电子元器件

文章概述  

本文探讨了电子元器件的货架寿命问题,重点讨论了氧化、湿度敏感等级(MSL)与货架寿命之间的关系。文章通过具体例子说明了氧化对电子元器件可焊表面的影响,以及如何通过适当的存储条件延长货架寿命。文章还介绍了不同生产厂家对货架寿命的策略和说明,详细解释了湿度敏感等级(MSL)的概念,以及如何通过烘烤恢复“受潮”的元器件。

作为DigiKey技术支持人员,我们经常收到客户关于产品“氧化”、“焊接之后鼓包”之类的售后问题,同时我们的销售也会收到客户关于产品必须在“几年之内”的要求,这些问题都与货架寿命(Shelf Life)相关。
对于电子元器件,不同的产品,不同的生产厂家,不同的储存条件,可能会有不同的货架寿命。所以今天就给大家讲讲氧化,湿度敏感等级MSL与货架寿命之间的关系,以及列举一些生产厂家货架寿命的策略,当然这些策略解释权在生产厂家,并且随着时间的推移会有变动。请以生产厂家给出的最新的货架寿命为准。

1. 氧化与货架寿命

我们先来看一个具体的例子:

如下图,暴露在环境中使右边的两个喇叭嘴氧化变色。右边的两个喇叭嘴严重氧化,而左边的一个虽然使用过但仍保持良好状态。

1.png

图1:暴露在环境中使右边的两个喇叭嘴氧化变色

对于有暴露在空气中的金属的电子元器件,空气中的某些物质可能对金属产生了腐蚀,一直作用于我们的电子元器件上面。特别是那些将焊接到印刷电路板(PCB)上的元器件表面。电子元器件的货架寿命主要由这些可焊表面的状况决定。这与制造直接相关。虽然您的元器件在电气和机械上可能稳定数十年,但氧化表面会降低制造良率,因为旧的氧化表面不容易接受焊锡。

  • 如何处理氧化问题?

大多数焊锡和焊锡膏含有一种有机助焊剂,它可以去除氧化层。这增加了焊锡的“润湿”性,使组件和PCB之间形成可靠的电气和机械连接。助焊剂的去氧化能力有限。

因此,严重氧化或变色的元器件应避免使用。这种情况在电气方面可能是完美的,但在制造方面却很麻烦。

为了避免,这些不必要的麻烦,于是就有了货架寿命(Shelf Life)的概念。未焊接的元器件在制造商推荐的货架寿命期限过后不会立即失效。您可以进行可焊性测试以验证产品是否继续可用。

  • 如何延长货架寿命?

通过适当的存储可以延长元器件可焊表面的完整性。一个典型的存储规范可能如下:

1、50至90华氏度或10至32摄氏度

2、25%至50%的相对湿度

3、不直接暴露在阳光或其他紫外线下

4、不暴露在空气中的腐蚀性元素(如臭氧或硫化物)下

5、不暴露在放射性物质中

不同电子元器件产品,用的材料不同,会影响他的货架寿命。不同的储存条件,也会影响他的货架寿命。所以,我们必须参考制造商给出的储存规范,以确定电子元器件货架寿命信息,从而保证电子元器件的可靠性。

技术小贴士:

从材料稳定性角度来看,电阻器并不简单。特别是当我们考虑高温和热循环相关的物理应力时。同时,电阻器必须在长期使用中保持其化学和电气完整性。

2.jpg

2. 不同厂家的货架寿命

对于电子元器件,虽然有行业标准,但是并不代表所有产品一定是符合这个行业标准。有些生产厂家会申明他们的产品符合Jedec标准 J-STD-033B,比如ADI。有的厂家会给出自己的存储条件和要求,以及相应的货架寿命。解释权在生产厂家,建议参考生产厂家的申明来确定货架寿命。

Jedec标准:

对于某些电子元器件,在处理、包装、运输和使用时,对于潮湿/焊接敏感的电子元器件,给出了相应的行业标准。

其中针对防潮袋包装,Jedec给出了货架寿命的参考标准:防潮袋包装的SMD封装在非冷凝的大气环境中(<40°C/90% RH)存储时,其计算的货架寿命应自袋子密封日期起至少为12个月。

3.png

我们再举几个其他例子,来看看一些厂家对于货架寿命的说明。

  • TE

TE根据不同的产品类型给出了对应的货架寿命:

4.png

当然,要确保达到TE给出货架寿命,对于存储条件是有要求的。

TE存储条件要求:当在原始未开封包装中适当存储,避开直射阳光并在不超过23°C的正常室温下存放时,除非另有说明。短期温度和湿度的波动(不超过35°C和75%相对湿度)不会影响产品性能。根据AS23053标准,存储温度应为18 - 35°C。

5.png

  • Murata

Murata针对切割过的晶圆产品(Sawn Wafers)和未切割过的晶圆产品(Unsawn Wafers)给出了货架寿命的说明

6.png

7.png

对于切割过的晶圆产品(Sawn Wafers)宽带包装,当存储在18°C to 35°C & 35%<RH<60%环境下或者干燥氮气环境下,货架寿命可以达到5年。

  • 3M

3M也是根据不同的产品类型给出了对应的货架寿命

8.png

9.png

当然,要确保达到3M给出货架寿命,对于存储条件是有要求的。

3M存储寿命从产品制造时开始计算。制造日期可以在每个瓶子/袋子的侧面找到。以下图表定义了3M商业解决方案部化学产品的贮存寿命。这些寿命取决于产品的存储温度应在40°F(5°C)以上和100°F(37°C)以下,或按照包装上的说明,并且应保存在封闭容器中,如喷雾瓶或翻盖瓶。

3. 湿度敏感等级MSL与货架寿命

正如前一部分所暗示的那样,湿度推动腐蚀。然而,许多零件是吸湿性的,会很容易吸收水分。这种内部湿气可能导致破坏性的爆米花缺陷(Popcorning ),这个名字源于元器件发出的爆裂声。

这里,困在元器件内部的水分在焊接过程中迅速转化为蒸汽。结果是破坏了元器件的机械完整性,导致电气功能丧失或受损。这种损坏可能是立即的,也可能是延迟的,因为受损元器件很快遭受环境的影响,从而劣化。

电子元器件也会吸收环境中的水分,如同爆米花一样。当这些元器件通过回流焊机时就可能出现问题,因为焊接过程中产生的强热会导致被吸收的水分出现快速释放和膨胀鼓包现象。

10.png

图2:电子元器件焊接鼓包(Bulging)

  • MSL(湿度敏感等级)说明

湿度敏感等级(在电子行业中简称为“MSL”)定义了对于焊接制程,一个元器件可以暴露在不高于86华氏度(30摄氏度℃),60-85%相对湿度的环境中的最长安全时间。该范围从MSL 1开始,称为“无限制”或不受影响,而每个增量级别则表示一个持续时间阈值。

11.png

图3:源自 JEDEC J-STD-033B.1 的湿度分类表

大部分容易受湿气影响的元器件都是半导体类的,例如IC、传感器和LED。不过同时,一些意料之外的物料也会有湿度敏感特性,例如尼龙连接器。

KYOCERA AVX尼龙连接器009276002021106。如有疑问,请参阅物料参数或厂商规格书。

12.png

KYOCERA AVX尼龙连接器009276002021106

为解决此问题,电子业界推出了JEDEC标准J-STD-033B,即,制定了有关处理、包装、运输和使用具有湿度敏感性物料的标准。受MSL影响的物料需采用防潮袋包装,并附有湿度卡 和适当的MSL标签。湿度卡用于表示物料的暴露情况,可充当视觉指导。干燥剂包有助于去除密封袋中的多余水分。

13.png

干燥剂 # 1/2PLDES550 、防潮袋 # 7001020 、湿度卡 # 51015HIC125 、 MSL 标签 # 113LABEL

电子元器件应保持在保护包装中,直到准备使用时再打开。一旦拆开,应立即焊接,最好当天焊接。如果长时间未保护,湿度敏感元器件可能会变得无法焊接,甚至在一个长周末后。请根据计划安排您的生产周期。

  • 通过烘烤恢复“受潮”元器件

湿度敏感元器件必须用密封的防水包装保护。如果物料吸收过多的水分并超出了其 MSL等级,需要怎样操作?

许多湿度敏感元器件可以通过烘烤过程恢复。这个过程使用热量驱除元器件中的水分。

湿度指示卡可通过明显的颜色变化(由蓝色变为粉色)来指示湿度过大情况。打开包装袋时,可借助这张卡片来检验袋内是否适度干燥。如果颜色发生变化,可能需要在焊接制程之前先行烘烤,以去除塑料封装中的任何水分。烘烤条件取决于封装厚度、MSL和烘烤温度。

14.png

15.png

图5:封装厚度、MSL和烘烤温度

电子元器件在烘箱中停留的时长取决于元器件本身的厚度、MSL和烘烤温度。将物料烘烤数天的情况也并不少见。

JEDEC J-STD-033B文件中提供了深入的烘烤指南和程序,请点击此处链接:https://www.digikey.cn/zh/pdf/s/scs/scs-jedec-jstd033b-standards  查看。

  • DigiKey网站上的MSL信息

在DigiKey 网站的环境与出口分类栏下可以找到MSL信息。这些信息是由我们的供应商提供给 DigiKey 的。

举例:尼龙连接器009276002021106

16.png

图6:DigiKey网上的MSL信息

我们可以在网站上看到009276002021106 的MSL等级为 3 (168小时)

技术小贴士:如果 MSL 物料的等级为 1 ,那是否意味着防水?

不。你可以借助MSL来识别元器件对实验室或仓库中的湿度的敏感度;而防水或IP级产品则适用于户外等更加暴露的环境。

烘烤过程是一种平衡行为。高温加速了腐蚀过程,如前一部分所述。这对需要长时间烘烤的大型零件尤其成问题。反复烘烤可能使元器件无法使用。

总结 

制造是一个复杂的过程。电子元器件的货架寿命是您流程中的众多考虑因素之一。与农产品不同,电子元器件没有明确的到期日期。长寿命是一个重要的设计考虑因素。虽然生产厂家可能会规定一个具体的货架寿命,但我们可以期望该电子元器件在安装后,运行十年或更长时间。对于货架寿命问题要保持警觉,并务必参考设备数据手册。通过在受控环境中存储所有元器件来保护您的投资。避免将打开的卷轴存放在潮湿仓库的地板上。

小编的话

了解电子元器件的货架寿命对于确保产品质量、优化供应链管理、提高产品可靠性、降低成本、建立客户信任和遵循法规标准等方面都具有重要作用。正如文章所提醒的,我们要对货架寿命问题保持警觉,参考数据手册,通过适当的存储条件来保护投资。

来源:DigiKey电子技术台

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 22

作者:王 伟

电子元器件在使用过程中,常常会出现失效和故障,从而影响设备的正常工作。文章分析了常见元器件的失效原因和常见故障。

电子设备中绝大部分故障最终都是由于电子元器件故障引起的。如果熟悉了元器件的故障类型,有时通过直觉就可迅速的找出故障元件,有时只要通过简单的电阻、电压测量即可找出故障。

1电阻器类

电阻器类元件包括电阻元件和可变电阻元件,固定电阻通常称为电阻,可变电阻通常称为电位器。电阻器类元件在电子设备中使用的数量很大,并且是一种消耗功率的元件,由电阻器失效导致电子设备故障的比率比较高,据统计约占15% 。电阻器的失效模式和原因与产品的结构、工艺特点、使用条件等有密切关系。电阻器失效可分为两大类,即致命失效和参数漂移失效。现场使用统计表明,电阻器失效的85%~90% 属于致命失效,如断路、机械损伤、接触损坏、短路、绝缘、击穿等,只有1 0 % 左右的是由阻值漂移导致失效。

电阻器电位器失效机理视类型不同而不同。非线形电阻器和电位器主要失效模式为开路、阻值漂移、引线机械损伤和接触损坏;线绕电阻器和电位器主要失效模式为开路、引线机械损伤和接触损坏。主要有以下四类:

(1 )碳膜电阻器。引线断裂、基体缺陷、膜层均匀性差、膜层刻槽缺陷、膜材料与引线端接触不良、膜与基体污染等。

( 2 )金属膜电阻器。电阻膜不均匀、电阻膜破裂、引线不牢、电阻膜分解、银迁移、电阻膜氧化物还原、静电荷作用、引线断裂、电晕放电等。

(3 )线绕电阻器。接触不良、电流腐蚀、引线不牢、线材绝缘不好、焊点熔解等。

(4 )可变电阻器。接触不良、焊接不良、接触簧片破裂或引线脱落、杂质污染、环氧胶不好、轴倾斜等。

电阻容易产生变质和开路故障。电阻变质后往往是阻值变大的漂移。电阻一般不进行修理,而直接更换新电阻。线绕电阻当电阻丝烧断时,某些情况下可将烧断处理重新焊接后使用。

电阻变质多是由于散热不良,过分潮湿或制造时产生缺陷等原因造成的,而烧坏则是因电路不正常,如短路、过载等原因所引起。电阻烧坏常见有两种现象,一种是电流过大使电阻发热引起电阻烧坏,此时电阻表面可见焦糊状,很易发现。另一种情况是由于瞬间高压加到电阻上引起电阻开路或阻值变大,这种情况,电阻表面一般没有明显改变,在高压电路经常可发现这种故障现象的电阻。

可变电阻器或电位器主要有线绕和非线绕两种。它们共同的失效模式有:参数漂移、开路、短路、接触不良、动噪声大,机械损伤等。但是实际数据表明:实验室试验与现场使用之间主要的失效模式差异较大,实验室故障以参数漂移居多,而现场以接触不良、开路居多。

电位器接触不良的故障,在现场使用中普遍存在。如在电信设备中达9 0 % ,在电视机中约占8 7 %,故接触不良对电位器是致命的薄弱环节。造成接触不良的主要原因如下:

( 1 )接触压力太小、簧片应力松弛、滑动接点偏离轨道或导电层、机械装配不当,又或很大的机械负荷(如碰撞、跌落等)导致接触簧片变形等。

(2 )导电层或接触轨道因氧化、污染,而在接触处形成各种不导电的膜层。

(3 )导电层或电阻合金线磨损或烧毁,致使滑动点接触不良。

电位器开路失效主要是由局部过热或机械损伤造成的。例如,电位器的导电层或电阻合金线氧化、腐蚀、污染或者由于工艺不当(如绕线不均匀,导电膜层厚薄不均匀等)所引起的过负荷,产生局部过热,使电位器烧坏而开路;滑动触点表面不光滑,接触压力又过大,将使绕线严重磨损而断开,导致开路;电位器选择与使用不当,或电子设备的故障危及电位器,使其处于过负荷或在较大的负荷下工作。这些都将加速电位器的损伤。

2电容器类

电容器常见的故障现象主要有击穿、开路、电参数退化、电解液泄漏及机械损坏等。导致这些故障的主要原因如下:

(1 )击穿。介质中存在疵点、缺陷、杂质或导电离子;介质材料的老化;电介质的电化学击穿;在高湿度或低气压环境下极间边缘飞弧;在机械应力作用下电介质瞬时短路;金属离子迁移形成导电沟道或边缘飞弧放电;介质材料内部气隙击穿造成介质电击穿;介质在制造过程中机械损伤;介质材料分子结构的改变以及外加电压高于额定值等。

(2 )开路。击穿引起电极和引线绝缘;电解电容器阳极引出箔被腐蚀断(或机械折断);引出线与电极接触点氧化层而造成低电平开路;引出线与电极接触不良或绝缘;电解电容器阳极引出金属箔因腐蚀而导致开路;工作电解质的干涸或冻结;在机械应力作用下电解质和电介质之间的瞬时开路等。

(3 )电参数退化。潮湿与电介质老化与热分解;电极材料的金属离子迁移;残余应力存在和变化;表面污染;材料的金属化电极的自愈效应;工作电解质的挥发和变稠;电极的电解腐蚀或化学腐蚀;引线和电极接触电阻增加;杂质和有害离子的影响。

由于实际电容器是在工作应力和环境应力的综合作用下工作的,因而会产生一种或几种失效模式和失效机理,还会有一种失效模式导致另外失效模式或失效机理的发生。例如,温度应力既可以促使表面氧化、加快老化的影响程度、加速电参数退化,又会促使电场强度下降,加速介质击穿的早日到来,而且这些应力的影响程度还是时间的函数。因此,电容器的失效机理与产品的类型、材料的种类、结构的差异、制造工艺及环境条件、工作应力等诸因素等有密切关系。

电容器出现击穿故障非常容易发现,但对于有多个元件并联的情况,要确定具体的故障元件却较为困难。电容器开路故障的确定可通过将相同型号和容量的电容与被检测电容并联,观察电路功能是否恢复来实现。电容电参数变化的检查较为麻烦,一般可按照下面方法进行。

首先应将电容器的其中一条引线从电路板上烫下来,以避免周围元件的影响。其次根据电容器的不同情况用不同的方法进行检查。

(1 )电解电容器的检查。将万用表置于电阻挡,量程视被测电解电容的容量及耐压大小而定。测量容量小、耐压高的电解电容,量程应位于R ×10kW 挡;测量容量大、耐压低的电解电容,量程应位于R × 1 k W 挡。观察充电电流的大小、放电时间长短(表针退回的速度)及表针最后指示的阻值。

电解电容器质量好坏的鉴别方法如下:

①充电电流大,表针上升速度快,放电时间长,表针的退回速度慢,说明容量足。

②充电电流小,表针上升速度慢,放电时间短,表针的退回速度快,说明容量小、质量差。

③充电电流为零,表针不动,说明电解电容器已经失效。

④放电到最后,表针退回到终了时指示的阻值大,说明绝缘性能好,漏电小。

⑤放电到最后,表针退回到终了时指示的阻值小,说明绝缘性能差,漏电严重。

(2 )容量为1 mF 以上的一般电容器检查。可用万用表电阻挡(R × 1 0 k W)同极性多次测量法来检查漏电程度及是否击穿。将万用表的两根表笔与被测电容的两根引线碰一下,观察表针是否有轻微的摆动。对容量大的电容,表针摆动明显;对容量小的电容,表针摆动不明显。紧接着用表笔再次、三次、四次碰电容器的引线(表笔不对调),每碰一次都要观察针是否有轻微的摆动。如从第二次起每碰一次表针都摆动一下,则说明此电容器有漏电。如接连几次碰时表针均不动,则说明电容器是好的。如果第一次相碰时表针就摆到终点,则说明电容器已经被击穿。另外,对于容量为1mF~20mF的电容器,有的数字万用表可以测量。

(3 )容量为1 mF 以下的电容器检查。可以使用数字万用表的电容测量挡较为准确地测得电容器的实际数值。若没有带电容测量功能的数字万用表,只能用欧姆挡检查它是否击穿短路。用好的相同容量的电容器与被怀疑的电容器并联,检查它是否开路。

(4 )电容器参数的精确测量。单个电容器容量的精确测量可使用LCR 电桥,耐压值的测量可采用晶体管特性测试仪。

3电感和变压器类

此类元件包括电感、变压器、振荡线圈、滤波线圈等。其故障多由于外界原因所引起的,例如,当负载短路时,由于流过线圈的电流超过额定值,变压器温度升高,造成线圈短路、断路或绝缘击穿。当通风不良、温度过高或受潮时,亦会产生漏电或绝缘击穿的现象。

对于变压器的故障现象及原因,常见的有以下几种:当变压器接通电源后,若铁心发出嗡嗡的响声,则故障原因可能是铁心未夹紧或变压器负载过重;发热高、冒烟、有焦味或保险丝烧断,则可能是线圈短路或负载过重。

电感和变压器类元件的故障检查一般采用如下方法:
(1 )直流电阻测量法。用万用表的电阻挡测电感类的元件的好坏。测天线线圈、振荡线圈时,量程应置于最小电阻挡(如R × 1 W 挡);测中周及输出输入变压器时,量程应放在低阻挡(R × 10W或R × 1 0 0 W 挡),测得的阻值与维修资料或日常积累的经验数据相对照,如果很接近则表示被测元件是正常的;如果阻值比经验数据小许多,表明线圈有局部短路;如果表针指示值为零,则说明线圈短路。应该注意的是,振荡线圈、天线线圈及中周的次级电阻很小,只有零点几欧姆,读数时尤其要仔细,不要误判断为短路。用高阻挡(R ×10kW)测量初级线圈与次级线圈之间的电阻时,应该是无穷大。如果初级、次级之间有一定的电阻值,则表示初级、次级之间有漏电。

(2 )通电检查法。对电源变压器可以通过通电检查,看次级电压是否下降,如果次级电压则怀疑次级(或初级)有局部短路。当通电后出现变压器迅速发烫或有烧焦味、冒烟等现象,则可判断变压器肯定有局部短路。

(3 )仪器检查法。可以使用高频率Q 表来测量电感量及其Q 值,也可以用电感短路仪来判断低频率线圈的局部短路现象。用兆欧表则可以测量电源变压器初、次级之间的绝缘电阻。若发现变压器有漏电现象则可能是绝缘不良或受潮所引起的,此时可将变压器拆下来去潮烘干。另外,调压变压器的各种碳刷或铜刷,在维护和所用不当的情况下极容易磨损,其碎片和积炭往往因短路部分的线圈烧毁而烧毁变压器,因此平时要注意维护。

4集成块类

电极开路或时通时断主要原因是电极间金属迁移、电蚀和工艺问题。电极短路主要原因是电极间金属电扩散、金属化工艺缺陷或外来异物等。引线折断主要原因有线径不均,引线强度不够,热点应力和机械应力过大和电蚀等。电参数漂移主要原因是原材料缺陷、可移动离子引起的反应等。机械磨损和封装裂缝主要由封装工艺缺陷和环境应力过大等造成。可焊接性差主要由引线材料缺陷、引线金属镀层不良、引线表面污染、腐蚀和氧化造成。无法工作一般是工作环境因素造成的。

综上所述,我们可以知道,为了保证设备或系统能可靠地工作,对于电子元器件的可靠性要求就非常高。可靠性指标已经成为元器件的重要质量指标之一。了解了元器件的失效模式和失效机理,对于诊断设备故障,保持设备的可靠性是十分重要的。

来源: 村田中文技术社区

围观 147

说到元器件的真假,无非就是需要辨别一下,元器件是原装货还是散新货。这里所说的散新货,就是翻新件或是拆机件,是经过处理再加工的器件,所以行业人一般称之为散新货。同一样的价格,谁都想买到新的,全新功能的器件,所以这就需要一些常识来辨别哪些是原装新货,哪些是我们所说的散新件。

看芯片表面是否有打磨过的痕迹

凡打磨过的芯片表面会有细纹甚至以前印字的微痕,有的为掩盖还在芯片表面涂有一层薄涂料,看起来有点发亮,无朔胶的质感。

看印字

现在的芯片绝大多数采用激光打标或用专用芯片印刷机印字,字迹清晰,既不显眼,又不模糊且很难擦除。

翻新的芯片要么字迹边沿受清洗剂腐蚀而有“锯齿感”,要么印字模糊、深浅不一、位置不正、容易擦除或过于显眼。

另外,丝印工艺现在的IC大厂早已淘汰,但很多芯片翻新因成本原因仍用丝印工艺,这也是判断依据之一,丝印的字会略微高于芯片表面,用手摸可以感觉到细微的不平或有发涩的感觉。

不过需留意的是,因近来小型激光打标机的售价大幅降低,翻新IC越来越多的采用激光打标,某些新片也会用此方法改变字标或干脆重打以提高芯片的档次,这需要格外留意,且区分方法比较困难,需练就“火眼金睛”。

主要的方法是看整体的协调性,字迹与背景、引脚的新旧程度不符如字标过新、过清有问题的可能性也较大,但不少小厂特别是国内的某些小IC公司的芯片却生来如此,这为鉴定增添了不少麻烦,但对主流大厂芯片的判断此法还是很有意义的。

另外,近来用激光打标机修改芯片标记的现象越来越多,特别是在内存及一些高端芯片方,而一旦发现激光印字的位置存在个别字母不齐、笔同粗细不均的,可以认定是Remark的。

看引脚

凡光亮如“新”的镀锡引脚必为翻新货,正货IC的引脚绝大多数应是所谓银粉脚,色泽较暗但成色均匀,表面不应有氧化痕迹。另外DIP等插件的引脚不应有擦花的痕迹,即使有(再次包装才会有)擦痕也应是整齐、同方向的且金属暴露处光洁无氧化。

看器件生产日期和封装厂标号

正货的标号包括芯片底面的标号应一致且生产时间与器件品相相符,而未Remark的翻新片标号混乱,生产时间不一。Remark的芯片虽然正面标号等一致,但有时数值不合常理(如标什么“吉利数’)或生产日期与器件品相不符,器件底而的标号若很混乱也说明器件是Remark的。

测器件厚度和看器件边沿

不少原激光印字的打磨翻新片(功率器件居多)因要去除原标记,必须打磨较深,如此器件的整体厚度会明显小于正常尺寸,但不对比或用卡尺测量,一般经验不足的人还是很难分辨的,但有一变通识破法,即看器件正面边沿。因塑封器件注塑成型后须“脱模”,故器件边沿角呈圆形(R角),但尺寸不大,打磨加工时很容易将此圆角磨成直角,故器件正面边沿一旦是直角的,可以判断为打磨货。

除此之外,再有一法就是看商家是否有大量的原外包装物,包括标识内外一致的纸盒、防静电塑胶袋等,实际辨别中应多法齐用,有一处存在问题则可认定器件的货质。如果有些芯片我们无法用肉眼和经验来判断的我们可以借助一写工具,如放大镜和数码放大镜。打磨翻新过的芯片表而有细微的小孔是我们用肉眼难以看的出的我们就必须借助设备来观察!

几个要点:

1)看打字,一般翻新的重新打子的(白字)用化学稀释剂可以把字擦除的一般为翻新货,原装货是擦不掉的。

2)看引角,原装货的引脚非常整齐且像一条直线,而翻新处理过的则有的脚不整齐且有些歪。

3)看定位孔,观察原装货的定位孔都比较一致,翻新的有的深浅不一或者根本就真个打磨平了,有的如果仔细看可一看到原有定位孔的痕迹。在实际工作中还要仔细观察观察,有的造假工艺相当的高,在采购中要特别的慎重!

本文来源网络,版权归原作者所有。

围观 216

电子元件知识——电阻器

电阻:导电体对电流的阻碍作用称为电阻,用符号R表示,单位为欧姆、千欧、兆欧,分别用Ω、KΩ、MΩ表示。

电阻的型号命名方法:国产电阻器的型号由四部分组成(不适用敏感电阻)
①主称
②材料
③分类
④序号

电阻器的分类:

①线绕电阻器 
②薄膜电阻器:碳膜电阻器、合成碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、化学沉积膜电阻器、玻璃釉膜电阻器、金属氮化膜电阻器 
③实心电阻器 
④敏感电阻器:压敏电阻器、热敏电阻器、光敏电阻器、力敏电阻器、气敏电阻器、湿敏电阻器。

※电阻器阻值标示方法:

1、直标法:用数字和单位符号在电阻器表面标出阻值,其允许误差直接用百分数表示,若电阻上未注偏差,则均为±20%。
2、文字符号法:用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,其允许偏差也用文字符号表示。符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值。表示允许误差的文字符号文字符号:DFGJKM允许偏差分别为:±0.5%±1%±2%±5%±10%±20%
3、数码法:在电阻器上用三位数码表示标称值的标志方法。数码从左到右,第一、二位为有效值,第三位为指数,即零的个数,单位为欧。偏差通常采用文字符号表示。
4、色标法:用不同颜色的带或点在电阻器表面标出标称阻值和允许偏差。国外电阻大部分采用色标法。
黑-0、棕-1、红-2、橙-3、黄-4、绿-5、蓝-6、紫-7、灰-8、白-9、金-±5%、银-±10%、无色-±20%
当电阻为四环时,最后一环必为金色或银色,前两位为有效数字,第三位为乘方数,第四位为偏差。
当电阻为五环时,最後一环与前面四环距离较大。前三位为有效数字,第四位为乘方数,第五位为偏差。

1

贴片电阻的阻值识别:(在通常的贴片电阻电阻表面都标识数字,或用字母来表示,阻值数法如下。
1.第一、二位数代表的是电阻的实数。
2.第三位开始的数字如是0就代表几十欧(10~99欧之间)列:100就为10欧的电阻、990为99欧的电阻
3.第三位开始的数字如是1就代表几百欧(100~999欧之间)例:101为100欧、151为150欧、951为950欧
4.第三位开始的数字如是2就代表几千欧(1000~9999欧之间)例:102为1K、152为1.5K、992为9.9K
5.第三位开始的数字如是3就代表几十K(10K~99K之间)例:103为10K、223为22K、993为99K
6.第三位开始的数字如是4就代表几百K(100K~999K之间)例:104为100K、204为200K、854为850K
7.第三位开始的数字如是5就代表几M(1M~9.9之间)例:105为1M、155为1.5M\955为9.5M
8.第三位开始的数字如是6就代表十M(100K~999K之间)例:106为10M\566为56M
9.对于四个数字的标法就是前三位为实数,第四位为倍数.1001为1K、1002为10K、1005为10M

电子元件知识——电容器
电容:是表征电容器容纳电荷的本领的物理量。我们把电容器的两极板间的电势差增加1伏所需的电量,叫做电容器的电容。电容的符号是C。电容是电子设备中大量使用的电子元件之一,广泛应用于隔直,耦合,旁路,滤波,调谐回路,能量转换,控制电路等方面。用C表示电容,电容单位有法拉(F)、微法拉(uF)、皮法拉(pF),1F=10*6uF=10*12pF
1法拉(F)=1000000微法(μF)1微法(μF)=1000纳法(nF)=1000000皮法(pF)

电容器的型号命名方法:国产电容器的型号一般由四部分组成(不适用于压敏、可变、真空电容器)。依次分别代表名称、材料、分类和序号。

电解电容器的极性判别方法:

(1)用万用表测量就可以了,先把电解电容放电,然后将表笔接到两端,摆动大的那次就对了,但要注意:指针表的正极对的是电容的负极,数字表相反,而且,两次测量之间,电容必须放电。

(2)用引脚长短来区别正负极长脚为正,短脚为负;电容上面有标志的黑块为负极。在PCB上电容位置上有两个半圆,涂颜色的半圆对应的引脚为负极。

电容器的分类:

按照其极性分为二大类:有极性电容器(如电解电容)和无极性电容器。
按照结构分三大类:固定电容器、可变电容器和微调电容器。
按电解质分类有:有机介质电容器、无机介质电容器、电解电容器和空气介质电容器等。
按用途分有:高频旁路、低频旁路、滤波、调谐、高频耦合、低频耦合、小型电容器。

电容器容量标示:

1、直标法:用数字和单位符号直接标出。如01uF表示0.01微法,有些电容用“R”表示小数点,如R56表示0.56微法。
2、文字符号法:用数字和文字符号有规律的组合来表示容量。如p10表示0.1pF,1p0表示1pF,6P8表示6.8pF,2u2表示2.2uF.
3、色标法:用色环或色点表示电容器的主要参数。电容器的色标法与电阻相同。
电容器偏差标志符号:+100%-0--H、+100%-10%--R、+50%-10%--T、+30%-10%--Q、+50%-20%--S、+80%-20%--Z。

常用电容器:铝电解电容器、钽电解电容器、薄膜电容器、瓷介电容器、独石电容器、纸质电容器、微调电容器、陶瓷电容器、玻璃釉电容器、云母和聚苯乙烯介质电容器。

电子元件知识——电感器

电感器:电感线圈是由导线一圈*一圈地绕在绝缘管上,导线彼此互相绝缘,而绝缘管可以是空心的,也可以包含铁芯或磁粉芯,简称电感。在电子制作中虽然使用得不是很多,但它们在电路中同样重要。电感器和电容器一样,也是一种储能元件,它能把电能转变为磁场能,并在磁场中储存能量。电感器用符号L表示,它的基本单位是亨利(H),常用毫亨(mH)为单位。

电感器的分类:

按电感形式分类:固定电感、可变电感。
按绕线结构分类:单层线圈、多层线圈、蜂房式线圈。
按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。
按工作性质分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈。

电感器作用特性:它经常和电容器一起工作,构成LC滤波器、LC振荡器等。另外,人们还利用电感的特性,制造了阻流圈、变压器、继电器等;电感器的特性恰恰与电容的特性相反,它具有阻止交流电通过而让直流电通过的特性。

收音机上就有不少电感线圈,几乎都是用漆包线绕成的空心线圈或在骨架磁芯、铁芯上绕制而成的。有天线线圈(它是用漆包线在磁棒上绕制而成的)、中频变压器(俗称中周)、输入输出变压器等等。

常用电感器:单层线圈、蜂房式线圈、铁氧体磁芯和铁粉芯线圈、铜芯线圈、色码电感器、阻流圈(扼流圈)、偏转线圈

变压器:是由铁芯和绕在绝缘骨架上的铜线圈线构成的。绝缘铜线绕在塑料骨架上,每个骨架需绕制输入和输出两组线圈。线圈中间用绝缘纸隔离。绕好后将许多铁芯薄片插在塑料骨架的中间。这样就能够使线圈的电感量显著增大。变压器利用电磁感应原理从它的一个绕组向另儿个绕组传输电能量。变压器在电路中具有重要的功能:耦合交流信号而阻隔直流信号,并可以改变输入输出的电压比;利用变压器使电路两端的阻抗得到良好匹配,以获得最大限度的传送信号功率。

继电器:就是电子机械开关,它是用漆包铜线在一个圆铁芯上绕几百圈至几千圈,当线圈中流过电流时,圆铁芯产生了磁场,把圆铁芯上边的带有接触片的铁板吸住,使之断开第一个触点而接通第二个开关触点。当线圈断电时,铁芯失去磁性,由于接触铜片的弹性作用,使铁板离开铁芯,恢复与第一个触点的接通。因此,可以用很小的电流去控制其他电路的开关。整个继电器由塑料或有机玻璃防尘罩保护着,有的还是全密封的,以防触电氧化。

电子元件知识——半导体器件

半导体:是一种具有特殊性质的物质,它不像导体一样能够完全导电,又不像绝缘体那样不能导电,它介于两者之间,所以称为半导体。半导体最重要的两种元素是硅(读“gui”)和锗(读“zhe”)。

半导体分类:半导体主要分为二极管、三极管、可控硅、集成电路。

二极管分类:用于稳压的稳压二极管,用于数字电路的开关二极管,用于调谐的变容二极管,以及光电二极管等,最常看见的是发光二极管、整流二极管……二极管在电路中用“D”表示;发光二极管用“LED”表示;稳压二极管用“Z”表示。

二极管极性判别:

(1)普通二极管:一般把极性标示在二极管的外壳上。大多数用一个不同颜色的环来表示负极,有的直接标上“-”号。

(2)发光二极管的极性判别可以从管脚和管子内部结构来判别,如果管脚不是被剪过的,目前普遍认为发光二极管的长管脚是正极,短管脚是负极,和立式电解电容的极性辨别是一致的。从管芯内部结构来看,管芯是由大小瓣两部分组成,大瓣上有一圆锥坑以便聚光提高亮度,中间通过一细金属线将两瓣连在一起,与管芯小瓣部分相接的是长脚正极,与管芯大瓣部分相接是短脚负极。

(3)万用表欧姆档来判断,当正向导通时电阻值小,用黑表笔连接的就是二极管的正极。顺口溜叫“黑小正、红大负”。

普通二极管的检测:二极管的极性通常在管壳上注有标记,如无标记,可用万用表电阻档测量其正反向电阻来判断(一般用R×100或×1K档)

普通发光二极管的检测:

(1)利用具有×10kΩ挡的指针式万用表可以大致判断发光二极管的好坏。正常时,二极管正向电阻阻值为几十至200kΩ,反向电阻的值为∝。如果正向电阻值为0或为∞,反向电阻值很小或为0,则易损坏。这种检测方法,不能实地看到发光管的发光情况,因为×10kΩ挡不能向LED提供较大正向电流。

(2)用3V稳压源或两节串联的干电池及万用表(指针式或数字式皆可)可以较准确测量发光二极管的光、电特性。为此可按图10所示连接电路即可。如果测得VF在1.4~3V之间,且发光亮度正常,可以说明发光正常。如果测得VF=0或VF≈3V,且不发光,说明发光管已坏。

红外发光二极管的检测:由于红外发光二极管,它发射1~3μm的红外光,人眼看不到。通常单只红外发光二极管发射功率只有数mW,不同型号的红外LED发光强度角分布也不相同。红外LED的正向压降一般为1.3~2.5V。正是由于其发射的红外光人眼看不见,所以利用上述可见光LED的检测法只能判定其PN结正、反向电学特性是否正常,而无法判定其发光情况正常否。为此,最好准备一只光敏器件(如2CR、2DR型硅光电池)作接收器。用万用表测光电池两端电压的变化情况。来判断红外LED加上适当正向电流后是否发射红外光。其测量电路如图11所示。

2

※三极管:三极管就是由二个PN结构成三个极的电子元件,基极(B)集电极(C)、发射极(E)。

※三极管作用:三极管在电路中主要起电流放大和开关作用;也起隔离作用。

※三极管命名:中国半导体器件型号命名方法

半导体器件型号由五部分(场效应器件、半导体特殊器件、复合管、PIN型管、激光器件的型号命名只有第三、四、五部分)组成。

第一部分:用数字表示半导体器件有效电极数目。2-二极管、3-三极管

第二部分:用汉语拼音字母表示半导体器件的材料和极性。表示二极管时:A-N型锗材料、B-P型锗材料、C-N型硅材料、D-P型硅材料。表示三极管时:A-PNP型锗材料、B-NPN型锗材料、C-PNP型硅材料、D-NPN型硅材料。

第三部分:用汉语拼音字母表示半导体器件的内型。P-普通管、V-微波管、W-稳压管、C-参量管、Z-整流管、L-整流堆、S-隧道管、N-阻尼管、U-光电器件、K-开关管、X-低频小功率管(F<3MHz,Pc<1W)、G-高频小功率管(f>3MHz,Pc<1W)、D-低频大功率管(f<3MHz,Pc>1W)、A-高频大功率管(f>3MHz,Pc>1W)、T-半导体晶闸管(可控整流器)、Y-体效应器件、B-雪崩管、J-阶跃恢复管、CS-场效应管、BT-半导体特殊器件、FH-复合管、PIN-PIN型管、JG-激光器件。

第四部分:用数字表示序号第五部分:用汉语拼音字母表示规格号

例如:3DG18表示NPN型硅材料高频三极管

三极管分类
1)按材料和极性分有硅/锗材料的NPN与PNP三极管。
2)按功率分有小功率三极管、中功率三极管、大功率三极管。
3)按用途分有高、中频放大管、低频放大管、低噪声放大管、光电管、开关管、高反压管、达林顿管、带阻尼的三极管等。
4)按工作频率分有低频三极管、高频三极管和超高频三极管。
5)按制作工艺分有平面型三极管、合金型三极管、扩散型三极管。
6)按外形封装的不同可分为金属封装三极管、玻璃封装三极管、陶瓷封装三极管、塑料封装三极管等。

三极管引脚极性:插件引脚图示(1),贴件引脚图示(2)下图为9014。般中小功率的三极管都是遵守左向右依次为ebc(条件是中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为ebc)

3

场效应管:MOS场效应管即金属-氧化物-半导体型场效应管,英文缩写为MOSFET(Metal-Oxide-SemiconductorField-Effect-Transistor),属于绝缘栅型。

金属氧化物半导体场效应三极管的基本工作原理是靠半导体表面的电场效应,在半导体中感生出导电沟道来进行工作的。当栅G电压VG增大时,p型半导体表面的多数载流子棗空穴逐渐减少、耗尽,而电子逐渐积累到反型。当表面达到反型时,电子积累层将在n+源区S和n+漏区D之间形成导电沟道。当VDS≠0时,源漏电极之间有较大的电流IDS流过。使半导体表面达到强反型时所需加的栅源电压称为阈值电压VT。当VGS>VT并取不同数值时,反型层的导电能力将改变,在相同的VDS下也将产生不同的IDS,实现栅源电压VGS对源漏电流IDS的控制。

场效应分类:场效应管主要有结型场效应管(JFET)和绝缘栅型场效应管(IGFET)。绝缘栅型场效应管的衬底(B)与源析(S)连在一起,它的三个极分别为栅极(G)、漏极(D)和源极(S)。晶体管分NPN和PNP管,它的三个极分别为基极(b)、集电极(c)、发射极(e)。场效应管的G、D、S极与晶体管的b、c、e极有相似的功能。绝缘栅型效应管和结型场效应管的区别在于它们的导电机构和电流控制原理根本不同,结型管是利用耗尽区的宽度变化来改变导电沟道的宽窄以便控制漏极电流,绝缘栅型场效应管则是用半导体表面的电场效应、电感应电荷的多少去改变导电沟道来控制电流。它们性质的差异使结型场效应管往往运用在功放输入级(前级),绝缘栅型场效应管则用在功放末级(输出级)。场效应管的工作原理和三极管其本一样,只是他们一个是压控型元件,一个是电流控制元件,场效应管只有一个PN结,如图所示1-1

4

场效应分类使用注意事项及检测方法:MOS场效应管比较“娇气”。这是由于它的输入电阻很高,而栅-源极间电容又非常小,极易受外界电磁场或静电的感应而带电,而少量电荷就可在极间电容上形成相当高的电压(U=Q/C),将管子损坏。因此出厂时各管脚都绞合在一起,或装在金属箔内,使G极与S极呈等电位,防止积累静电荷。管子不用时,全部引线也应短接。在测量时应格外小心,并采取相应的防静电感措施。测量之前,先把人体对地短路后,才能摸触MOSFET的管脚。最好在手腕上接一条导线与大地连通,使人体与大地保持等电位。再把管脚分开,然后拆掉导线。将万用表拨于R×100档,首先确定栅极。若某脚与其它脚的电阻都是无穷大,证明此脚就是栅极G。交换表笔重测量,S-D之间的电阻值应为几百欧至几千欧,其中阻值较小的那一次,黑表笔接的为D极,红表笔接的是S极。日本生产的3SK系列产品,S极与管壳接通,据此很容易确定S极。将G极悬空,黑表笔接D极,红表笔接S极,然后用手指触摸G极,表针应有较大的偏转。双栅MOS场效应管有两个栅极G1、G2。为区分之,可用手分别触摸G1、G2极,其中表针向左侧偏转幅度较大的为G2极。目前有的MOSFET管在G-S极间增加了保护二极管,平时就不需要把各管脚短路了。对于其它相关认识,我不做细说,只要大家能认识就行了。

集成电路:集成电路是一种采用特殊工艺,将晶体管、电阻、电容等元件集成在硅基片上而形成的具有一定功能的器件,英文为缩写为IC,也俗称芯片。在电路中用“U”表示。

集成电路分类:集成电路根据不同的功能用途分为模拟和数字两大派别,而具体功能更是数不胜数,其应用遍及人类生活的方方面面。集成电路根据内部的集成度分为大规模中规模小规模三类。其封装又有许多形式。“双列直插”和“单列直插”的最为常见。消费类电子产品中用软封装的IC,精密产品中用贴片封装的IC等。

集成电路使用注意事项:大部份IC采用CMOS元件为核心集成;对于CMOS型IC,特别要注意防止静电击穿IC,最好也不要用未接地的电烙铁焊接。使用IC也要注意其参数,如工作电压,散热等。数字IC多用+5V的工作电压,模拟IC工作电压各异。

集成电路型号:集成电路有各种型号,其命名也有一定规律。一般是由前缀、数字编号、后缀组成。前缀表示集成电路的生产厂家及类别,后缀一般用来表示集成电路的封装形式、版本代号等。常用的集成电路如小功率音频放大器LM386就因为后缀不同而有许多种。LM386N是美国国家半导体公司的产品,LM代表线性电路,N代表塑料双列直插。具体封装这不多作解说,我们只要能认识就OK。其它筒单集成电路:稳压IC、音乐IC、语音IC……

来源:电子硬件设计电子工程专辑

围观 160

电子元器件(以下简称元器件)是电子产品的重要组成部分,是电子产品的最基本单元。元器件的可靠性直接关系到整个系统的可靠性。因此,元器件的可靠性是型号研制过程中保证产品可靠性的重要环节之一,同时也对加快型号研制进度、保证研制质量、节约研制经费、降低综合保障费用和寿命周期费用都有重要意义。

元器件的二次筛选

元器件的筛选分为“一次筛选”和“二次筛选”两类。元器件在交付用户使用前按元器件的产品规范(总规范、详细规范)进行的筛选称为“一次筛选”。使用方在采购以后根据使用要求进行的再次筛选称为“二次筛选”。

目前,国内元器件的生产水平,总体上与研制产品的使用要求相比或多或少地存在着一些差异,厂家进行的一次筛选的筛选项目和应力要求也不一定能满足产品研制的需要;进口元器件中真正的“军标”产品不是很多,大部分还是中低档产品,其中还可能存在许多假冒伪劣品。而研制产品往往针对性很强,对存在某种失效模式的元器件必须严格剔除,否则不能保证产品可靠地进行工作。这些都要求我们通过二次筛选来保证元器件的质量。元器件的二次筛选是元器件质量控制工作中的重要措施之一,对产品的可靠性保证有着重要意义。

二次筛选时应注意的几个问题:

  • 对型号研制中采用的元器件应实行100%的二次筛选,这样才能最大限度地剔除存在有某种失效模式的元器件。
  • 针对产品的用途进行有选择性的筛选。例如:抗辐照能力的考核就是一个特例。对宇航电子设备是必须考虑的,对地面电子设备则基本上可以不考虑。
  • 对由于手段问题不能进行筛选的元器件,须采取其它的控制方式来保证其质量。例如在使用的电路上进行了一些试验或者委托其它单位进行试验等等。
  • 考虑到二次筛选的局限性,必须严格控制它的批允许失效百分比(PDA)。

二次筛选的通用项目:

  • 温度循环:检查结构缺陷
  • 恒温加速度:检查内引线
  • 颗粒碰撞噪声检测:检查有无杂质
  • 电老炼:检查早期失效
  • 高低温测试:检查参数漂移
  • 常温初测和终测:检查产品是否合格
  • 检漏:检查漏气与否
  • 外观目检

元器件的破坏性物理分析(DPA)

破坏性物理分析(DPA)技术是应工程需要,为保证元器件的高可靠性要求而发展起来的,它能反映出元器件二次筛选过程中不可能发现的一些缺陷。

大量数据统计中表明:能通过筛选淘汰的不合格品项目如外部目检、PIND和检漏所占的比例在36.9%,而通过筛选不能剔除的缺陷入内部目检、剪切力、键合力等比例达到63.1%,可见无法通过筛选提出的数量之多。

开展DPA一般原则:

1、重要型号或一般型号的重要电子产品所选用的元器件需作DPA;

2、器件的等级低于型号要求的元器件;

3、未能按型号要求逆行能够补充筛选的元器件;

4、在试验中曾发生故障的同批次元器件;

5、超过贮存期的元器件,做DPA试验时要合理选择项目、选择有关部门认证的DPA试验室进行。

元器件的贮存和保管

元器件的贮存与保管必须符合其规定的贮存保管条件,特别对需要防潮、防腐、防老化、防静电等电子元器件更应妥善保管,存放元器件的库房存放应做到不同品种和不同批次分类存放,库房内应标志明显、排列有序、安全稳妥、存放合理、库房整洁、温湿度有记录。并对库存放过程中对有定期测试要求的电子元器件进行定期质量检验,发现不合格品及时隔离出库,并记录在案。

元器件的电装和调试

当元器件的固有可靠性和使用可靠性为一定值时,则电装工艺的可靠性决定了电子产品的可靠性。因此,我们必须重视电子元器件的电装可靠性,以保证电子元器件的使用可靠性。

元器件进入生产车间,依据图纸和工艺要求,进行电装焊接。电装工艺对各种元器件的焊接时间,焊接温度以及元器件对防静电的要求都应明确给出,如某CMOS集成电路焊接时间小于4s,焊接温度小于240℃,应在静电防护区内焊接。对于某些集成电路为更换方便或不宜直接焊接,应明确先焊接集成电路插座,对有散热要求的,应明确焊接高度。

生产车间的电装工人应经过培训,能完成元器件抽检中未尽事宜,如元器件是否混装,标识是否正确,焊脚或插针是否变形,外观是否有破损等。

通电调试印制板前,主要检查元器件方向,以及印制板焊接有无短路、虚焊等。调试过程是否带电作业,应特别注意静电防护和调试工具。调试工具是否符合防静电要求,直接影响静电敏感器件在调试过程中静电放电通路的顺畅。

调试更换元器件或发现问题,应有详细记录,并通知设计人员,查找原因。例如:计使用500Ω偏差不超过10%的电位器,批质量临界461Ω,判合格,电装调试发现预定功能难调,设计人员根据调试记录,分析电路,具体到哪一种元器件参数不合适则更换,以提高元器件的使用可靠性。

元器件失效分析

失效分析是发现问题并解决问题的重要途径,在产品测试,系统联调等过程中发现元器件失效时,对于典型失效或批次质量问题的元器件,元器件质量控制部门应组织有关技术人员和质量控制人员共同进行失效分析,明确失效机理,查明失效原因;关键的、重要的元器件失效、重复多次出现失效而原因不明的元器件以及选用的质量等级不明或偏低的元器件,应将其作为重点,可由专业的失效分析实验室进行。

通过试销分析可以改进设计,加强关键工序的管理,使产品的可靠性不断提高;同时,也提高了设计、制造和相关人员的业务技术水平。 失效分析后确认属批次性质量问题的,至少应在本研制型号的范围内发出通报和警示,以避免类似情况的再次发生。

建立元器件质量数据库

建立元器件质量数据库能够比较综合地反映出元器件的质量状态,从中可以看出厂家的生产水平、工艺水平,对型号研制所选用元器件可提供相应的质量数据,为一些决策提供依据。据此也可调整供货厂家,有选择地委托特定厂家进行新型元器件研制工作和提出资助技改的建议,从而进一步保证元器件的质量与可靠性。

型号研制单位应建立从元器件选用、订购、监制验收、二次筛选、DPA、保管和失效分析全过程的信息存入信息库,并建立能检索元器件去向包括装机元器件和失效元器件信息的信息库。

数据库应该由质量检验部门建立,采购、试验和研制等部门配合,并提供相应的数据。质量部门利用计算机对数据库进行统计和分析,再将结果反馈至采购、试验和研制部门,据此对元器件的采购、试验、采用进行调整,提高元器件的可靠性。

为提高电子元器件的使用可靠性,必须做好元器件的设计选用、检验、测试、筛选、储存保管、电装等工作;它将为提高电子产品可靠性提供坚实基础。根据上面的论述和一些型号研制的经验可见:

  • 编制型号元器件优选目录是开展元器件工作的基石,必须予以充分重视。
  • 二次筛选是装机元器件必须进行的,重点型号要求100%进行二次筛选。
  • 失效分析和DPA是发现元器件质量问题的重要手段,从长远来看,它们大大减少了装备的寿命周期费用。

来源:百度文库

围观 360
订阅 RSS - 电子元器件