8位MCU
开关式可调光LED驱动器具有显著的性能并可以精准控制LED电流,也具有调光功能,这使终端用户在降低功耗的同时制作很好的灯光效果。
8位微控制器可以提供必要的构件用来通信、定制和智能控制,核心独立外设集成比单纯的模拟或ASIC集成电路能提供更大的灵活性,并能改进扩大发光产品的产能并避免同质化。具有预测故障维修、能量监测、颜色和温度维修、远程通信控制的高级特性,这使得智能照明解决方案更具吸引力。
尽管LED驱动器比之前的照明方案提供很多优势,在实际应用中还存在一些小问题,通过本系列的文章我们将了解8位MCU如何消除这些小问题,从而制作出比之前的传统方案产能更大的高性能开关式LED驱动方案。
8位微控制器可以单独用来控制最多4个LED通道,这是现成的大多数LED驱动控制器所不具备的,在图1,LED调光引擎可以通过微控制器外设中制作出来,这些引擎有独立的闭流路来控制开关式功率变换器,带有最小化的CPU介入,这使得CPU可以专门运行其他重要任务比如监视功能、通信或其他的系统智能。
在图2,LED驱动器基于电流模式的升压转换器,由LED调光引擎控制,该引擎主要包括核心独立外设(CIP)比如互补输出发生器(COG)、数位讯号调变器(DSM)、比较器、可编程斜坡发生器(PRG)、运算放大器(OPA)、脉冲宽度调制器3(PWM3)。片上外设比如固定电压稳压器(FVR)、数字模拟转换器(DAC)、捕捉/比较/PMW(CCP), 这些核心独立外设(CIP)与片上外设结合起来形成整个引擎。COG提供高频转换脉冲给MOSFET Q1用来对LED发光二极管串进行转能和供电,CCP设定COG输出的切换时间,占空比用来保持LED恒定电流并取决于比较器输出,当电压通过Rsense1超出PRG模块的输出时比较器产生输出脉冲,PRG的输入来自OPA在反馈电路的输出,当占空比大于50%时PRG作为斜坡补偿器而抵消固有的次谐波振荡。
带有Type II补偿器的运算放大器(OPA)模块作为带有误差信号放大器(EA),固定电压稳压器(FVR)作为数字模拟转换器(DAC)的输入提供参考电压给基于LED恒定电流参数的运算放大器(OPA)的同相输入。
为实现调光,脉冲宽度调制器3(PWM3)作为捕捉/比较/PMW(CCP)输出的调节器驱动MOSFET Q2快速开关LED ,调节可以通过数位讯号调变器(DSM)模块实现,调节的输出信号供给互补输出发生器(COG)。脉冲宽度调制器3(PWM3)提供带有可变占空比的脉冲控制驱动器的平均电流从而控制LED的亮度。
LED调光引擎除了实现传统的LED驱动控制器的功能,还可以解决LED驱动器产生的传统问题,现在我们来看如何使用LED调光引擎解决这些传统的问题。
闪烁变化可能是传统的开关式调光LED驱动器会产生的问题,闪烁变化要按照人们的需求进行,为避免闪烁变化而实现平稳的调光效果,驱动器必须将调光步骤伴随着连续流动的效果从100%的高光水平一直降到低光水平,由于LED会瞬间响应电流的变化而没有阻尼效应,因此LED驱动器必须具有足够的调光步骤从而在视觉上察觉不到变化,为达到这种需求,LED调光引擎采用脉冲宽度调制器3(PWM3)控制LED的调光,脉冲宽度调制器3(PWM3)有16位的分辨率,占空比从100%到0有65536个步骤,这保证了光水平的平稳过渡。
LED色温变化
LED驱动器也可以调节LED的色温,这种颜色变化可以被人们察觉并衰减LED的高光补偿。图3是传统的脉冲宽度调制器(PWM)LED的调光波形,LED关闭时,LED的电流由于输出电容的迟缓放电而逐渐减小,这可以引起LED色温的变化和更高的功耗。
输出电容的迟缓放电可以使用负荷开关消除,比如在图2,电路使用Q2作为符合开关,LED调光引擎同时关闭互补输出发生器(COG)脉冲宽度调制器(PWM)的输出和Q2从而切断减幅电流使LED快速关闭。
电流调峰
当使用开关式整流器驱动LED时,反馈电路是用来配置LED电流,然而在调光时如果操作不当则反馈电路能产生电流调峰(见图3),再看图2,当LED开启时,电流被传输给LED,通过Rsense2的电压供给了误差信号放大器(EA)。当LED关闭时,没有电流传输给LED,Rsense2的电压变为0。在这个调光时的断电时间,误差信号放大器(EA)的输出增加到最大值并使误差信号放大器(EA)的补偿网络过度充电。当调节的PWM再次开启,在高峰值电流传输给LED使其恢复之前还需要几个周期,此电流调峰会缩短LED的使用寿命。
为避免这一问题,LED调光引擎允许PWM3作为运算放大器(OPA)的重写源,当PWM3出于低光水平时,误差信号放大器(EA)的输出是三态的,并完全断开了反馈回路的补偿网络并保留了稳定反馈的末点作为一次充电存储在补偿电容中,当PWM3处于高光水平并且LED再次开启时,补偿网络再次连接并且误差信号放大器(EA)的输出电压瞬间猛增到之前的稳定状态(在PWM3处于低光水平之前)并几乎立即存储LED当前的设定值。
完整解决方案
之前提到过LED调光引擎运行有最小化的CPU介入,所以,当关闭其他的任务只控制核心独立外设(CIP)的LED驱动器时,CPU还有很多的带宽去执行其他的重要任务。欠压锁定(UVLO)、过压锁定(OVLO)、输出电压保护(OOVP)等保护特性可以在处理传感的输入和输出电压时执行,这可以确保LED驱动器运行在需要的规格内并且可以保护LED免于异常的输入和输出情况。CPU也能处理传感器的热量数据来实现LED的热量管理,而且,当设置LED驱动器的调光水平时,CPU能处理来自简单外部开关的触发器或一个串行通信的指令。另外,LED驱动器的参数能通过监视或测试的串行通信被发送给外部设备。
除了以上提到的特性,设计者还可以使自己的LED应用更加智能,包括通信在内,类似DALI或DMX,并管理定制,图4是使用LED调光引擎的一个完整的开关式LED调光驱动器方案的样图。
总结
LED调光引擎能可用于制作有效的开关式LED调光驱动器,其效果等同于驱动多个LED串的性能,用来提供有效的能量源,确保LED的最佳性能,保持了LED的长使用期限,并使系统更智能。
转自: 中电网
作者:张飞
无论是炙手可热的工业4.0,还是近两年非常火的无人机,电机尤其是可以大范围调速、能量转换效率高的无感BLDC,在这些领域,扮演着非常重要的角色。
无感BLDC优势明显,但其驱动原理及实现却有些复杂,对设计者会有较高的要求。下面,将以小型无感BLDC控制为例,选用Silicon Labs的低功耗8位MCU EFM8BB10作为主控器件,提供完整的参考原理图、源代码,让攻城狮,即使新手,也可以轻松实现BLDC的开发。
一、硬件设计
如图1,在基于EFM8BB10主控MCU的无感BLDC原理图中:Part1电源模块;Part2功率驱动电路;Part3是反向电动势反馈电压网络等;Part4是主控MCU,EFM8BB10;Part5是对外输出PWM信号;Part6是外部PWM输入信号;Part7是主回路电流检测电路。整个电路精炼、实用、成本低、体积小。
其中,选用EFM8BB10作为主控MCU,主要有以下优势:
优势一:EFM8BB10主频速度快,最高25MIPS,对于2极对的电机,最高可以实现200000RPM的高转速,完全可以胜任诸如无人机驱动的要求;
优势二:EFM8BB10内部集成了2个电压模拟比较器,并且,该比较器具备切断PWM输出的功能,当BLDC过载或电流异常时,可以及时、快速地切断BLDC的驱动信号,能很好地保护BLDC的安全;
优势三:EFM8BB10 采用QFN-20封装,体积仅3*3mm,对于诸如航模电机、电动牙刷等应用,器件小体积已成刚性需求;
优势四:在EFM8BB10芯片的生产上,采用了Silicon Labs先进的工艺,使得该器件的价格非常优秀,对于诸如无人机、电动牙刷等量大的应用,给客户带来的实惠,不言而喻。
综上,EFM8BB10以其高速度、多功能、小体积、低价格等因素,非常适合做无感BLDC的主控MCU。
二、软件设计
在关于软件方面,Silicon Labs提供完整的例程,而且是源码的,只要简单地修改相关参数,既可以可靠的驱动。
其中,对于无感BLDC,在驱动代码中,电机启动阶段是关键部分。Silicon Labs提供的例程中,采用的是成熟的三段式启动策略,即:电机转子预定位,电机的外同步加速,电机运行状态的转换。
另外,在开发平台上,有Silicon Labs的IDE、simplicity studio以及KEIL等多个平台可供客户选择。其中simplicity studio,可支持底层GUI配置、功耗评估等,自动化程度非常高,可显著给地客户开发工作带来方便、并缩短客户的开发时间。
文章来源:世强
PIC16F19197单片机系列集成了电池友好型LCD驱动、独立于内核的外设及智能模拟功能
Microchip Technology Inc日前推出了用于驱动液晶显示器(LCD)、集成独立于内核的外设(CIP)与智能模拟的全新低功耗单片机(MCU)系列产品。由9款器件组成的PIC16F19197家族包含了电池友好型LCD驱动电荷泵、带计算功能的12位模拟数字转换器(ADC2)、低功耗比较器以及高频振荡器的有源时钟调谐功能。
它们是首个针对广受欢迎的低功耗、电池供电且带触摸功能的LCD应用而优化的8位MCU系列。
PIC16F19197系列器件的引脚数从28到64不等,闪存最高达56 KB而RAM最高达4 KB。其备有的电荷泵确保了即使是在电池电压降低的情况下LCD屏幕也能保持一致的对比度。而ADC2可自动完成信号采集与处理任务,轻松实现强大的触摸按钮和滑块功能。此外,有源时钟调谐功能则可帮助客户确保振荡器能在整个电压和温度工作范围内平稳运行。PIC16F19197系列新器件可以完全在硬件环境中实现上述功能而无需依赖软件。
该系列器件还包含一个带电池备份与大电流I/O引脚的实时时钟和日历(RTCC),可直接驱动LCD背光。此外,其带有的空闲/打盹等低功耗模式以及外设模块禁用(PMD)功能可帮助延长电池使用寿命。同时,新器件还可以驱动多达360个LCD段。所有上述这些特点都使得PIC16F19197系列成为了由电池供电的LCD应用的理想选择。
Microchip 8位MCU部副总裁Steve Drehobl表示:“PIC16F19197系列的问世简化了低功耗LCD应用的设计工作。所有这些新功能都可以在MPLAB代码配置器(MCC)中进行设置,这大幅缩短了开发时间并加速了产品的上市步伐。”
欲获取更多有关PIC16F19197系列产品的信息,请访问 www.microchip.com/pic16f19197family 。
开发支持
该系列产品由MPLAB® 代码配置器(MCC)提供支持。MCC是一款专用于MPLAB X和MPLAB Xpress集成开发环境的免费插件,可提供一个图形化界面来帮助研发人员针对其应用配置特定的外设和功能。此外,支持PIC16F19197系列MCU评估的Microchip LCD XLP Explorer开发板(部件编号:DM240314)现也已上市。
供货
PIC16F19197系列前三款器件现已开始提供样片并投入量产。产品提供多种封装选择。
在开发消费电子、工业控制、智能传感器和电信及数据通信设备等物联网(IoT)应用产品时,8位MCU是极为关键的半导体器件,因此芯科科技(Silicon Labs)近来持续扩展旗下高集成、高性能、低功耗的8位MCU系列──EFM8TM的产品阵容,近期更进一步推出经AEC-Q100认证的EFM8最新解决方案,达到了汽车电子要求的严格品质标准。
小型化,低功耗IoT设计理想之选
以EFM8LB Laser Bee系列为例,其将8位MCU的模拟性能和外设集成度推向业界最高峰,所带来的创新与妙用令人惊艳。EFM8LB1在仅为3mm × 3mm的QFN封装中集成了强大的模拟性能,包括高速模数转换器(ADC)、高精度温度传感器等多个元器件,非常适合空间受限、性能密集型应用,例如光模块、测试和测量仪器、工业控制设备和智能传感器等。
基于高度集成的设计,LaserBee与市面上其他竞争对手的8位MCU相比,各项性能都高出一截,例如最快时钟及更快的PWM,更多的传输量和MIPS,以及内置高分辨率ADC所实现的理想模拟功能。
另一款EFM8BB Busy Bee系列包括运行频率可达50MHz的通用MCU内核,并将先进的模拟和通信外围设备集成到小封装中来提供非凡价值,因而成为空间受限应用的理想之选。
对于空间要求更佳严格的物联网产品而言,EFM8UB Universal Bee系列是提供更小型的封装尺寸,其运行频率同样达到50MHz,包括带有低功率的USB外围设备接口、充电器检测电路、8 kV ESD保护和增强型高速通信接口的设备,可以帮助设计人员兼顾产品尺寸和性能。
EFM8SB Sleepy Bee MCU系列是Silicon Labs最节能的8位MCU,提供无与伦比的触摸性能、超低的休眠模式能耗(在内存内容保持和掉电检测使能条件下仅50nA)和快速的2μs唤醒时间,成为低功率和电池驱动系统的理想之选。其内核运转频率为25MHz,结合创新型低能耗技术和短暂的唤醒时间,提供最低能耗,还包括多达14个的高质量电容式感应通道。
高可靠度,高性能规格满足汽车级设计
近期,Silicon Labs再推出两个系列的汽车级EFM8 MCU产品,瞄准广泛的车内触摸界面和车身电子电机控制应用。经过AEC-Q100认证的、超低功耗的新型EFM8SB1 Sleepy Bee系列产品提供先进的片上电容式触摸技术,可以实现用触摸控制来轻松地替代物理按钮。EFM8BB1/BB2Busy Bee系列产品拥有高性能的模拟和数字外设,从而使这些器件可以作为一种通用的选择,来控制电动后视镜、车头灯和座椅等。
汽车级EFM8SB1器件支持-40℃~+85℃的环境温度范围,内核速度高达25MHz,闪存容量高达8KB。该系列MCU集成了12位模数转换器(ADC)、高性能定时器、温度传感器,以及增强型SPI、I2C和UART串行端口。片上高分辨率电容数字转换器(CDC)提供超低功耗的触摸唤醒能力(<1µA)和12路可靠的电容触摸感应通道,可以替换许多应用中的物理按键开关。该MCU非常适合用于基于触摸的控制装置,如顶灯和头顶按钮。电容式触摸控制为当今装载电子系统的车辆提供了更持久耐用且防潮的用户界面,以及更时尚的观感。
汽车级的EFM8BB1/BB2系列为成本敏感型应用提供了高性能、能效和价格等方面的良好平衡。除了高达50MHz的内核速率、2-64KB的闪存,该系列MCU还可在小至3mm x 3mm的封装内提供一系列高性能外设,包括高分辨率的12位ADC、高速的12位数模转换器(DAC)、低功耗比较器、内置基准电源、增强了吞吐量的通信外设和内部振荡器。这种非凡的单芯片集成设计消除了对分立模拟元器件的需求,同时缩减了系统成本和电路板占用空间。
更多Silicon Labs EFM8 MCU产品相关信息,欢迎访问中文官方网站相应网页: http://cn.silabs.com/products/mcu/8-bit
本文来源:Silicon Labs