FreeRTOS

全球功率系统和物联网领域的半导体领导者英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)的AURIX™ TC3x微控制器(MCU)系列新增了对FreeRTOS的支持。实时操作系统(RTOS)是在微控制器上运行的关键软件组件,能够高效管理软硬件资源,确保任务得到及时、可靠的执行。通过充当硬件和应用软件之间的中介,RTOS使开发人员能够专注应用代码,将硬件的复杂性抽象化,从而实现应用代码在不同抽象层上的可移植性和可重用性,并缩短产品上市时间。

1732868412165268.jpg

AURIX™ TC3x

FreeRTOS是一种被广泛应用的免费开源RTOS,已有二十多年历史。该系统目前由亚马逊云科技(AWS)积极支持和开发。AWS还为FreeRTOS提供了一套中间件库,以便与AWS服务轻松集成。

英飞凌科技汽车MCU软件产品管理和市场负责人Patrick Will表示:“通过采用FreeRTOS,客户能在功能丰富的成熟开源环境中快速构建应用。该集成有助于在AURIX™ TC3x上进行快速功能评估,并且为我们的客户提供了加速非AUTOSAR项目迁移的途径,尤其是在汽车和工业市场。”

英飞凌AURIX™ TC3x MCU采用符合ASIL-D/SIL-3标准的设计能够满足汽车和工业市场的严格要求。凭借TriCore™高性能架构,这款MCU具备实时性、先进的安全特性和功能可靠性,是高要求应用的理想选择。

供货情况

内核端口可在https://github.com/FreeRTOS/FreeRTOS-Kernel-Partner-Supported-Ports/tree/main/Tasking/AURIX_TC3xx 获得,相应的代码示例可在https://github.com/FreeRTOS/FreeRTOS-Partner-Supported-Demos/tree/main/AURIX_TC375_ADS获得。有关AURIX™ TC3x 的更多信息,请访问www.infineon.com/aurix-tc3x

关于英飞凌

英飞凌科技股份公司是全球功率系统和物联网领域的半导体领导者。英飞凌以其产品和解决方案推动低碳化和数字化进程。该公司在全球拥有约58,060名员工(截至20249月底),在2024财年(截至930日)的营收约为150亿欧元。英飞凌在法兰克福证券交易所上市(股票代码:IFX),在美国的OTCQX国际场外交易市场上市(股票代码:IFNNY)。

更多信息请访问www.infineon.com

更多新闻请登录英飞凌新闻中心https://www.infineon.com/cms/cn/about-infineon/press/market-news/

英飞凌中国

英飞凌科技股份公司于1995年正式进入中国大陆市场。自199510月在无锡建立第一家企业以来,英飞凌的业务取得非常迅速的增长,在中国拥有约3,000多名员工,已经成为英飞凌全球业务发展的重要推动力。英飞凌在中国建立了涵盖生产、销售、市场、技术支持等在内的完整的产业链,并在销售、技术应用支持、人才培养等方面与国内领先的企业、高等院校开展了深入的合作。

围观 29

机器人的应用越来越广泛了,大家熟知的稚晖君直接创业搞机器人,可想而至,接下来的十年,机器人绝对是热门的行业。

目前市面上很多机器人都是基于一套叫做ROS的系统开发的,今天就给大家分享一个跑在MCU上,基于FreeRTOS的轻量级(micro)ROS。

随着市场需求不断的扩大,这种基于MCU的ROS将会越来越普及,对于从事机器人相关工作的读者有必要了解一下。

关于ROS

ROS:Robot Operating System,,即机器人操作系统。

和普通OS(RTOS、TSOS)不一样的是,ROS主要是针对机器人,是基于操作系统之上,提供一系列程序库和工具以帮助软件开发者创建机器人应用软件。它提供了硬件抽象、设备驱动、库函数、可视化、消息传递和软件包管理等诸多功能。ROS遵守BSD开源许可协议。

ROS设计者将ROS表述为“ROS = Plumbing + Tools + Capabilities + Ecosystem”,即ROS是通讯机制、工具软件包、机器人高层技能以及机器人生态系统的集合体。

micro-ROS

本文说的micro-ROS,是基于ROS2进行优化的一套轻量级ROS系统,它提供了完全部署的ROS 2生态系统的大多数吸引人的工具和功能,并具有入式和低资源设备的卓越能力,可以运行在MCU硬件平台。

传统上,即使机器人包含许多ROS,ROS仍停留在微控制器边界。它们通常通过串行协议与旧版ROS中的ROS-serial之类的工具集成在一起。

在微控制器中拥有所有ROS2的功能和相同的API会不是很好吗?这正是micro-ROS提供的-机器人系统嵌入式部分内部的ROS开发生态系统。micro-ROS允许开发人员在硬件级别附近运行ROS 2节点。这使所有硬件外设都可用于该应用程序,从而使其能够直接与SPI或I²C等低级总线进行交互,以与传感器和执行器接口。

微型ROS是一组分层的库,它们可以直接重用ROS 2的库,也可以使其适应资源受限设备的功能和需求。具体来说,如果我们转向ROS 2体系结构,则由微型ROS维护的层是ROS客户端库(RCL)和ROS中间件接口(RMW)。同样,RCLCPP是RCL之上的C ++抽象层,即使大多数与RCL直接接口,它也可以被微型ROS应用程序组件使用。该层在RCLC中提供了相对于ROS 2的附加功能,RCLC是用C99编写的库,其中专门设计和开发了与RCLCPP提供的功能类似的功能,例如便利功能或执行程序,以适合微控制器。 

1.png

通常,ROS是基于 Linux系统之上的运行的一套系统,而本文这套微型ROS基于FreeROS运行。

这使micro-ROS在硬件和软件级别上都能与大多数嵌入式平台兼容。
但是,最终构成micro-ROS体系结构的是RMW实现,该实现基于称为Micro XRCE-DDS的中间件库。Micro XRCE-DDS是由对象管理组(OMG)定义和维护的DDS-XRCE(用于极端资源受限环境的DDS)协议的C / C ++实现。

2.png

顾名思义,DDS-XRCE是一种有线协议,允许引入以数据为中心的发布者-订阅者DDS模型进入嵌入式世界。DDS-XRCE依赖于客户端-服务器体系结构,其中客户端是用C99编写的轻量级实体,可在低资源设备中运行,而代理(C ++ 11应用程序)则充当客户端与DDS世界之间的桥梁。DDS-XRCE协议负责在这两个实体之间传递请求和消息。相应地,该代理能够通过标准DDS有线协议与DDS全局数据空间进行通信。在DDS世界中,代理通过与其他DDS参与者进行通信来代表客户。该通信由客户端代理,能够通过所有标准DDS实体与DDS进行交互的模拟DDS应用程序进行协调。代理将客户端的状态保存在其内存中,这样,即使代理断开连接,代理也可以存活。代理与客户端之间的通信遵循请求-响应模式,即双向并基于操作和响应。

为什么选择FreeRTOS?

由于它们的轻巧性,XRCE-DDS客户端库和microROS都易于在实时操作系统之上运行,这使它们能够满足其典型目标应用程序所提出的对时间要求严格的要求,其中涉及的任务包括要求时限或确定性响应。

具体来说,FreeRTOS已成为micro-ROS项目支持的首批RTOS之一,因此已集成到其软件堆栈中。这允许重用FreeRTOS社区和合作伙伴提供的所有工具和实现。由于微型ROS软件堆栈是模块化的,因此期望并期望交换软件实体。

FreeRTOS是开发micro ROS和Micro XRCE-DDS应用程序的理想选择。首先,它为许多不同的体系结构和开发工具提供了一个独立的解决方案,它以非常清晰和透明的方式编写,并且拥有非常庞大的用户群,从而确保了大量FreeRTOS用户将能够将其应用程序与微型ROS应用程序集成。而且,它是众所周知的高度可靠的RTOS。至关重要的是,FreeRTOS具有最小的ROM,RAM和处理开销。通常,RTOS内核二进制映像的大小在6K到12K字节之间。由于要与RTOS进行资源竞争,因此,当要最小化MCU上的微型ROS应用程序的内存占用量时,这些内存是理想的选择。

在下文中,我们将讨论FreeRTOS提供的几种功能,以及微型ROS如何利用它们来获利,以优化其堆栈中组成的不同库的所需功能。

任务和计划程序

FreeRTOS提供了一组最少的任务实体,这些实体与调度程序的使用一起,为在应用程序中实现确定性提供了必要的工具。微型ROS客户端库(RCL,RCLC和RCLCPP)访问RTOS的资源,以控制调度和电源管理机制,从而为开发人员提供了优化应用程序的可能性。

FreeRTOS提供的任务有两种:标准任务和空闲任务。前者由用户创建,可以视为RTOS上的应用程序。至关重要的是,将微型ROS应用程序集成到RTOS中作为具有给定优先级的此类任务之一。空闲任务另一方面,优先级较低的任务只有在没有其他任务在运行时才进入运行模式。由于microROS主要针对低功耗和IoT设备,因此这些空闲任务和相关的空闲挂钩非常适合在MCU中启用深度睡眠状态。由于将无状态XRCE-DDS客户端实现为micro-ROS中间件,因此这些深度睡眠状态可能是内存易失的,也就是说,由于面向连接的中间件有线协议,可以使用没有RAM持久性的深度睡眠模式。

使用FreeRTOS调度程序,micro-ROS能够管理其主要任务以及负责传输层的任务的优先级。通常,负责网络堆栈或串行接口的任务必须优先于micro-ROS应用程序。

内存管理

FreeRTOS提供的最令人期望的功能(对于微型ROS开发人员和用户而言非常有趣)是堆栈管理和静态堆栈创建能力。在处理micro-ROS的任务创建时,通常,堆栈分配是关键的设计决策。FreeRTOS允许进行细粒度的堆栈大小管理,这又使程序员可以知道在程序执行期间正在使用多少堆栈内存,或例如确定堆栈内存分配是否存在于静态或动态内存中,从而确定帮助正确使用MCU的内存,这是嵌入式系统中的宝贵资源。至关重要的是,可以为微ROS提供繁重的堆栈使用方任务,并为其分配静态分配的堆栈,从而防止将来出现堆和其他任务初始化问题。

在这方面,值得一提的是,这些内存管理工具为基准化微型ROS和XRCE-DDS的内存占用量提供了理想的框架。具体而言,已进行了彻底的堆栈消耗分析,以评估XRCE-DDS客户端内存消耗。堆栈是程序员在运行应用程序之前未知的内存块。为了对其进行度量,可以使用FreeRTOS uxTaskGetStackHighWaterMark()函数,该函数返回在执行过程中XRCE-DDS任务堆栈达到最大值时未使用的堆栈量。通过将此值减去总堆栈,可以得到XRCE-DDS应用程序使用的堆栈峰值。用这种方法获得的结果汇总在此处发布的报告中。

我们还注意到,由于FreeRTOS中使用了可插拔的动态内存管理方法,因此micro-ROS能够完成所需的用于管理内存的接口。通过这种方式,已经使用heap_4作为参考实现了诸如calloc()或realloc()之类的函数。这些功能在馈入micro-ROS内存管理API之前已被包装,以便分析动态内存消耗。

与静态内存情况类似,FreeRTOS的可交换动态内存管理方法使在嵌入式系统中执行动态内存配置文件分析特别容易。的确,尽管在其他RTOS中,动态(取消)分配功能隐藏在RTOS或标准库的深处,但在FreeRTOS中,它们暴露给用户并易于定制,因此简化了处理和控制动态内存使用的过程。

传输

与客户端支持库访问FreeRTOS的特定原语和功能(例如调度机制)的方式相同,中间件实现Micro XRCE-DDS要求访问RTOS的传输和时间资源以使其正常运行。关于IP传输,在FreeRTOS的特定情况下,Micro XRCE-DDS使用在此RTOS上实现lwIP的附件。lwIP(轻型IP)是为嵌入式系统设计的,广泛使用的开源TCP / IP堆栈,旨在减少资源使用,同时仍提供完整的TCP堆栈。这使得lwIP的使用特别适用于以micro-ROS为目标的嵌入式系统和资源受限的环境。

除了TCP / IP堆栈,lwIP还有其他几个重要部分,例如网络接口,操作系统仿真层,缓冲区和内存管理部分。操作系统仿真层和网络接口允许将网络堆栈移植到操作系统中,因为它提供了lwIP代码和操作系统内核之间的通用接口。

FreeRTOS与lwIP 的集成是从头开始设计的,具有标准且熟悉的接口(伯克利套接字),并且具有线程安全性,旨在使其尽可能易于使用。而且,它可以将缓冲区管理保留在可移植层中。

请注意,XRCE-DDS客户端还支持FreeRTOS + TCP网络堆栈。FreeRTOS + TCP是用于TCP / IP堆栈协议支持的官方FreeRTOS扩展库。

还努力使FreeRTOS + TCP与micro-ROS兼容。这包括对TCP和UDP连接的支持,它们依靠FreeRTOS + TCP API来实现micro XRCE-DDS Client API所要求的抽象层,以便能够使用这些协议与代理进行通信。

此外,还存在使用FreeRTOS的时间测量功能的可能性,从而使XRCE-DDS库能够执行基于时间的任务,从而使用户看不到实现。

Posix扩展

允许将FreeRTOS无缝和盈利地集成到micro-ROS中的另一个显着原因是POSIX扩展的可用性。便携式操作系统接口(POSIX)是IEEE计算机协会为维护操作系统之间的兼容性而指定的一系列标准。FreeRTOS Labs提供的FreeRTOS + POSIX层实现了POSIX API的子集。

确实,尽管micro-ROS中间件具有较低的POSIX依赖关系(只是clock_gettime()函数),但整个micro-ROS堆栈具有与功能和类型定义相关的更高依赖关系。另外,由于微型ROS项目的基本原理之一是移植或重用Linux(主要是POSIX兼容操作系统)中本机编码的ROS 2的代码,因此使用了某种程度上可与Linux兼容的RTOS。POSIX显然是有益的,因为代码的移植工作量很小。

为此,使用了sleep()和usleep()之类的函数。micro-ROS的POSIX类型定义依赖项依赖于FreeRTOS内核中未定义的某些结构,例如struct timeval或struct timespec。还需要诸如type.h,signal.h或unistd.h之类的文件来定义一些标准的类型定义和结构。

对于errno.h,尽管在FreeRTOS + POSIX层中未实现,但出于编译目的,micro-ROS必须包括一些不可用的定义。

通过使用FreeRTOS + FAT库,应在micro-ROS堆栈中重构这些定义,以使FreeRTOS + POSIX具有完全的兼容性。这样,可以完全支持依赖文件系统支持的高级micro-ROS功能,例如日志记录机制。

更多相关教程

如何在FreeRTOS上使用Olimex STM32-E407评估板创建和运行第一个微型ROS应用程序:

3.png

4.jpg

该教材地址:https://micro-ros.github.io/docs/tutorials/core/first_application_rtos/freertos/

更多内容,请参看:https://micro-ros.github.io/

4.png

来源:嵌入式专栏(作者 | strongerHuang)

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 447

基于空中下载技术(OTA:Over-The-Air)并通过云服务端实现的MCU固件升级得益于云供应商和设备供应商之间的合作开展,目前已具备了简单且可快速部署的集成环境。

RX产品家族系列技术干货分享(二)-【AWS认证程序】使用AWS OTA更新固件

目前为止的解决方案是使MCU通过互联网与Amazon Web Services(AWS)等云服务直接连接,从而实现固件升级。

然而,实际上除了直接与互联网连接的MCU之外,还有很多应用实例使用多个MCU(二级MCU)构建同一个嵌入式系统。

“RX系列帮您实现二级MCU

对于这样的系统,需要不断地进行二级MCU的固件升级,以持续改进服务和降低安全风险。

在此背景下,瑞萨RX云互联解决方案开发团队开始提供即便在未直接与互联网连接的二级MCU中,也可以利用AWS IoT服务方案进行OTA固件升级的示例代码。相关示例代码可通过以下链接下载。

Secondary Device OTA演示视频

单击以下链接到浏览器中查看

https://www2.renesas.cn/us/zh/video/secondary-device-ota-update-using-freertos-and-amazon-web-services

“RX系列帮您实现二级MCU

应用说明(示例代码)R01AN6220

“”

在本次提供的演示中,您可以使用Quick-Connect IoT在二级MCU上安装传感器测量功能,再利用AWS IoT服务通过OTA技术进行二级MCU固件升级,从而添加可测量传感器的类型。

关于Quick-Connect IoT快速接入式物联网,请点击下方链接查看相关文章:

工程师说 | 瑞萨电子现在提供快速接入式物联网平台连接选项

下面将简单介绍一下使用AWS云进行OTA处理的过程。

在AWS直连MCU上执行的OTA处理是一种通过该公司提供的OTA用Platform Abstraction Layer(PAL)对自身(一级MCU)硬件进行控制的机制。(左下图)

利用这一机制,可以添加与自身OTA应用不同的PAL,与二级MCU通信并传输OTA指令,以实现二级MCU的OTA。(右下图)

“RX系列帮您实现二级MCU

此外,瑞萨还特别提供了用于执行二级MCU端OTA的驱动程序(FWUP FIT模块),以进一步减轻OTA的安装负载。

以上链接演示是通过扩展FWUP FIT模块实现的。与其他驱动程序一样,均可免费使用。

RX产品家族系列技术干货分享(八)- 介绍可以轻松实现RX系列FOTA(Firmware Update Over-The-Air)固件更新的中间件

另外,自身(一级MCU)OTA用PAL和二级MCU OTA用PAL之间的切换可使用在AWS端发出OTA处理指令时的变量进行设置。

今后瑞萨电子将继续提供可实现IoT轻松开发的解决方案。敬请期待!

欢迎广大用户点击文末阅读原文阅览RX云互连解决方案,汇总了RX系列相关云信息,各种解决方案一应俱全。

以下是所有与云解决方案相关的帖子。

工程师说 | Azure RTOS×RX65N Cloud Kit云连接,观看视频即可轻松搞定!

RX产品家族系列技术干货分享(八)- 可以轻松实现RX系列FOTA(Firmware Update Over-The-Air)固件更新的中间件

RX产品家族系列技术干货分享(五)- 轻松的Azure IoT连接!RX65N 32位MCU支持Azure RTOS

RX产品家族系列技术干货分享(四)- 无需移植!即使是超级初学者也能完成的实时操作系统程序开发

来源:瑞萨电子(作者:Hiroyuki Nakaki)
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 103

如果CPU没有中断,你能想象是什么情况吗?

就是一个while循环,且不能中断处理及时的任务,更别说有现在的RTOS了(RTOS也是需要中断才能实现)。

下面就来说说关于Cortex-M的中断,及FreeRTOS中断优先级配置原理。

1、关于Cortex-M3处理器

写本文之前,先写点相关的扩展内容,本文结合内核为Cortex-M3的STM32来讲述。

STM32属于ARM中Cortex-M系列处理器,比如:STM32F1数据Cortex-M3,STM32F7数据Cortex-M7。

“Cortex-M中断及FreeRTOS中断优先级配置原理"

本文主要结合Cortex-M3下面STM32F1系列处理器为例来讲述中断控制相关内容。而Cortex-M其它系列,或者说STM32其它系列关于中断的内容类似。

Cortex-M3只是STM32F1的一个内核。反过来说STM32F1是在Cortex-M3基础上增加了一些外设(如:USART、AD等)的芯片。

2、Cortex-M中断控制

NVIC:Nested Vectored Interrupt Controller,即嵌套向量中断控制器。

STM32中NVIC我们比较熟悉,编程的时候使用中断都会对NVIC进行配置。

而STM32F1中的NVIC是属于Cortex-M3中的一部分,而不是STM32增加的外设。

NVIC向量中断控制器是Cortex‐M3不可分离的一部分,它与 CM3 内核的逻辑紧密耦合,有一部分甚至水乳交融在一起。

所以,NVIC相关的寄存器位于Cortex-M手册中。讲述STM32的中断控制,还得从Cortex-M3的NVIC讲起,

1)中断输入向量表

Cortex-M3的NVIC支持1至240个中断输入,比如STM32中xxxIRQs,也就是中断向量表,具体的数值由芯片厂商在设计芯片时决定。

比如STM32F1的中断和异常向量表:

“Cortex-M中断及FreeRTOS中断优先级配置原理"

“Cortex-M中断及FreeRTOS中断优先级配置原理"

2)中断和异常区别

很多初学的朋友不知道什么是中断?什么是异常?甚至有人直接把中断和异常笼统称为“中断”。

中断和异常其实有差异,也有关联,我们常说的中断其实是包含了异常。异常可以理解为MCU,或者程序处于了某种异常状态。

这么区分吧,看上面向量表,上部分有灰色背景的为异常,下部分白色的为中断。

异常属于Cortex‐M3内核的一部分,而中断属于MCU(STM32)的一部分(由厂家决定)。

所以:

1.站在Cortex‐M3内核角度,像STM32中USART这类中断,属于外部中断。

2.站在STM32角度,EXTI外部引脚中断才属于中断。

3)优先级

对于Cortex-M3来说,每个外部中断都有一个对应的优先级寄存器。

每个寄存器占用8位,但是允许最少只使用最高3位,在STM32F1中使用了高4位。(也就是我们可以分16个优先级)

优先级可以被分为高低两个位段,分别是抢占优先级和亚(响应)优先级。

“Cortex-M中断及FreeRTOS中断优先级配置原理"

提示:

1.STM32中断优先级数值越小,优先级越大。

2.优先级分组:Cortex-M3,M4具有分组功能,即存在抢占优先级和响应优先级,如下图:

“Cortex-M中断及FreeRTOS中断优先级配置原理"

而有的内核就没有,如Cortex-M0就没有。

3.参考资料

可以参看《Cortex-M3权威指南》

STM32的内核编程手册:

http://www.st.com/stonline/products/literature/pm/15491.pdf

3、FreeRTOS中断优先级配置

本节内容讲述一下FreeRTOS最大中断优先级配置问题,也就是FreeRTOSConfig.h配置文件中的:

configMAX_SYSCALL_INTERRUPT_PRIORITY

“Cortex-M中断及FreeRTOS中断优先级配置原理"

你们知道配置数值的含义吗?这里就需要结合NVIC相关的内容来理解。

上面说了,在STM32中,使用了NVIC优先级的高4位,而我们配置时需要对高4位进行配置(低4位未使用)。

“Cortex-M中断及FreeRTOS中断优先级配置原理"

看上图,明白了吗,上面这个数值就是95,但代表的优先级为5。

这个配置数值的含义,大概意思是:你代码中使用的中断(比如USART1_IRQn)优先级需要大于5才可行。

如下面配置,优先级为2就不行(当然,有分组的还牵涉到分组问题)。

“Cortex-M中断及FreeRTOS中断优先级配置原理"

关于FreeRTOS最大优先级配置的内容可以参考:

https://www.freertos.org/RTOS-Cortex-M3-M4.html

最后再次提示:

FreeRTOS任务优先级是数值越大,优先级越高,需要和CM3中断优先级区分开来。

来源:嵌入式专栏
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 603
订阅 RSS - FreeRTOS