LPUART(Low power universal asynchronous receiver transmitter,低功耗通用异步收发器),相比标准的UART,其功耗极低,支持在低功耗模式下运行,并且可以将MCU从低功耗模式唤醒。
上期介绍了MM32全新低功耗系列MM32L0130的LPUART外设,并实现了基本UART收发通信和使用LPUART唤醒MCU。本期介绍LPUART的高级应用,实现DMA收发实验、使用数据匹配寄存器匹配到指定字符后唤醒MCU。
1、LPUART使用DMA
LPUART可以使用DMA来搬运数据,实现无需CPU参与的快速自动数据传输。硬件发出DMA请求与对应的DMA通道直连,也可以通过软件配置寄存器的方式触发DMA通道请求。LPUART的控制寄存器有对应的DMA使能位,如下图所示:
1.1 DMA中断
DMA的每个通道都有三种中断事件标志:DMA半传输、DMA传输完成和DMA传输出错。各通道单独的中断请求由这3种事件标志逻辑或起来。可以配置寄存器的对应位来使能这些中断:
1.2 LPUART使用DMA的配置步骤
1)根据基本UART配置步骤配置LPUART
2)使能LPUEN的DMAR与DMAT位激活DMA模式
3)使能DMA时钟
4)发送需要配置DMA的源地址(存储器地址)和目的地址(LPUTXD),传输的数据量以及DMA通道
5)配置完发送后,只要TXFIFO为空,就会请求DMA发送
6)接收需要配置DMA的源地址(LPURXD)和目的地址(存储器地址),传输的数据量以及DMA通道
7)配置完接收后,只要RXFIFO有数据,即不为空,就会请求DMA接收
1.3 功能代码实现
下面例程实现了使用DMA发送和接收LPUART数据,发送和接收完成后进入中断,例程在基本UART收发实验的基础上完成。
a.申请例程所用到的TX和RX缓存、TX和RX完成标志:
uint8_t TX_Buffer[16], RX_Buffer[16]; uint8_t TX_Complete = 0, RX_Complete = 0;
b.配置NVIC:
NVIC_InitTypeDef NVIC_InitStruct; NVIC_InitStruct.NVIC_IRQChannel = DMA1_Channel2_3_IRQn; NVIC_InitStruct.NVIC_IRQChannelPriority = 2; NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStruct);
c.配置DMA通道2为LPUART_TX:
void LPUART_DMA_TX_Init(void) { DMA_InitTypeDef DMA_InitStruct; RCC_DMA_ClockCmd(DMA1, ENABLE); DMA_DeInit(DMA1_Channel2); DMA_StructInit(&DMA_InitStruct); //DMA transfer peripheral address DMA_InitStruct.DMA_PeripheralBaseAddr = (uint32_t)&LPUART1->LPUTXD; //DMA transfer memory address DMA_InitStruct.DMA_MemoryBaseAddr = (uint32_t)TX_Buffer; //DMA transfer direction from peripheral to memory DMA_InitStruct.DMA_DIR = DMA_DIR_PeripheralDST; //DMA cache size DMA_InitStruct.DMA_BufferSize = 16; //The peripheral address is forbidden to move backward DMA_InitStruct.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //The memory address is shifted backward DMA_InitStruct.DMA_MemoryInc = DMA_MemoryInc_Enable; //Define the peripheral data width to 8 bits DMA_InitStruct.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; DMA_InitStruct.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; DMA_InitStruct.DMA_Mode = DMA_Mode_Normal; DMA_InitStruct.DMA_Priority = DMA_Priority_Medium; //M2M mode is disabled DMA_InitStruct.DMA_M2M = DMA_M2M_Disable; DMA_InitStruct.DMA_Auto_reload = DMA_Auto_Reload_Disable; DMA_Init(DMA1_Channel2, &DMA_InitStruct); DMA_SetChannelMuxSource(DMA1_Channel2, DMA1_MUX_LPUART1_TX); //Enable LPUART_DMA1_Channel Transfer complete interrupt DMA_ITConfig(DMA1_Channel2, DMA_IT_TC, ENABLE); LPUART_TX_DMACmd(LPUART1, ENABLE); while((LPUART1->LPUEN & LPUART_LPUEN_DMAT) == 0); //LPUART_DMA1_Channel enable DMA_Cmd(DMA1_Channel2, ENABLE); }
d.配置DMA通道3为LPUART_RX:
void LPUART_DMA_RX_Init(void) { DMA_InitTypeDef DMA_InitStruct; RCC_DMA_ClockCmd(DMA1, ENABLE); DMA_DeInit(DMA1_Channel3); DMA_StructInit(&DMA_InitStruct); //DMA transfer peripheral address DMA_InitStruct.DMA_PeripheralBaseAddr = (uint32_t)&LPUART1->LPURXD; //DMA transfer memory address DMA_InitStruct.DMA_MemoryBaseAddr = (uint32_t)RX_Buffer; //DMA transfer direction from peripheral to memory DMA_InitStruct.DMA_DIR = DMA_DIR_PeripheralSRC; //DMA cache size DMA_InitStruct.DMA_BufferSize = 16; //The peripheral address is forbidden to move backward DMA_InitStruct.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //The memory address is shifted backward DMA_InitStruct.DMA_MemoryInc = DMA_MemoryInc_Enable; //Define the peripheral data width to 8 bits DMA_InitStruct.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; DMA_InitStruct.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; DMA_InitStruct.DMA_Mode = DMA_Mode_Normal; DMA_InitStruct.DMA_Priority = DMA_Priority_Medium; //M2M mode is disabled DMA_InitStruct.DMA_M2M = DMA_M2M_Disable; DMA_InitStruct.DMA_Auto_reload = DMA_Auto_Reload_Disable; DMA_Init(DMA1_Channel3, &DMA_InitStruct); DMA_SetChannelMuxSource(DMA1_Channel3, DMA1_MUX_LPUART1_RX); //Enable LPUART_DMA1_Channel Transfer complete interrupt DMA_ITConfig(DMA1_Channel3, DMA_IT_TC, ENABLE); LPUART_RX_DMACmd(LPUART1, ENABLE); while((LPUART1->LPUEN & LPUART_LPUEN_DMAR) == 0); //LPUART_DMA1_Channel enable DMA_Cmd(DMA1_Channel3, ENABLE); }
e.编写中断服务函数:
void DMA1_Channel2_3_IRQHandler(void) { if(DMA_GetITStatus(DMA1_IT_TC2)) { DMA_ClearITPendingBit(DMA1_IT_TC2); TX_Complete = 1; } if(DMA_GetITStatus(DMA1_IT_TC3)) { DMA_ClearITPendingBit(DMA1_IT_TC3); RX_Complete = 1; } }
f.编写实验样例:
void LPUART_RxTx_DMA_Test(void) { uint8_t i; for(i = 0; i < 16; i++) { TX_Buffer[i] = i; } LPUART_DMA_TX_Init(); LPUART_DMA_RX_Init(); while(1) { if(TX_Complete == 1) { TX_Complete = 0; DMA1_Channel3->CMAR = (uint32_t)RX_Buffer; DMA1_Channel3->CNDTR = 16; DMA_Cmd(DMA1_Channel3, ENABLE); } if(RX_Complete == 1) { RX_Complete = 0; memcpy((void *)TX_Buffer, (void *)RX_Buffer, 16); DMA1_Channel2->CMAR = (uint32_t)TX_Buffer; DMA1_Channel2->CNDTR = 16; DMA_Cmd(DMA1_Channel2, ENABLE); } } }
g.在main函数中配置好LPUART和DMA后,调用实验函数LPUART_RxTx_DMA_Test,可以得到如下结果:
2、使用数据匹配寄存器匹配到指定字符后唤醒MCU
为进一步降低系统功耗,MM32L0130系列的LPUART提供了一种接收到指定字符才能唤醒低功耗状态的MCU的功能。用于唤醒的指定字符,由数据匹配寄存器确定:
2.1 接收中断配置寄存器
可以通过LPUART的LPUCON.RXEV寄存器配置唤醒事件为START位、一帧接收完成、一帧数据匹配或者RXD下降沿唤醒。
2.2 功能代码实现
匹配指定字符唤醒MCU功能,需要在上期讲解的LPUART唤醒低功耗模式中的MCU基础上修改中断事件配置、指定唤醒字符,具体代码如下:
a.配置LPUART接收中断事件为接收数据匹配成功:
LPUART_InitTypeDef init_struct; init_struct.LPUART_Clock_Source = 0; init_struct.LPUART_BaudRate = LPUART_Baudrate_9600; init_struct.LPUART_WordLength = LPUART_WordLength_8b; init_struct.LPUART_StopBits = LPUART_StopBits_1; init_struct.LPUART_Parity = LPUART_Parity_No; init_struct.LPUART_MDU_Value = 0x952; init_struct.LPUART_NEDET_Source = LPUART_NegativeDectect_Source2; init_struct.LPUART_RecvEventCfg = LPUART_RecvEvent_RecvData_Mactched; LPUART_Init(LPUART1, &init_struct);
b.配置特定的唤醒字符:
LPUART_SetMatchData(LPUART1, ‘5’); //指定字符’5’为唤醒字符
c.编写中断服务程序,判断接收匹配事件并清除标志:
void LPUART1_IRQHandler() { if(LPUART_GetFlagStatus(LPUART1, LPUART_LPUSTA_START)) { LPUART_ClearFlagStatus(LPUART1, LPUART_LPUSTA_START); } if(LPUART_GetFlagStatus(LPUART1, LPUART_LPUSTA_MATCH)) {//判断接收中断匹配事件 LPUART_ClearFlagStatus(LPUART1, LPUART_LPUSTA_MATCH); } if(LPUART_GetITStatus(LPUART1, LPUART_LPUIF_RXIF) == SET) { LPUART_ClearITPendingBit(LPUART1, LPUART_LPUIF_RXIF); rxDataBuf[cnt] = LPUART_ReceiveData(LPUART1); if(++cnt >= 10) cnt_flag = 1; } EXTI_ClearITPendingBit(EXTI_Line22); }
d.编写试验样例:
void LPUART_Wakeup_Test(void) { uint8_t temp, i; char string1[] = "LPUART wakeup mcu test!\r\n"; char string2[] = "mcu stop!\r\n"; char string3[] = "mcu wakeup!\r\n"; for(i = 0; i < strlen(string1); i++) { Output_Byte(LPUART1, string1[i]); } DELAY_Ms(20); for(i = 0; i < strlen(string2); i++) { Output_Byte(LPUART1, string2[i]); } PWR_EnterSTOPMode(PWR_Regulator_LowPower, PWR_STOPEntry_WFI);//休眠 for(i = 0; i < strlen(string3); i++) { Output_Byte(LPUART1, string3[i]); } while(1) { } }
e.在main函数配置好LPUART后,调用实验函数LPUART_Wakeup_Test,可以得到如下结果:
来源:灵动MM32MCU
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。