏幕颜色26 万色;屏幕尺寸为57mm×79mm, 有效显示面积为51mm×65mm.SSD1289 液晶控制器由16 位并行数据接口、内部控制器和LCD 驱动器组成。液晶数据传输方式为16 位并行方式,LPC2148 的16 根I/ O 口线分别接液晶模块的DB0~DB15.PWM 为亮度驱动控制输入,经9013 三极管放大后作为液晶背光。
  
触摸屏部分由触摸传感部件和触摸屏控制器ADS7843( U2) 组成。
  

基于ARM微处理器的液晶触摸屏的设计
图2 液晶模块及触摸电路原理

  
触摸传感部件是一个四线电阻屏幕,屏上引出四根线,分别对应X 轴和Y 轴各两根。测量X 方向的时候,将X + , X- 之间加上参考电压Vref , Y- 断开,Y + 作为A / D 输入,获得X 方向的电压;同理测量Y 方向的时候,将Y+ , Y- 之间加上参考电压Vref,X - 断开,X + 作为A/ D 输入,进行A/ D转换获得Y 方向的电压,之后再完成电压与坐标的换算,整个过程类似一个电位器,触摸不同的位置分得不同的电压。
  
以上所需要的参考电压、A/ D转换等工作由触摸屏控制器ADS7843 直接完成的,微处理器只需将相应的控制命令传输到ADS7843 即可,以获得相应电压的数据。
  
ADS7843是TI公司生产的四线电阻触摸屏转换接口芯片。它是一款具有同步串行接口的12 位取样模数转换器。在125kHz 吞吐速率和2.7V 电压下,功耗为750LW.在关闭模式下,功耗仅为0.5LW.由于具有低功耗和高速等特性,被广泛应用在电池供电的小型手持设备上。
  
ADS7843 与LPC2148的连结关系如图3 所示。ADS7843工作电压+ 3.3V, 转换器的模拟输入( X+ 、Y+ 、X- 、Y- )是一个4 通道多路器;DCLK(第4 引脚) 是外部时钟输入引脚;CS(第3 引脚) 是片选输入端,低电平有效; DIN(第2引脚) 是串行输入,控制数据通过该引脚输入;DOUT第16 引脚)是串行数据输出,用于输出转换后的触摸位置数据,最大数为二进制的4095; PENIRQ(第15 引脚) 是PEN中断,用于触摸显示屏后引发一个中断。
  
2.2 微处理器控制电路
  
原理如图3 所示。
  
基于ARM微处理器的液晶触摸屏的设计
图3 微处理器控制电路原理图

  
(1)LPC2148微处理器
  
ARM 处理器占有市场份额高,具有性能高、成本低、能耗省等特点。图3 中LPC2148(U3)是PHILIPS 半导体公司推出的一个基于ARM7TDMI- S 核、支持实时仿真和嵌入式跟踪的32 位嵌入式ARM7 微处制器。该处理器内置了宽范围的串行通信接口、14 通道10 位ADC、1 通道10 位DAC、45 个高速GPIO 线以及多达9 个边沿或电平触发的外部中断管脚。处理器集成有40kB 的片内SRAM、512kB 嵌入的高速Flash 存储器,128 位宽度的存储器接口和独特的加速结构使32 位代码能够在最大时钟速率下运行, 为通信网关、协议转换器、软件modem、语音识别、低端成像等应用提供大规模的缓冲区和强大的处理功能,适合于彩色液晶的图片处理和数据存储。
  
(2)复位和晶振电路
  
LPC2148 第57 脚为复位信号输入端,采用低电平复位,由C3、R9、R10、K1 构成的复位电路为系统提供上电复位和强制复位功能,K1 为系统强制复位按键。晶振电路由X1(12MH z) 、C7、C8 构成,支持微控制器芯片内部PLL 及ISP功能;X2(321 768KH z) 、C9、C10 为RTC(实时时钟) 提供基准时钟。
  
(3) 资源分配
  
LPC2148 的P0.8~ P0.23 作为16 位数据线( D0~ D15) ,经JP1 插座与液晶模块的DB0 ~ DB15 连接;P0.0、P0.26、P0.28~ P0.31 作为液晶模块的控制口线使用,经JP1 分别与液晶模块的PWM、CS、RESET 、RS、RD 和WR 连接;P0.27、P1.16~ P1.20 用于触摸屏控制,通过JP1 的连接分别接ADS7843 的BUSY、7843- CS ( CS ) 、DCLK、DIN、INT( PENIRQ) 和DOUT 引脚。
  
P1.26~ P1.31 作为JTAG 功能使用,JP2 为微处理器JTAG 程序调试及下载端口。
  
P0.25 作为蜂鸣器控制口线,蜂鸣器电路用于液晶触摸或显示时发出蜂鸣声响,作为人机对话的辅助功能。蜂鸣器使用PNP 三极管8550(Q2)进行驱动,其放大倍数高(hFE =300),基级偏置电阻R8 为1k, 当输入低电平时,Q1 为深度饱和导通,可为蜂鸣器提供足够的电流。
  
(4) 电源电路
  
LPC2148 为单电源供电,CPU 操作电压为3.0~ 3.6V。
  
电路采用+ 3.3V 供电,外接+ 5V 直流电源经AMS1117(U4) 稳压器稳压后,输出+ 3.3V 电压,给液晶模块和ADS7843 供电。AMS1117 的特点是输出电流大( 800mA) ,输出电压精度在1%以内,具有电流限制和热保护功能,稳定性好。C4、C5、C6 均为电源滤波电容。
  
3 软件编程
  
3.1 对液晶屏的C 程序设计

液晶屏的软件设计采用C 语言编程。包括液晶屏初始化、写液晶控制字、写液晶数据子程序、读液晶液晶数据、全屏显示单色、指定位置显示汉字和字符、指定位置显示图片、清屏等子程序。
  

基于ARM微处理器的液晶触摸屏的设计

写液晶数据子程序为:
  

基于ARM微处理器的液晶触摸屏的设计

  
3.2 对触摸屏的C 程序设计
  
触摸屏的程序设计主要是确定其位置坐标与液晶屏上位置坐标的对应关系,通过一定的算法把触摸屏触摸信息转化为液晶屏上的位置坐标。液晶屏像素为240×320, 从触摸屏接收到的X 值不在0~ 320 范围变化、Y 值也不在0~ 240范围变化, 在触摸屏的边缘区域,X 、Y 方向输出数据变化较大,是非线性关系,坐标值在中间大部分范围内基本是成线性变化的。为了较准确的进行坐标转换,可采用线性求值和查表相结合的方式进行坐标转换。
  
触摸屏的C 程序设计主要包括触摸屏初始化子函数、读A/ D 转换值子函数、坐标原始值子函数和坐标转换子函数。
  
与ADS7843 相关的引脚C 程序预处理为:
  
基于ARM微处理器的液晶触摸屏的设计

  
读A/ D 转换值子函数:
  

基于ARM微处理器的液晶触摸屏的设计

  
4 结束语
  
在嵌入式智能设备中,用液晶触摸屏取代传统的按键、LED 等人机对话部件,具有操作简便、界面友好及功能较强等优点。随着LCD 液晶屏价格的进一步下降,液晶触摸屏有着更宽广的应用市场,基于ARM 微处理器与液晶触摸屏的技术开发具有现实意义和社会经济价值。

本系统以ARM7 处理器LPC2148 作为主控制器,与传统单片机相比,具有较大的数据存储容量和较快的图片处理速度;液晶屏带触摸功能,大大增强了人机对话的交互能力;基于C 语言的编程方法有较强的实时性。所设计的液晶触摸屏应用于ARM 嵌入式创新实训系统和便携式铁路平调装置故障检测仪,触摸键反应灵敏,与ARM7 处理器接口电路运行可靠,验证了系统设计的可行性,具有较高的实际应用价值。

来源: 电子产品世界

围观 372

1.引言

通常微波所指的是分米波、厘米波和毫米波。关于其频率范围,一种说法是:

300MHz ~ 300GHz(1MHz =106Hz,1GHz =109 )相应的自由空间中的波长约为1m~1mm.

微波技术的兴起和蓬勃发展,使得国内大多数高校都开设微波技术课程。但还存在以下问题:测量时,由手工逐点移动探头并记录各点读数,然后手工计算实验结果并绘图。测量项目单一、精度低、测量周期长,操作也较为繁琐。本文主要研究一种实用的基于Labview的速调管微波频率自动测量系统。

2.系统整体结构

系统的整体结构如图2-1所示。由下位机跟上位机构成。微处理器通过驱动电路来控制步进电机,带动谐振式频率计的套筒转动,处理器采样检波电流,传送到上位机LabVIEW界面显示,并利用PC机强大的数据处理功能,分析出电流最小值,计算出所测频率。

基于ARM的微波频率自动测量系统设计

3.系统硬件设计

3.1 微处理器系统电路的设计

本系统选用的微处理器是S3C44B0.2.5VARM7TDMI内核,3.0~3.6V的I/O操作电压范围。可通过PLL锁相环倍频高至66MHz;71个通用I/O口;内嵌有8通道10位ADC,本系统选取了通道1作为晶体检波器电流输入通道。

3.2 复位电路

系统没有采用RC电路作为复位电路,而使用了电压监控芯片SP708SE,提高了系统的可靠性。复位电路的RST 端连接到S3C44B0的复位引脚nRESET,因为S3C44B0的复位信号是低电平有效,所以当系统掉电或复位按键SW_RST被按下时,电源监控芯片RST 引脚立即输出复位信号,使S3C44B0芯片复位。

基于ARM的微波频率自动测量系统设计

3.3 谐振式频率计自动测量电路的设计

3.3.1 定标法测频率原理

为了实现频率的自动化测量,本系统采用步进电机带动频率计的转动,当腔体转到了谐振位置时候,到达检波器的微波功率明显下降,检波电流出现明显的下降,而这个位置对应的频率就是所测频率。步进电机带动下的是非只读式频率计,所以先要用定标的方法,拟合出频率与刻度的对应关系式。定标法:同时配合两种频率计,一种是只读式的,可直接读出频率;另一种是非只读式的,只有刻度,不能直接读出频率。首先手动转动非只读式频率计到一个谐振的位置,记录这时的刻度,然后再转动只读式频率计,到另外一个谐振位置,记录对应的频率。重复这种操作,测出尽量多的频率和刻度对应点,根据测得数据再用最小二乘法拟合出两者的对应关系式。最后改换用步进电机带动非只读式频率计转动,当转动到检波电流出现明显的“吸收谷”时,读得这时的刻度,根据拟合出来的刻度与频率关系式,就可得所测频率。

3.3.2 步进电机及自动控制电路

步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可通过控制脉冲频率来控制电机转动的速度,达到调速的目的。

本系统采用二相步进电机,具有如下一些特点:只需将电机与驱动器接线的A+和A-(或者B+和B-)对调即可实现电机的转动方向;步进角为1.8°的两相四线混合式步进电机,并把细分驱动器的细分数设置为8,电机的运转分辨率为每个脉冲0.225°。为了有效驱动电机,本文采用了基于TA8435H芯片的驱动电路。实际应用电路如下图3-2所示,芯片的输入信号有使能控制、正反转控制和时钟输入。

通过光耦器件TLP521可将驱动芯片跟输入级进行电隔离,起到逻辑电平隔离和保护作用。

M1,M2分别接高电平,所以为1/8细分方式。

由于REF IN引脚接高电平,因此VNF为0.8V.

输出级斩波电流为VNF/RNF=0.8/0.8=1A,因此R212、R213要选用功率大一些的电阻。选用不同的二相步进电机时,应根据其电流大小选择合适的R212和R213.R21和C5组成复位电路,D1~D4快恢复二极管可用来泄放绕组电流。

基于ARM的微波频率自动测量系统设计

电路中用到微处理器S3C44B0引脚PC0,PC1,PC2给驱动电路分别输出使能,正反转,时钟信号,通过控制输出脉冲的间隔可以控制电机转动的速率,而输出脉冲个数可控制步进电机走动的步数,达到控制频率计腔体位置目的。电路输出端口A, A, B, B接二相步进电机对应输入端子。

3.3.3 检波电流I/V转换及放大电路

检波晶体的作用是将微波微弱信号转换成直流信号。故可观察检波电流是否出现“吸收波谷”来判断腔体是否到达谐振位置。本系统将检波电流经过处理之后传送到上位机的LabVIEW界面显示,观察是否到谐振位置。

基于ARM的微波频率自动测量系统设计

由于微波信号在传输过程中受到外部干扰的噪声,线路的噪声,元器件的噪声等等,因此需要滤波电路来滤除这些干扰信号。由于处理器对信号的采集速率比较低,所以本系统采用了时间常数比较大的由R418和C409构成的低通滤波器。其截止频率为f p =30Hz有利于滤除电路中的尖峰噪声。电路采用两级运放,第一级为I/V转换,第二级为电压反相放大。调节可变衰减器,电机走完全程,观察到检波电流最大值为50.9μ A,因此电路中RF4=1K,R416=1K,RF5=45K,由Vout1=-RF4*I知,经过第一级I/V转换之后最大电压为50.9mV,再经过放大,最终输出电压最大为2.291V,满足S3C44B0的A/D转换输入要求。

4.软件设计

4.1 下位机软件

系统开机复位后,进入while(1)死循环,时刻检测上位机是否发来测量频率的命令,当接受到测量频率命令后,调用测频率模块子程序。频率测量子程序中,电机走完全程需要1854步,每一步带动谐振腔走0.005mm,每一步耗时44.44ms,电机每走动一步,把100次检波电流的A/D转换数据求平均值后再通过串口发送到上位机显示。

4.2 上位机软件设计

在虚拟仪器开发平台LabVIEW中,可以利用基于VISA的仪器驱动模板中的I/O接口函数来方便快速地开发驱动程序。本系统中通过PC机和主控芯片S3C44BO的RS232串行通信实现数据采集的驱动程序正是使用这种方法。

如图3-5频率测量的labview程序图。首先用最大值与最小值函数求出采集到的电流数据的最小值,并求出其对应的索引值,即步进电机在哪一步采集到的电流值,从而把这个索引值反馈回频率数组,求出其对应的元素,则为所测频率。

基于ARM的微波频率自动测量系统设计

5.信号源输出频率测量实验结果及分析

为了在上位机的LabVIEW界面得到所测量的微波信号频率,需在界面中显示出检波电流–频率曲线,从而可明显读出检波电流的“吸收波谷点”.需通过定标法先手工测量频率–距离(当前测量点与起始点的距离,可由套筒刻度算出)的一组尽可能多的数据点,然后利用步进电机每走一步的距离,就可以把距离转化为步数,再用matlab拟合出频率–步数的关系函数。从而可知道步进电机走到哪一步对应哪一个频率。电机走完全程需要1854步,那么把步数对应的1854个频率值组成一个数组作为曲线的横坐标,并把采集到的1854个电流值作为纵坐标。

限于本信号源频率及谐振式频率计测量范围的影响,本系统只能在8.48GHz和9.9GHz范围内测量。因此从套筒的起始位置9.9mm(对应于频率8 . 4 8 G H z ),截止位置0 . 6 3 m m (对应于频率9.9GHz),其全长为9.9mm-0.63mm=9.27mm.由于电机带动套筒每步的距离非常小,因此不能直接测量步进电机一步的距离,利用步进电机没有累计误差的特点,采用步进电机走动180步,测出套筒刻度前后位置差,得出步进电机带动套筒每一步移动平均距离为0.005mm.手工测出频率与刻度的42组数据点,利用MATLAB拟合出图5-1所示曲线。用MATLAB拟合出频率f 与刻度L 线性关系函数为f = ?0.1456* L + 9.9917(0.63mm ≤ L ≤ 9.9mm)。由于电机每步带动套筒移动0.005mm,起始位置在0.63mm,即步进电机走一步后,套筒的位置在0.63mm+0.005mm=0.635mm,而步进电机走完全程需要1854步,套筒的截止位置在0.63+0.005*1854=9.9mm.则刻度L 与步数n 的关系函数为L = 0.005n + 0.63(0 ≤ n ≤1854)。

可推导出频率f 与步数n的函数关系式为f = ?0.000728n + 9.9(0 ≤ n ≤1854)。把步数对应的1854个频率值组成一个数组作为曲线的横坐标,并把采集到的1854个电流值作为纵坐标,利用PC机在LabVIEW描绘的波形图如图5-2所示。

基于ARM的微波频率自动测量系统设计

再由LabVIEW自动计算检波电流最小值对应的频率值,如图5-4所示。可知这时信号源输出频率为9.337GHz.

基于ARM的微波频率自动测量系统设计

与手工测量做对比。换上可直接测出频率的谐振式频率计,测得这时的频率为9.357GHz,所以自动测量与手动测量的相对误差为:

基于ARM的微波频率自动测量系统设计

本系统设定步进电机走完全程需要82.4秒,不能设得走太快的原因是防止步进电机“丢步”(漏掉了脉冲没有运动到指定的位置)。另外太快很可能检测不到检波电流的“波谷点”.而手工测量一次信号源的输出频率,通常要两分多钟,可见本系统自动测量的实用性。

转自: news.qegoo.cn

围观 554

我们大多数人都知道PWM DAC(数模转换器)。它们很容易实现,也很便宜,非常适合一些低性能的应用。

实现它们的方法是滤除PWM信号中的高频分量,只留下正比于占空比的低频或直流分量。但是低通滤波器并不能完全滤除PWM频率,因此低频/直流信号中通常都会有一定程度的纹波。

减少PWM DAC纹波的方法一般有两种。一种是降低低通滤波器的截止频率,另一种是提高PWM信号的频率。然而不可避免的是,更低的截止频率会延长上升时间;如果是在给定时钟频率点通过减小计数器尺寸实现的,那么更快的PWM频率会降低分辨率。

下面要讨论的设计实例非常有趣,着重介绍了另外一种降低PWM DAC纹波的方法。

事实上,我们可以使用相位差为180°的两个PWM信号来降低上述纹波。从直觉上,当两个相同频率的正弦波的相位相差180°时,它们会相互抵消,因此我们使用相位差为180°的两个PWM信号也能将彼此的谐波分量抵消干净,是这样吗?确实是这样,但并不是PWM信号的所有谐波分量都能抵消,有些分量可以抵消,有些却抵消不了。这与傅里叶级数有关,比较复杂,这里就不罗列一大堆数学公式来进行解释了。

两个PWM信号之间180°的相位差是如何实现的呢?我使用了TI的MSP320FR5969 LaunchPad,这种方法很常用。为了实现相位移动,需要两个定时器。其中一个定时器必须包含两个比较-捕获-PWM(CCP)模块,另一个只需要一个CCP模块。

在包含两个CCP模块的定时器中,可以用一个CCP模块来设置该定时器的PWM频率和占空比,另一个CCP模块产生中断,用于启动另一个定时器,两者的延时等于PWM周期的一半。另一个定时器中的CCP模块用于设置相同的PWM频率和占空比。你还必须对这个延时进行“微调”,因为软件会在PWM信号之间增加额外的时间。举例来说,在我的代码的102行,我将比较寄存器的值从(timer_period+1)/2改为了(timer_period+1)/2-27。

我做了一些小调查,想看看其它微控制器是否具有相同的硬件和能力来实现我所用的方法:许多Atmel微控制器都有1个以上的定时器,每种控制器通常都有两个CCP(比如ATmega 328),因此实现这种方法应该是可能的。另外一个常见的例子是STM32F051R8(这是一些流行的ST电路板使用的微控制器),它有11个定时器,其中许多定时器都有1个以上的CCP。TI基于ARM的微控制器通常有独立的PWM和定时器模块(如TM4C123GH6PM),因此应该更容易实现相移。使用其中一个定时器,两个PWM模块就可以以一半PWM周期的延时开启。

如何使微处理器的PWM频率和分辨率翻倍
图1:单路和双路PWM电路。

在相移DAC的Vout端,两个PWM信号被累加在一起,结果有些谐波分量彼此抵消,最终实现了降低纹波的效果。

我们看看使用三种不同电阻值时的情况。每个PWM信号都是占空比为25%、频率为100kHz。

如何使微处理器的PWM频率和分辨率翻倍
图2:上面的波形是传统PWM,下面的波形是双路相移PWM。从左到右每格的电压递减100mV、50mV、4mV。

从图中的结果可以看出:首先,峰-峰纹波降低了;其次,传统PWM DAC的纹波基频等于 PWM信号的频率(100kHz)。相移PWM DAC的纹波基频等于PWM信号的二次谐波(200kHz),这意味着我们用相移DAC成功地删除了PWM信号的一次谐波。

这种方法的一个优点是不用增加上升时间也能降低纹波(或者相同的纹波只需一半的上升时间)。

另外一个潜在优点是,将两个PWM设置为相隔一个计数值可以获得中间值,进而实现DAC有效分辨率的翻倍。虽然这会导致少许的不对称并增加纹波,但是影响很小可以忽略不计。

来源: 中国电子技术网

围观 411

选择适合某个产品使用的微处理器是一项艰巨的任务。不仅要考虑许多技术因素,而且要考虑可能影响到项目成败的成本和交货时间等商业问题。
  
在项目刚启动时,人们经常压抑不住马上动手的欲望,在系统细节出台之前就准备微控制器选型了。这当然不是个好主意。

在微控制器方面做任何决策时,硬件和软件工程师首先应设计出系统的高层结构、框图和流程图,只有到那时才有足够的信息开始对微控制器选型进行合理的决策。此时遵循以下10个简单步骤可确保做出正确的选择。
  
步骤1:制作一份要求的硬件接口清单

利用大致的硬件框图制作出一份微控制器需要支持的所有外部接口清单。有两种常见的接口类型需要列出来。第一种是通信接口。
 
系统中一般会使用到USB、I2C、SPI、UART等外设。如果应用要求USB或某种形式的以太网,还需要做一个专门的备注。这些接口对微控制器需要支持多大的程序空间有很大的影响。

第二种接口是数字输入和输出、模拟到数字输入、PWM等。这两种类型接口将决定微控制器需要提供的引脚数量。图1显示了常见的框图例子,并列出了对I/O的要求。

步骤2:检查软件架构

软件架构和要求将显著影响微控制器的选择。处理负担是轻是重将决定是使用80MHz的DSP还是8MHz的8051。就像硬件一样,记录下所有要求非常重要。

例如,是否有算法要求浮点运算?有高频控制环路或传感器吗?并估计每个任务需要运行的时间和频度。然后推算出需要多少数量级的处理能力。运算能力的大小是确定微控制器架构和频率的最关键要求之一。

步骤3:选择架构

利用步骤1和步骤2得到的信息,一个工程师应该能够开始确定所需的架构想法。8位架构可以支撑这个应用吗?需要用16位的架构吗?或者要求32位的ARM内核?在应用和要求的软件算法之间经常推敲这些问题将最终得出一个解决方案。

不要忘了还有未来的可能要求和功能扩展。只是因为目前8位微控制器可以胜任当前应用并不意味着你不应为未来功能扩展甚至易用性考虑16位微控制器。

记住,微控制器选型是一个反复的过程。你可能在这个步骤中选择了一个16位的器件,但在后面的步骤中发现32位ARM器件会更好。这个步骤只是让工程师有一个正确的考虑方向。

步骤4:确定内存需求

闪存(flash)和RAM是任何微控制器的两个非常关键的组件。确保程序空间或变量空间的充足无疑具有最高优先级。选择一个远多于足够容量的闪存和RAM通常是很容易做到的。
  
不要等到设计末尾时才发现你需要110%的空间或者有些功能需要削减,这可不是闹着玩的。实际上,你可以在开始时选择一个具有较大空间的器件,后面再转到同一芯片系统中空间更小些的器件。

借助软件架构和应用中包含的通信外设,工程师可以估计出该应用需要多大的闪存和RAM空间。不要忘了预留足够空间给扩展功能和新的版本!这将解决未来可能遇到的许多头疼问题。
 
步骤5:开始寻找微控制器
 
既然对微控制器所需功能有了更好的想法,现在就可以开始寻找合适的微控制器了!像艾睿、安富利、富昌电子等微控制器供应商是寻找微控制器的一个很好的起点场所。

与这些供应商的现场应用工程师讨论你的应用和要求,通常他们会向你推荐一款技术领先又能满足要求的新器件。不过要记住,他们可能有推销某个系列微控制器的冲动!

第二个最佳场所是你已经熟悉的芯片供应商。例如,如果你过去用过Microchip的器件,并有丰富的使用经验,那就开启他们的网站吧。

大多数芯片供应商都有一个搜索引擎,允许输入你的外设组合、I/O和功耗要求,搜索引擎会逐渐缩小器件范围,最终找出匹配要求的器件清单来。工程师随即可以在这个清单中仔细选择出最合适的一款微控制器。 

步骤6:检查价格和功耗约束
 
到这时,选型过程应该得出许多潜在的候选器件了。这时应认真检查它们的功耗要求和价格。如果器件需要从电池和移动设备供电,那么确保器件低功耗绝对是优先考虑的因素。

如果不能满足功耗要求,那就按清单逐一向下排查,直到你选出一些合适的来。同时不要忘了检查处理器的单价。虽然许多器件在大批量采购时会接近1美元,但如果它是极其专用或高端的处理机,那么价格可能很重要。千万不要忘了这一关键要素。

步骤7:检查器件的可用性  

至此你手头就有了一份潜在器件清单,接下来需要开始检查各个器件的可用程度如何。一些重要事项需要记住,比如器件的交货期是多少?是否在多个分销商那里都有备货,或者需要6至12周的交货时间?你对可用性有什么要求?你不希望拿到一份大定单却必须干等3个月才能拿到货吧。
 
接下来的问题是器件有多新,是否能够满足你的产品生命周期需要。如果你的产品生命周期是10年,那么你需要找到一种制造商保证在10年后仍在生产的器件。

步骤8:选择开发套件

选择一种新的微控制器的一个重要步骤是找到一款配套的开发套件,并学习控制器的内部工作原理。一旦工程师热衷于某种器件,他们应寻找有什么可用的开发套件。

如果找不到能用的开发套件,那么这种器件很可能不是一个好选择,工程师应该重新退回去寻找一款更好的器件。目前大多数开发套件不到100美元。支付比这个价格高的费用(除非这种套件能适应多种处理器模块)实在有些冤枉。换一种器件也许是更好的选择。

步骤9:调查编译器和工具

开发套件的选择基本上限制死了微控制器的选型。最后一个需要考虑的因素是检查可用的编译器和工具。大多数微控制器在编译器、例程代码和调试工具方面有许多选择。

重要的是确保所有必要的工具都可用于这种器件。如果没有得心应手的工具,开发过程将变得异常艰苦且代价高昂。 

步骤10:开始试验

即使选定了微控制器,事情也不是说一成不变了。通常拿到开发套件的时间远早于第一个硬件原型建立的时间。要充分利用开发套件搭建测试电路、并将它们连接到微控制器。
  

选择高风险的器件,设法让它们与开发套件一起工作。随后你可能会发现,你认为能很好工作的器件存在一些不可预见的问题,然后被迫选择另外一种微控制器。

在任何情况下,早期的试验将确保你做出正确的选择,如果有必要做出改变,影响将降至最小!

来源:网络

围观 646

中央处理器是一块超大规模的集成电路,是一台计算机的运算核心和控制核心,它的功能主要是解释计算机指令以及处理计算机软件中的数据。主要包括运算器和高速缓冲存储器及实现它们之间联系的数据、控制及状态的总线。它与内部存储器和输入/输出设备合称为电子计算机三大核心部件。

目前,嵌入式处理器的高端产品有:Advanced RISC Machines公司的ARM、Silicon Graphics公司的MIPS、IBM和Motorola的Power PC 、Intel的X86和i960芯片、AMD的Am386EM、Hitachi的SH RISC芯片;掌上电脑的处理器有六类处理器,分别是:英特尔的PXA系列处理器、MIPS处理器、StrongARM系列处理器、日立SH3处理器、摩托罗拉龙珠系列处理器和德州仪器OMAP系列处理器。

微处理器和微控制器区别所在

微处理器和微控制器的区别,这样的区别主要集中在硬件结构、应用领域和指令集特征三个方面:

其一,硬件结构。微处理器是一个单芯片CPU,而微控制器则在一块集成电路芯片中集成了CPU和其他电路,构成了一个完整的微型计算机系统。除了CPU,微控制器还包括RAM、ROM、一个串行接口、一个并行接口,计时器和中断调度电路。虽然片上RAM的容量比普通微型计算机系统还要小,但是这并未限制微控制器的使用。在后面可以了解到,微控制器的应用范围非常广泛。其中,微控制器的一个重要的特征是内建的中断系统。作为面向控制的设备,微控制器经常要实时响应外界的激励。

其二,应用领域。微处理器通常作为微型计算机系统中的CPU使用,其设计正是针对这样的应用,这也是微处理器的优势所在。然而,微控制器通常用于面向控制的应用,系统设计追求小型化,尽可能减少元器件数量。在过去,这些应用通常需要用数十个甚至数百个数字集成电路来实现。使用微控制器可以减少元器件的使用数量,只需一个微控制器、少量的外部元件和存储在ROM中的控制程序就能够实现同样的功能。微控制器适用于那些以极少的元件实现对输入/输出设备进行控制的场合,而微处理器适用于计算机系统中进行信息处理。

其三,指令集特征。由于应用场合不同,微控制器和微处理器的指令集也有所不同。微处理器的指令集增强了处理功能,使其拥有强大的寻址模式和适于操作大规模数据的指令。微处理器的指令可以对半字节、字节、字,甚至双字进行操作。通过使用地址指针和地址偏移,微处理器提供了可以访问大批数据的寻址模式。自增和自减模式使得以字节、字或双字为单位访问数据变得非常容易。另外,微处理器还具有其他的特点,如用户程序中无法使用特权指 令等。

微控制器的指令集适用于输入/输出控制。许多输入/输出的接口是单/位的。例如,电磁铁控制着马达的开关,而电磁铁由一个1位的输出端口控制。微控制器具有设置和清除单位的指令,也能执行其他面向位的操作,如对“位”进行逻辑与、或和异或的运算,根据标志位跳转等。很少有微处理器具备这些强大的位操作能力,因为设计者在设计微处理器时,仅考虑以字节或更大的单位来操作数据。

DSP芯片分类以及特点

数字信号处理器里的CPU是专门设计用来极快地进行离散时间信号处理计算的,比如那些需要进行音频和视频通信的场合。特别适合于进行数字信号处理运算的微处理器,其主要应用是实时快速地实现各种数字信号处理算法。根据数字信号处理的要求,DSP芯片一般具有如下主要特点:

(1)在一个指令周期内可完成一次乘法和一次加法;
(2)程序和数据空间分开,可以同时访问指令和数据;
(3)片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问;
(4)具有低开销或无开销循环及跳转的硬件支持;
(5)快速的中断处理和硬件I/O支持;
(6)具有在单周期内操作的多个硬件地址产生器;
(7)可以并行执行多个操作;
(8)支持流水线操作,使取指、译码和执行等操作可以重叠执行。

当然,与通用微处理器相比,DSP芯片的其他通用功能相对较弱些,DSP芯片的内部采用程序和数据分开的哈佛结构,具有专门的硬件乘法器,广泛采用流水线操作,提供特殊的DSP指令,可以用来快速的实现各种数字信号处理算法。DSP芯片可以按照下列三种方式进行分类。

1.按基础特性分

这是根据DSP芯片的工作时钟和指令类型来分类的。如果在某时钟频率范围内的任何时钟频率上,DSP芯片都能正常工作,除计算速度有变化外,没有性能的下降,这类DSP芯片一般称为静态DSP芯片。如果有两种或两种以上的DSP芯片,它们的指令集和相应的机器代码机管脚结构相互兼容,则这类DSP芯片称为一致性DSP芯片。例如,美国TI公司的TMS320C54X就属于这一类。

2.按数据格式分

这是根据DSP芯片工作的数据格式来分类的。数据以定点格式工作的DSP 芯片称为定点DSP芯片,如TI公司的TMS320C1X/C2X、TMS320C2XX/C5X、TMS320C54X/C62XX系列,ADI公司的 ADSP21XX系列,AT&T公司的DSP16/16A,Motolora公司的MC56000等。以浮点格式工作的称为浮点DSP芯片,如 TI公司的TMS320C3X/C4X/C8X,ADI公司的ADSP21XXX系列,AT&T公司的DSP32/32C,Motolora公司的 MC96002等。

不同浮点DSP芯片所采用的浮点格式不完全一样,有的DSP芯片采用自定义的浮点格式,如TMS320C3X,而有的DSP芯片则采用IEEE的标准浮点格式,如Motorola公司的MC96002、FUJITSU公司的 MB86232和ZORAN公司的ZR35325等。

3.按用途分

按照DSP的用途来分,可分为通用型DSP芯片和专用型DSP芯片。通用型DSP芯片适合普通的DSP应用,如TI公司的一系列DSP芯片属于通用型DSP芯片。专用DSP芯片是为特定的DSP运算而设计的,更适合特殊的运算,如数字滤波、卷积和FFT,如Motorola公司的DSP56200,Zoran公司的ZR34881,Inmos公司的IMSA100等就属于专用型DSP芯片。

来源:电子发烧友

围观 378

页面

订阅 RSS - 微处理器