PCB布局

我们现今使用的网络接口均为以太网接口,目前大部分处理器都支持以太网口。目前以太网按照速率主要包括10M、10/100M、1000M三种接口,10M应用已经很少,基本为10/100M所代替。目前我司产品的以太网接口类型主要采用双绞线的RJ45接口,且基本应用于工控领域,因工控领域的特殊性,所以我们对以太网的器件选型以及PCB设计相当考究。从硬件的角度看,以太网接口电路主要由MAC(Media Access Controlleroler)控制和物理层接口(Physical Layer,PHY)两大部分构成。大部分处理器内部包含了以太网MAC控制,但并不提供物理层接口,故需外接一片物理芯片以提供以太网的接入通道。面对如此复杂的接口电路,相信各位硬件工程师们都想知道该硬件电路如何在PCB上实现。

下图 1以太网的典型应用。我们的PCB设计基本是按照这个框图来布局布线,下面我们就以这个框图详解以太网有关的布局布线要点。

以太网PCB布局布线
图1:以太网典型应用

1. 图 2网口变压器没有集成在网口连接器里的参考电路PCB布局、布线图,下面就以图 2介绍以太网电路的布局、布线需注意的要点。

以太网PCB布局布线
图2:变压器没有集成在网口连接器的电路PCB布局、布线参考

a) RJ45和变压器之间的距离尽可能的短,晶振远离接口、PCB边缘和其他的高频设备、走线或磁性元件周围,PHY层芯片和变压器之间的距离尽可能短,但有时为了顾全整体布局,这一点可能比较难满足,但他们之间的距离最大约10~12cm,器件布局的原则是通常按照信号流向放置,切不可绕来绕去;

b) PHY层芯片的电源滤波按照要芯片要求设计,通常每个电源端都需放置一个退耦电容,他们可以为信号提供一个低阻抗通路,减小电源和地平面间的谐振,为了让电容起到去耦和旁路的作用,故要保证退耦和旁路电容由电容、走线、过孔、焊盘组成的环路面积尽量小,保证引线电感尽量小;

c) 网口变压器PHY层芯片侧中心抽头对地的滤波电容要尽量靠近变压器管脚,保证引线最短,分布电感最小;

d) 网口变压器接口侧的共模电阻和高压电容靠近中心抽头放置,走线短而粗(≥15mil);

e) 变压器的两边需要割地:即RJ45连接座和变压器的次级线圈用单独的隔离地,隔离区域100mil以上,且在这个隔离区域下没有电源和地层存在。这样做分割处理,就是为了达到初、次级的隔离,控制源端的干扰通过参考平面耦合到次级;

f) 指示灯的电源线和驱动信号线相邻走线,尽量减小环路面积。指示灯和差分线要进行必要的隔离,两者要保证足够的距离,如有空间可用GND隔开;

g) 用于连接GND和PGND的电阻及电容需放置地分割区域。

2. 以太网的信号线是以差分对(Rx±、Tx±)的形式存在,差分线具有很强共模抑制能力,抗干扰能力强,但是如果布线不当,将会带来严重的信号完整性问题。下面我们来一一介绍差分线的处理要点:

a) 优先绘制Rx±、Tx±差分对,尽量保持差分对平行、等长、短距,避免过孔、交叉。由于管脚分布、过孔、以及走线空间等因素存在使得差分线长易不匹配,时序会发生偏移,还会引入共模干扰,降低信号质量。所以,相应的要对差分对不匹配的情况作出补偿,使其线长匹配,长度差通常控制在5mil以内,补偿原则是哪里出现长度差补偿哪里;

b) 当速度要求高时需对Rx±、Tx±差分对进行阻抗控制,通常阻抗控制在100Ω±10%;

c) 差分信号终端电阻(49.9Ω,有的PHY层芯片可能没有)必须靠近PHY层芯片的Rx±、Tx±管脚放置,这样能更好的消除通信电缆中的信号反射;

d) 差分线对上的滤波电容必须对称放置,否则差模可能转成共模,带来共模噪声,且其走线时不能有stub ,这样才能对高频噪声有良好的抑制能力。

以太网PCB布局布线

3. 变压器集成在连接器的以太网电路的PCB布局、布线较不集成的相对简单很多,下图 3是采用一体化连接器的网口电路的PCB布局、布线参考图:

以太网PCB布局布线
图3:一体化连接器的网口PCB布局、布线参考图

从上图可以看出,图 3和图 1的不同之处在于少了网口变压器,其它大体相同。不同之处主要体现在网口变压器已集成至连接器里,所以地平面无需进行分割处理,但我们依然需要将一体化连机器的外壳连接到连续的地平面上。

以太网布局布线方面的要大致就这些,好的PCB布局布线不仅可以保证电路性能,还可以提高电路性能,笔者水平有限,不足之处欢迎指正交流。

转自:博客园 - Aliank

围观 412

一个良好的布局设计可优化效率,减缓热应力并尽量小走线与元件之间噪声作用。这切都源于设计人员对电中流传导路径以及信号的理解。

当一块原型电源板首次加时,最好的情况 是它不仅能工作而且还安静、发热低。然这种并不多见。

开关电源的一个常见问题是“不稳定 ”的开关波形。有些时候,抖动处于声段磁性元件会产生出音频噪声。如果问题在印刷电路板的布局上,要找原因可能会很困难此开关电源设计初期的正确PCB布局就非常关键。

电源设计者要很好地理解技术细节,以及最终产品的功能需求。因此从电路板设计项目一开始源设计者应就关键性电布局,与PCB布局设计人员展开密切合作。

一个好的布局设计可优化电源效率,减缓热应力;更重要的是,它最大限度地减小了噪声,以及走线与元件之间的相互作用。为实现这些目标,设计者必须了解开关电源内部的电流传导路径以及信号流。要实现非隔离开关电源的正确布局设计,务必牢记以下这些设计要素。

布局规划

对一块大电路板上的嵌入dc/dc电源,要获得最佳的电压调节、负载瞬态响应和系统效率,就要使电源输出靠近负载器件,尽量减少PCB走线上的互连阻抗和传导压降。确保有良好的空气流,限制热应力;如果能采用强制气冷措施,则要将电源靠近风扇位置。

另外,大型无源元件(如电感和电解电容)均不得阻挡气流通过低矮的表面封装半导体元件,如功率MOSFET或PWM控制器。为防止开关噪声干扰到系统中的模拟信号,应尽可能避免在电源下方布放敏感信号线;否则,就需要在电源层和小信号层之间放置一个内部接地层,用做屏蔽。

关键是要在系统早期设计和规划阶段,就筹划好电源的位置,以及对电路板空间的需求。有时设计者会无视这种忠告,而把关注点放在大型系统板上那些更“重要”或“让人兴奋”的电路。电源管理被看作事后工作,随便把电源放在电路板上的多余空间上,这种做法对高效率而可靠的电源设计十分不利。

对于多层板,很好的方法是在大电流的功率元件层与敏感的小信号走线层之间布放直流地或直流输入/输出电压层。地层或直流电压层提供了屏蔽小信号走线的交流地,使其免受高噪声功率走线和功率元件的干扰。

作为一般规则,多层PCB板的接地层或直流电压层均不应被分隔开。如果这种分隔不可避免,就要尽量减少这些层上走线的数量和长度,并且走线的布放要与大电流保持相同的方向,使影响最小化。

图1a和1c分别是六层和四层开关电源PCB的不良层结构。这些结构将小信号层夹在大电流功率层和地层之间,因此增加了大电流/电压功率层与模拟小信号层之间耦合的电容噪声。

非隔离式开关电源PCB布局优化设计

图中的1b和1d则分别是六层和四层PCB设计的良好结构,有助于最大限度减少层间耦合噪声,地层用于屏蔽小信号层。要点是:一定要挨着外侧功率级层放一个接地层,外部大电流的功率层要使用厚铜箔,尽量减少PCB传导损耗和热阻。

功率级的布局

开关电源电路可以分为功率级电路和小信号控制电路两部分。功率级电路包含用于传输大电流的元件,一般情况下,要首先布放这些元件,然后在布局的一些特定点上布放小信号控制电路。

大电流走线应短而宽,尽量减少PCB的电感、电阻和压降。对于那些有高di/dt脉冲电流的走线,这方面尤其重要。

图2给出了一个同步降压转换器中的连续电流路径和脉冲电流路径,实线表示连续电流路径,虚线代表脉冲(开关)电流路径。脉冲电流路径包括连接到下列元件上的走线:输入去耦陶瓷电容CHF;;上部控制FET QT;以及下部同步FET QB,还有选接的并联肖特基二极管。

非隔离式开关电源PCB布局优化设计

图3a给出了高di/dt电流路径中的PCB寄生电感。由于存在寄生电感,因此脉冲电流路径不仅会辐射磁场,而且会在PCB走线和MOSFET上产生大的电压振铃和尖刺。为尽量减小PCB电感,脉冲电流回路(所谓热回路)布放时要有最小的圆周,其走线要短而宽。

高频去耦电容CHF应为0.1μF~10μF,X5R或X7R电介质的陶瓷电容,它有极低的ESL(有效串联电感)和ESR(等效串联电阻)。较大的电容电介质(如Y5V)可能使电容值在不同电压和温度下有大的下降,因此不是CHF的最佳材料。

图3b为降压转换器中的关键脉冲电流回路提供了一个布局例子。为了限制电阻压降和过孔数量,功率元件都布放在电路板的同一面,功率走线也都布在同一层上。当需要将某根电源线走到其它层时,要选择在连续电流路径中的一根走线。当用过孔连接大电流回路中的PCB层时,要使用多个过孔,尽量减小阻抗。

图4显示的是升压转换器中的连续电流回路与脉冲电流回路。此时,应在靠近MOSFET QB与升压二极管D的输出端放置高频陶瓷电容CHF.

非隔离式开关电源PCB布局优化设计

图5是升压转换器中脉冲电流回路的一个布局例子。此时关键在于尽量减小由开关管QB、整流二极管D和高频输出电容CHF形成的回路。

非隔离式开关电源PCB布局优化设计

图5.本图显示的是升压转换器中的热回路与寄生PCB电感(a);为减少热回路面积而建议采用的布局(b)。

图6和图7(略)提供了一个同步降压电路的例子,它强调了去耦电容的重要性。图6a是一个双相12VIN、2.5VOUT/30A(最大值)的同步降压电源,使用了LTC3729双相单VOUT控制器IC.在无负载时,开关结点SW1和SW2的波形以及输出电感电流都是稳定的(图6b)。但如果负载电流超过13A,SW1结点的波形就开始丢失周期。负载电流更高时,问题会更恶化(图6c)。

非隔离式开关电源PCB布局优化设计

在各个通道的输入端增加两只1μF的高频陶瓷电容,就可以解决这个问题,电容隔离开了每个通道的热回路面积,并使之最小化。即使在高达30A的最大负载电流下,开关波形仍很稳定。

高DV/DT开关区

图2和图4中,在VIN(或VOUT)与地之间的SW电压摆幅有高的dv/dt速率。这个结点上有丰富的高频噪声分量,是一个强大的EMI噪声源。为了尽量减小开关结点与其它噪声敏感走线之间的耦合电容,你可能会让SW铜箔面积尽可能小。但是,为了传导大的电感电流,并且为功率MOSFET管提供散热区,SW结点的PCB区域又不能够太小。一般建议在开关结点下布放一个接地铜箔区,提供额外的屏蔽。

如果设计中没有用于表面安装功率MOSFET与电感的散热器,则铜箔区必须有足够的散热面积。对于直流电压结点(如输入/输出电压与电源地),合理的方法是让铜箔区尽可能大。

多过孔有助于进一步降低热应力。要确定高dv/dt开关结点的合适铜箔区面积,就要在尽量减小dv/dt相关噪声与提供良好的MOSFET散热能力两者间做一个设计平衡。

控制电路布局

使控制电路远离高噪声的开关铜箔区。对降压转换器,好的办法是将控制电路置于靠近VOUT+端,而对升压转换器,控制电路则要靠近VIN+端,让功率走线承载连续电流。

如果空间允许,控制IC与功率MOSFET及电感(它们都是高噪声高热量元件)之间要有小的距离(0.5英寸~1英寸)。如果空间紧张,被迫将控制器置于靠近功率MOSFET与电感的位置,则要特别注意用地层或接地走线,将控制电路与功率元件隔离开来。

控制电路应有一个不同于功率级地的独立信号(模拟)地。如果控制器IC上有独立的SGND(信号地)和PGND(功率地)引脚,则应分别布线。对于集成了MOSFET驱动器的控制IC,小信号部分的IC引脚应使用SGND.

信号地与功率地之间只需要一个连接点。合理方法是使信号地返回到功率地层的一个干净点。只在控制器IC下连接两种接地走线,就可以实现两种地。

此焊盘应焊到PCB上,以尽量减少电气阻抗与热阻。应在接地焊盘区放置多个过孔。

回路面积与串扰

两个或多个邻近导体可以产生容性耦合。一个导体上的高dv/dt会通过寄生电容,在另一个导体上耦合出电流。为减少功率级对控制电路的耦合噪声,高噪声的开关走线要远离敏感的小信号走线。如果可能的话,要将高噪声走线与敏感走线布放在不同的层,并用内部地层作为噪声屏蔽。

空间允许的话,控制IC要距离功率MOSFET和电感有一个小的距离(0.5英寸~1英寸),后者既有大噪声又发热。

走线宽度的选择

对具体的控制器引脚,电流水平和噪声敏感度都是唯一的,因此,必须为不同信号选择特定的走线宽度。通常情况下,小信号网络可以窄些,采用10mil~15mil宽度的走线。大电流网络(栅极驱动、VCC以及PGND)则应宽一些,具体宽度根据电流大小定义。

来源: 中电网

围观 336

来源: 电子发烧友网

布局的DFM要求

  1 已确定优选工艺路线,所有器件已放置板面。
  2 坐标原点为板框左、下延伸线交点,或者左下边插座的左下焊盘。
  3 PCB实际尺寸、定位器件位置等与工艺结构要素图吻合,有限制器件高度要求的区域的器件布局满足结构要素图要求。
  4 拨码开关、复位器件,指示灯等位置合适,拉手条与其周围器件不产生位置干涉。
  5 板外框平滑弧度197mil,或者按结构尺寸图设计。
  6 普通板有200mil工艺边;背板左右两边留有工艺边大于400mil,上下两边留有工艺边大于680mil。 器件摆放与开窗位置不冲突。
  7 各种需加的附加孔(ICT定位孔125mil、拉手条孔、椭圆孔及光纤支架孔)无遗漏,且设置正确。
  8 过波峰焊加工的器件pin间距、器件方向、器件间距、器件库等考虑到波峰焊加工的要求。
  9 器件布局间距符合装配要求:表面贴装器件大于20mil、IC大于80mil、BGA大于200mil。
  10 压接件在元件面距高于它的器件大于120mil,焊接面压接件贯通区域无任何器件。
  11 高器件之间无矮小器件,且高度大于10mm的器件之间5mm内未放置贴片器件和矮、小的插装器件。
  12 极性器件有极性丝印标识。同类型有极性插装元器件X、Y向各自方向相同。
  13 所有器件有明确标识,没有P*,REF等不明确标识。
  14 含贴片器件的面有3个定位光标,呈"L"状放置。定位光标中心离板边缘距离大于240mil。
  15 如需做拼板处理,布局考虑到便于拼版,便于PCB加工与装配。
  16 有缺口的板边(异形边)应使用铣槽和邮票孔的方式补齐。邮票孔为非金属化空,一般为直径40mil,边缘距16mil。
  17 用于调试的测试点在原理图中已增加,布局中位置摆放合适。
  
布局的热设计要求
  18 发热元件及外壳裸露器件不紧邻导线和热敏元件,其他器件也应适当远离。
  19 散热器放置考虑到对流问题,散热器投影区域内无高器件干涉,并用丝印在安装面做了范围标示。
  20 布局考虑到散热通道的合理顺畅。
  21 电解电容适当离开高热器件。
  22 考虑到大功率器件和扣板下器件的散热问题。
  
布局的信号完整性要求
  23 始端匹配靠近发端器件,终端匹配靠近接收端器件。
  24 退耦电容靠近相关器件放置
  25 晶体、晶振及时钟驱动芯片等靠近相关器件放置。
  26 高速与低速,数字与模拟按模块分开布局。
  27 根据分析仿真结果或已有经验确定总线的拓扑结构,确保满足系统要求。
  28 若为改板设计,结合测试报告中反映的信号完整性问题进行仿真并给出解决方案。
  29 对同步时钟总线系统的布局满足时序要求。
  
EMC要求
  30 电感、继电器和变压器等易发生磁场耦合的感性器件不相互靠近放置。 有多个电感线圈时,方向垂直,不耦合。
  31 为避免单板焊接面器件与相邻单板间发生电磁干扰,单板焊接面不放置敏感器件和强辐射器件。
  32 接口器件靠近板边放置,已采取适当的EMC防护措施(如带屏蔽壳、电源地挖空等措施),提高设计的EMC能力。
  33 保护电路放在接口电路附近,遵循先防护后滤波原则。
  34 发射功率很大或特别敏感的器件(例如晶振、晶体等)距屏蔽体、屏蔽罩外壳500mil以上。
  35 复位开关的复位线附近放置了一个0.1uF电容,复位器件、复位信号远离其他强*件、信号。
  
层设置与电源地分割要求
  37 两信号层直接相邻时须定义垂直布线规则。
  38 主电源层尽可能与其对应地层相邻,电源层满足20H规则。
  39 每个布线层有一个完整的参考平面。
  40 多层板层叠、芯材(CORE)对称,防止铜皮密度分布不均匀、介质厚度不对称产生翘曲。
  41 板厚不超过4.5mm,对于板厚大于2.5mm(背板大于3mm)的应已经工艺人员确认PCB加工、装配、装备无问题,PC卡板厚为1.6mm。
  42 过孔的厚径比大于10:1时得到PCB厂家确认。
  43 光模块的电源、地与其它电源、地分开,以减少干扰。
  44 关键器件的电源、地处理满足要求。
  45 有阻抗控制要求时,层设置参数满足要求。
  
电源模块要求
  46 电源部分的布局保证输入输出线的顺畅、不交叉。
  47 单板向扣板供电时,已在单板的电源出口及扣板的电源入口处,就近放置相应的滤波电路。
  
其他方面的要求
  48 布局考虑到总体走线的顺畅,主要数据流向合理。
  49 根据布局结果调整排阻、FPGA、EPLD、总线驱动等器件的管脚分配以使布线最优化。
  50 布局考虑到适当增大密集走线处的空间,以避免不能布通的情况。
  51 如采取特殊材料、特殊器件(如0.5mmBGA等)、特殊工艺,已经充分考虑到到货期限、可加工性,且得到PCB厂家、工艺人员的确认。
  52 扣板连接器的管脚对应关系已得到确认,以防止扣板连接器方向、方位搞反。
  53 如有ICT测试要求,布局时考虑到ICT测试点添加的可行性,以免布线阶段添加测试点困难。
  54 含有高速光模块时,布局优先考虑光口收发电路。
  55 布局完成后已提供1:1装配图供项目人对照器件实体核对器件封装选择是否正确。
  56 开窗处已考虑内层平面成内缩,并已设置合适的禁止布线区。

围观 348

页面

订阅 RSS - PCB布局