Flash

如果你还不了解什么是STM32对其Flash的保护,那么今天就来给你讲解一下什么是STM32的Flash保护!

01、什么是Flash?

STM32的FLASH组织结构,可能因不同系列、型号略有不同。比如大家熟悉的STM32F1中小容量一页大小只有1K,而F1大容量一页有2K。

还比如有些系列以扇区为最小单元,有的扇区最小16K,有的128K不等。

通常Flash包含几大块,这里以F40x为例:

  • 主存储器:用来存放用户代码或数据。

  • 系统存储器:用来存放出厂程序,一般是启动程序代码。

  • OTP 区域:一小段一次性可编程区域,供用户存放特定的数据。

  • 选项字节:存放与芯片资源或属性相关的配置信息。

“讲讲STM32单片机Flash的读保护和写保护"

02、什么是STM32对内部Flash的保护?

所有的STM32芯片都会提供对Flash的保护,防止对Flash的非法访问,分为:写保护和读保护。

1、读保护就是大家通常说的“加密”,作用于整个Flash存储区域。如果一旦设置了Flash的读保护,那么单片机内置的Flash存储区就只能通过程序的正常执行才能读出,而不能通过下述方式读出:

(1) 使用调试器(JTAG或SWD);
(2)从内存RAM中启动并执行的程序;

2、写保护是以四页(1KB/页) Flash存储区为单位提供写保护,如果对Flash设置了写保护,那么就无法对Flash进行编程和擦除,而且同时产生操作错误标志。 当出现下图标志的时候,就要检查Flash是否被保护起来了。

“讲讲STM32单片机Flash的读保护和写保护"

03、读保护与写保护的相关效果

当设置读保护与写保护时,其效果如下图所示:

“讲讲STM32单片机Flash的读保护和写保护"

1)flash保护的相关函数

“讲讲STM32单片机Flash的读保护和写保护"

2)STM32如何设置读保护?

我们只需要在程序开头加入“设置读保护”的代码就可以,这样就可以在每次运行代码的时候都检查一下,如果没有开的话就打开,如果开了就跳过。下面是读保护的代码:

“讲讲STM32单片机Flash的读保护和写保护"

当我们在程序的开头执行了上面的代码之后,使用j-link就不能在读出程序了,这样就实现了读保护。

3)如何通过代码解除Flash保护

解除读保护可以下面代码来进行解除,我们为了方便解锁,可以设置一个按键。

“讲讲STM32单片机Flash的读保护和写保护"

来源:玩转单片机与嵌入式
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 2390

本文将介绍如何拆焊Flash芯片,设计及制作相应的分线板。了解对嵌入式设备的非易失性存储的简单有效攻击手段。这些攻击包括:

  • 读取存储芯片内容

  • 修改芯片内容

  • 监视对存储芯片的读取操作并远程修改(中间人攻击)

想想,当你拆开一个嵌入式产品,却被挡在Flash之外,好奇的你一定想对它一探究竟。

那么,下面我们就开始。

拆焊Flash芯片

为了读取Flash芯片的内容,有以下两个基本途径:

  • 直接将导线连接到 芯片的引脚

  • 把芯片拆下来,插到另一块板子上

下面介绍的Flash为BGA(球形栅格阵列)封装——无外露引脚。因此,只能选择拆焊的方法。

“图:目标芯片"
图:目标芯片

拆焊法的优点:

  • 可避免对电路板上其他器件造成影响;

  • 可以很容易看到芯片底部的布线;

  • 可用其他芯片或微控制器代替原芯片。

一些不便之处:

  • 电路在缺少完整器件的情况下无法运行;

  • 在拆卸过程中,一些邻近器件可能被损坏;

  • 如果操作不恰当,Flash本身可能毁坏。

OK,拆焊是吧?你看,下图所示的热风枪简直就是神器。只要将芯片周围加热,便可以很容易地拿下芯片:

“图:热风枪拆焊"
图:热风枪拆焊

这种办法简单、快速只是可能伤及无辜——焊掉邻近的元件,所以,务必小心翼翼。

下图显示芯片拆下后PCB的布线。观察图片,猜想底部的两列引脚为空引脚,因为他们压根就没接入电路。

“图:拆焊下来后"
图:拆焊下来后

用KiCAD定制分线板

现在该做什么?BGA封装简直就是一团糟,依然无法外接导线。

一种可行的方法是制作分线板。通常,分线板是将芯片的所有针脚的位置“镜像”下来,这样就能将芯片的引脚引接出来。

为此,我们首先要搜集芯片的相关信息。大多数情况下,芯片的型号都印制在芯片上,这样我们就很容易识别。如上图,芯片上第一行为MXIC代表Macronix International公司,第二行为芯片的具体型号MX25L3255EXCI datasheet 。以下为datasheet资料:

“图:针脚排布"
图:针脚排布

 PCB的设计可由KiCAD ,常用的EDA软件实现。

    分线板的设计过程与其他PCB板一样:

  • 新建电路板,画出电路简图,标明元器件的具体型号

  • 确定芯片的具体尺寸

根据之前datasheet的资料。我们添加1个4×6的网格作为整个芯片的BGA封装,2个1×4的网格作为连接芯片8个有效引脚的接线柱。最后一步是,用线路将这些器件连接起来:

“图:step2"
图:step2

转接板的设计到此为止,接下来是如何把设计转化成的PCB。

PCB制作

PCB就像是由两层铜和一层基板压制成的三明治,导线分布在铜上面。

根据制作流程,分为:

  • 蚀刻法

  • 数控铣法

以下为两种方法的具体步骤。

蚀刻法

蚀刻,即是用化学药品逐步除去铜的过程。我们先用油墨保护覆铜板上的线路及要保留下来的铜。

1、首先,用热转印法制作PCB。PCB电路图用激光打印机打印在亮光纸上。然后,把亮光纸紧贴在覆铜板上,加热和施以压力,使亮光纸上的电路图转印到覆铜板上。通常,这个过程用熨衣服的熨斗即可完成,但是专用的压制器会使加热及受力更加均匀,更容易成功。

2、接下来是蚀刻,将整块PCB板浸没在腐蚀液,以此来去除多余的铜。

蚀刻后的分线板,转印的墨粉还附着在上面:

“图:step3"
图:step3

除去墨粉后:

“图:step4"
图:step4

现在可以准备手工焊接了。微型焊接与正常焊接一样,只是器件的尺寸极小,因此需要借助显微镜。

此外,传统的焊接用的是线状的焊锡丝,而BGA微型焊接用的是锡球。

“图:step5"
图:step5

接下来,开始重整锡球:

  • 将一个新的锡球放置在凹槽上,加热,熔化锡球;

  • 校准芯片和板子;

  • 回流。

“图:step6"
图:step6

锡球重整完成:

“图:step7"
图:step7

芯片焊接完成后的最终结果:

“图:step8"
图:step8

数控铣

作为替代方法,数控铣仅是将需要的线路和剩余的铜隔离开来而已。

(1)5X5的BGA通常用于制作 PCB,而4X6的常用于分线板。我们设计5X5的是为了该分线板可以直接插接在通用EEPROM 编程器的ZIF插槽里,电路简图如下:

“图:step9"
图:step9

(2)芯片的尺寸与前面设计的4X6的一样,只是网格变成5X5,板上的布线也稍显复杂:

“图:step10"
图:step10

(3)由于KiCAD无法直接生成与数控铣兼容的目标文件,因此,我们用Flatcam接收Gerber文件并确定数控铣隔离的导线的路径:

“图:step11"
图:step11

“图:step12"
图:step12

(4)接下来将生成的STL文件导入bCNC——数控铣的终端控制程序,如下图所示:

“图:step13"
图:step13

雕刻过程中:

“图:step14"
图:step14

(5)板子雕刻完成:

“图:step15"
图:step15

最终结果:

“图:step16"
图:step16

(6)下一步,涂覆阻焊层,保护铜不被氧化,并用紫外灯固化:

“图:step17"
图:step17

“图:step18"
图:step18

(7)阻焊层覆盖了BGA的铜片及1X4的接线柱,我们得刮掉这个薄层,使铜片露出来:

“图:step19"
图:step19

(8)给各个节点焊锡:

“图:step20"
图:step20

“图:step21"
图:step21

(9)回到数控铣,打孔,切削PCB的边缘:

“图:step22"
图:step22

“图:step23"
图:step23

(10)最终成品,BGA焊接在板子上,准备插到EEPROM编程器上:

“图:step24"
图:step24

结论

了解了如何拆焊Flash芯片和如何设计PCB,以及制作PCB的两种不同方法。

来源:STM32嵌入式开发
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 63

关于STM32对内部Flash的保护

为了防止对Flash的非法访问,所有STM32的芯片都提供对Flash的保护,具体分为写保护和读保护。

如果对Flash设置了写保护,那就无法对Flash进行编程和擦除。在开发STM32的时候,如果出现这种情况,通常仿真器都支持对Flash进行解锁,像jlink,stlink等仿真器都支持这个功能。

在使用MDK进行调试的时候,可能会遇到如下图所示的报错信息,这时候就要排查Flash是不是被保护起来了。

“”

读保护即大家通常说的“加密”,是作用于整个Flash存储区域。一旦设置了Flash的读保护,内置的Flash存储区只能通过程序的正常执行才能读出,而不能通过下述任何一种方式读出:

  • 通过调试器(JTAG或SWD)
  • 从RAM中启动并执行的程序

写保护是以四页(1KB/页) Flash存储区为单位提供写保护,对被保护的页实施编程或擦除操作将不被执行,同时产生操作错误标志,读与写设置的效果见下表:

“”

当Flash读保护生效时,CPU执行程序可以读受保护的Flash区,但存在两个例外情况:

  • 调试执行程序时
  • 从RAM启动并执行程序时

STM32还提供了一个特别的保护,即对Flash存储区施加读保护后,即使没有启用写保护,Flash的第 0 ~ 3 页也将处于写保护状态,这是为了防止修改复位或中断向量而跳转到RAM区执行非法程序代码。

Flash保护的相关函数

FLASH_Unlock();   //Flash解锁 
FLASH_ReadOutProtection(DISABLE);  //Flash读保护禁止   
FLASH_ReadOutProtection(ENABLE);   //Flash读保护允许

STM32如何设置读保护和解除读保护?

读保护设置后将不能读出Flash中的内容。

如何设置读保护

在程序的开头加入“设置读保护”的代码即可,每次运行代码时都检查一下,如果没有开就打开,如果打开了就跳过。其中,设置读保护的代码如下:

int main(void)
{
  ...
  if (FLASH_GetReadOutProtectionStatus()!=SET)//检查设置读保护与否
  {
    FLASH_Unlock();         //写保护时可以不用这句话,可用可不用
    FLASH_ReadOutProtection(ENABLE);     //设置读保护
  }
  ...
  while(1)
  {
    ...
  }
}

上面的代码执行后,使用j-link就不能读出程序了,实现了代码读保护。需要注意的是,芯片读保护后无法再次烧写新的程序到Flash中,必须要解除读保护才可以。但是当解除读保护的时候STM32会自动擦除整个Flash,起到保护数据的作用。

通过代码解除Flash保护

解除读保护可以设置在按键里面,方便实现解锁,也可以设置在命令中。如下是解除读保护代码:

void Off_Protect(void) //关闭保护
{
if(FLASH_GetReadOutProtectionStatus() != RESET)
  {
    FLASH_Unlock(); //不解锁FALSH也可设置读保护,可用可不用
    FLASH_ReadOutProtection(DISABLE);
    FLASH_Lock();   //上锁
  }
}

程序中设置一个按键或者命令,可以随时解除Flash的读保护,让芯片又可以重新烧录程序。如果没有留,还可以专门写一个程序,下载到RAM中去运行,用来解除读保护。

注意:执行后,Flash会自动全部擦除。

int main(void)
{
Chip_Init();
  FLASH_Unlock(); //不解锁FALSH也可设置读保护,可用可不用
  FLASH_ReadOutProtection(DISABLE);
}

通过ST-Link Utility来解除Flash保护

在STLink连接目标板的情况下打开程序烧写软件ST-Link Utility,在菜单栏的Target下选择connect,因为这时候Flash已经被锁住了,能看到如下图所示的错误提示。

“”

下面来操作如何解除Flash保护。

请确保当前已经正确连接了STLink和目标板,在菜单栏Target里打开Option Bytes...选项,发现在这里Read Out Protection选项是Enable,这个表示无法通过SWD读取STM32内部Flash的程序。

“”

将Read Out Protection选项设置为Disable,并点击Apply。

这时候Flash已经成功解锁了,跟上文提到的解除Flash保护的结果一样,内部Flash已经被擦除了,如下图红框中所示。

“”

完成以上步骤之后,在菜单栏Target下选择Disconnect断开与目标板连接。

重新进入MDK,可以正常对目标板烧写程序了。

通过ST-Link Utility来设置Flash保护

“”

在菜单栏Target里打开Option Bytes...选项,可以看到下面有Flash sector protection选项。选择Select all之后,发现所有Page的Protection项都已经变成Write Protection了,只要选择Apply选项就可以对Flash进行写保护,如上图所示。

本文转载自:STM32嵌入式开发
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 353

1、前言

单片机内部的FLASH除了存储固件以外,经常将其分成多个区域,用来存储一些参数或存储OTA升级的待更新的固件,这时就会涉及到单片机内部FLASH的编程和擦除操作,STM32不同系列的单片机内部FLASH特性和扇区大小都不太一样,如果不注意这些细节,那就等着爬坑吧

1、FLASH的分区以及扇区大小

FLASH擦除是按照扇区擦的,所以这个很重要,在工程中全局搜索 FLASH_PAGE_SIZE 宏就可以查看该芯片的页(扇区)大小,改宏在 stm32xxx_hal_flash.h中有定义

2、FLASH擦拭后的状态

F1和F4系列的芯片FLASH在擦除后会是0xFFFFFFFF,而L1系列的芯片FLASH在擦除后是0x00000000!!!!!

3、FLASH的编程速度

L1芯片内部FLASH编程速度比F1慢50倍!!!所以在使用L1芯片写入数据时相对于F1慢是正常的

2、STM32 F1、F4、L1系列内部FLASH分区及大小

1、STM32F1系列

对于F1系列的芯片大容量产品的FLASH主存储器每页大小为2K,如【下图】,而中容量和小容量的产品每页大小只有1K


2、STM32F4系列

分为2个Bank,每个Bank分为12个扇区,前4个扇区为16KB大小,第五个扇区是64KB大小,剩下的7个扇区都是128K大小


3、STM32L1系列

3、STM32 F1、F4、L1系列内部FLASH编程时间

信息参考对应芯片的数据手册的 Electrical characteristics 章节


1、STM32F1系列

可以看出F1系列内部FLASH页擦除时间最大为40ms,半字写入的时间为52.2us,比如按字写入1024字节数据,需要26.8ms,还是比较快的


2、STM32F4系列

可以看出F4系列内部不同扇区擦除时间也不一样的,字写入的时间为16us,比如按字写入1024字节数据,只需要4ms,非常快


3、STM32L1系列

可以看出L1系列内部FLASH页擦除和编程的时间都是3.28ms,比如按字写入1024字节数据,需要840ms,非常慢;但是擦除是比较快的


版权声明:本文为CSDN博主 hurryddd 的原创文章,
遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:
https://blog.csdn.net/m0_37845735/article/details/108439644

围观 521

一.将DSP的Flash里面的函数转移到RAM中

对于独立的嵌入式系统,需要把程序存入non-volitale存储单元中,常用的也就是flash。但是程序在flash中运行相对在RAM中行,速度会变慢很多,具体有多慢,拿28335来说吧,假设系统时钟为150MHz,在RAM中运行时频率还是150MHz,而放在flash中,频率会降到90-95MHz,参照Ti手册SPRA958L,这对于有些对实时性要求较高的函数功能,是不可接受的。所以在系统上电时,把对实时性要求高的函数转移到RAM中去。

下面以initflash函数为例,具体步骤如下:

(1)、将函数定位到section:

#pragma CODE_SECTION(InitFlash, "secureRamFuncs")

当遇到InitFlash(),就到段secureRamFuncs去运行。

当有多个函数需要转移时,重复使用#pragma CODE_SECTION(“函数名", "secureRamFuncs")即可。

即使有多个#pragma CODE_SECTION,后面的步骤只需要一次。

(2)、section分配到memory(红色为memory)。

意思是到FLASH去下载InitFlash(),下载到SECURE_RAM,然后要到SECURE_RAM去运行程序,这个过程给出了下载地址和目标地址。注意此时SECURE_RAM中还没有代码。

1. SECTIONS
2. {
3. /*** User Defined Sections ***/
4. secureRamFuncs: LOAD = FLASH,PAGE = 0
5. RUN =SECURE_RAM, PAGE = 0
6. //定义FLASH和SECURE_RAM的首地址secureRamFuncs_loadstart和secureRamFuncs_loadstart以代替绝对地址
7. LOAD_START(_secureRamFuncs_loadstart),
8. LOAD_SIZE(_secureRamFuncs_loadsize),
9. RUN_START(_secureRamFuncs_runstart),
10. }

(3)、用memcpy()将经过#pragmaCODE_SECTION设定的函数从FLASH弄到SECURE_RAM中去。注意不是将FLASH的东西全部弄到SECURE_RAM中。

1. #include <string.h>
2. //实际应用中这一部分声明可有可无
3. extern unsigned intsecureRamFuncs_loadstart;
4. extern unsigned intsecureRamFuncs_loadsize;
5. extern unsigned intsecureRamFuncs_runstart;
6. void main(void)
7. {
8. /* Copy the secureRamFuncs section */
9. memcpy(&secureRamFuncs_runstart,&secureRamFuncs_loadstart,(Uint32)&secureRamFuncs_loadsize);
10. /* Initialize the on-chip flash registers*/
11. InitFlash();
12. }

二.将MCU的内嵌Flash里的部分代码运行在 RAM 中

MCU 异于资源丰富的linux 平台。MCU(如:基于Cortex V6M 的Cortex M0+ 等) Code通常运行在内嵌Flash中。在某些特定应用场合,需要将部分函数运行于RAM 中。为解决次问题,笔者实现了一种解法,具体做法如下:

1. 实现要运行在RAM的 routine, 本routine 使用纯汇编实现, 如:

__asm void program_word2addr(uint32_t addr, uint32_t data)
{
push {r3, r4, r5, lr} ;save some regsiters
/*your code for this routine*/
pop {r3, r4, r5, pc}
}

2. 编译时,采用code 与运行位置无关的编译选项 如 (Keil --apcs /ropi/rwpi), 生成 *.axf;

3. 通过fromelf -c 将生成 *.axf 反汇编,找到对应program_word2addr 实现部分, 并将routine 对应的binary code Copy 到所要应用的 Code 中,以只读数组的形式出现:

如:
const staic uint16_t s_flashProg2AddressCode[16] = {...., ....}

4. 定义 一个全局数组, 如 static uint16_t g_code[16], size正好等于 s_flashProg2AddressCode的长度;

5. 定义一个函数指针, 如 static void (*callFlashPrg2Address)(uint32_t addr, uint32_t data)

6. 定义一个函数实现将Code 运行与 RAM如:

void run_prgcode_onram(uint32_t addr, uint32_t data)
{
memcpy(g_code,s_flashProg2AddressCode,32 );
callFlashPrg2Address = (void (*)(uint32_t addr, uint32_t data))((uin32_t)g_code + 1);
callFlashPrg2Address (address, data);
}
run_prgcode_onram, 便可以将program_word2addr 运行于RAM中。

callFlashPrg2Address = (void (*)(uint32_t addr, uint32_t data))((uin32_t)g_code + 1); +1 的目的,时由于运行平台为 Cortex V6M , 采用的thumb指令集,根据ARM Spec 要求完成。

callFlashPrg2Address (address, data); 则是实现RAM运行program_word2addr 的关键所在。

本文摘自
https://blog.csdn.net/lansedeyuntkn/article/details/54632541
https://blog.csdn.net/wqzwiseman/article/details/76531653

围观 136

10月18日,Holtek推出A/D NFC Flash MCU HT45F4050,其最大特点为MCU内建NFC Tag接口,终端产品不须采用MCU加NFC Tag IC的方案,可有效降低零件成本。

HOLTEK新推出HT45F4050 A/D NFC Flash MCU

HT45F4050 NFC接口RF Data Rate为106 kbit符合NFC Forum Type2及ISO1443 Type A标准,并包含有256 Bytes的NFC EEPROM及64 Bytes的NFC SRAM,可符合NFC Tag应用标准。

HT45F4050另外还包含8K×16程序内存、256×8 RAM、64×8 True EEPROM、12-bit A/D Converter、一组SPI/I2C接口、一个UART接口、4个Timer及一个4-SCOM LCD Driver,提供48LQFP封装,可符合多样应用的需求。

来源:HOLTEK

围观 362

页面

订阅 RSS - Flash