单片机

学习使用单片机就是理解单片机硬件结构,以及内部资源的应用,在汇编或C语言中学会各种功能的初始化设置,以及实现各种功能的程序编制。

第一步:数字I/O的使用

使用按钮输入信号,发光二极管显示输出电平,就可以学习引脚的数字I/O功能,在按下某个按钮后,某发光二极管发亮,这就是数字电路中组合逻辑的功能,虽然很简单,但是可以学习一般的单片机编程思想,例如,必须设置很多寄存器对引脚进行初始化处理,才能使引脚具备有数字输入和输出输出功能。每使用单片机的一个功能,就要对控制该功能的寄存器进行设置,这就是单片机编程的特点,千万不要怕麻烦,所有的单片机都是这样。要注意的是两个功能使用同一组I/O口,比如LCD和LED例程众都是使用PB这一组的,如果两者结合,会有冲突,达不到预期的效果,建议不同的模块使用不同的IO口。

第二步:定时器的使用

学会定时器的使用,就可以用单片机实现时序电路,时序电路的功能是强大的,在工业、家用电气设备的控制中有很多应用,例如,可以用单片机实现一个具有一个按钮的楼道灯开关,该开关在按钮按下一次后,灯亮3分钟后自动灭,当按钮连续按下两次后,灯常亮不灭,当按钮按下时间超过2s,则灯灭。数字集成电路可以实现时序电路,可编程逻辑器件(PLD)可以实现时序电路,可编程控制器(PLC)也可以实现时序电路,但是只有单片机实现起来最简单,成本最低。

定时器的使用是非常重要的,逻辑加时间控制是单片机使用的基础。

第三步:中断

单片机的特点是一段程序反复执行,程序中的每个指令的执行都需要一定的执行时间,如果程序没有执行到某指令,则该指令的动作就不会发生,这样就会耽误很多快速发生的事情,例如,按钮按下时的下降沿。要使单片机在程序正常运行过程中,对快速动作做出反应,就必须使用单片机的中断功能,该功能就是在快速动作发生后,单片机中断正常运行的程序,处理快速发生的动作,处理完成后,在返回执行正常的程序。

中断功能使用中的困难是需要精确地知道什么时候不允许中断发生(屏蔽中断)、什么时候允许中断发生(开中断),需要设置哪些寄存器才能使某种中断起作用,中断开始时,程序应该干什么,中断完成后,程序应该干什么等等。中断学会后,就可以编制更复杂结构的程序,这样的程序可以干着一件事,监视着一件事,一旦监视的事情发生,就中断正在干的事情,处理监视的事情,当然也可以监视多个事情,形象的比喻,中断功能使单片机具有吃着碗里的,看着锅里的功能。以上三步学会,就相当于降龙十八掌武功,会了三掌了,可以勉强护身。

第四步:与PC机进行RS232通信

单片机都有USART接口,其中很多型号都具有两个USART接口。USART接口不能直接与PC机的RS232接口连接,它们之间的逻辑电平不同,需要使用一个芯片进行电平转换。USART接口的使用是非常重要的,通过该接口,可以使单片机与PC机之间交换信息,虽然RS232通信并不先进,但是对于接口的学习是非常重要的。正确使用USART接口,需要学习通信协议,PC机的RS232接口编程等等知识。试想,单片机实验板上的数据显示在PC机监视器上,而PC机的键盘信号可以在单片机实验板上得到显示,将是多么有意思的事情啊!

第五步:学会A/D转换

单片机通常带有A/D转换器,通过这些A/D转换器可以使单片机操作模拟量,显示和检测电压、电流等信号。学习时注意模拟地与数字地、参考电压、采样时间,转换速率,转换误差等概念。使用A/D转换功能的简单的例子是设计一个电压表。

第六步:学会PCI、I2C接口和液晶显示器接口

这些接口的使用可以使单片机更容易连接外部设备,在扩展单片机功能方面非常重要。

第七步:学会比较、捕捉、PWM功能

这些功能可以使单片机能够控制电机,检测转速信号,实现电机调速器等控制起功能。如果以上七步都学会,就可以设计一般的应用系统,相当于学会十招降龙十八掌,可以出手攻击了。

第八步:学习USB接口、TCP/IP接口、各种工业总线的硬件与软件设计

学习USB接口、TCP/IP接口、各种工业总线的硬件与软件设计是非常重要的,因为这是当前产品开发的发展方向。

到此为止,相当于学会15招降龙十八掌,但还不到打遍天下无敌手的境界。即使如此,也算是单片机大侠了。

围观 303

单片机中有象箱子功能一样的地方,我们称为寄存器,用来暂存数据。寄存器的种类有程序计数器、通用寄存器、以及SFR(特殊功能寄存器)等。

SFR主要用来设定外围功能电路(计数器或串行端口、通用I/O等)的工作方式,确认其工作状况,并对其进行控制的。也就是说SFR并非仅仅只是用来保存数据的“箱子”。通过改变保存在“箱子”里的数据,不仅可以改变外围功能电路的动作方式,而且“箱子”里的数据也将随着外围功能电路的工作状況而改变。

控制外围功能电路的基础知识

下面以通用I/O为例来说明单片机对外围功能电路的控制。通用I/O具有以下功能:

输出功能:可以输出高电平电压或低电平电压

输入功能:可以读出输入到引脚的电压电平

首先来看输出功能的控制。图1中的引脚A是一个通用I/O。

如果向引脚A的寄存器(SFR)

写入0,则引脚A的输出电压将为低电平(0V)。

写入1,则引脚A的输出电压将为高电平(5V)。

图1:通用I/O的输出功能

如果将图1的引脚A连接一个LED,就可以构成一个控制LED的电路(见图2)。此时,向寄存器(SFR)写入0则LED亮灯,输入1则LED熄灭。虽然这是一种很简单的动作,但却反映了单片机对各种外围功能电路进行控制的基本原理。利用这种功能,就可以完成象电机的ON/OFF一样的开关作用(由于通常的单片机上不能流过驱动电机运行的大电流,所以还需另行准备用FET或晶体管作成的电机驱动电路)。另外,如果使用多个通用I/O端口,就可以完成更加复杂的控制。

图2:通用I/O的LED控制电路

接下来看输入功能(图3)。

如果向引脚A输入低电平电压(0V),就会从寄存器(SFR)读出0。

如果向引脚A输入高电平电压(5V),就会从寄存器(SFR)读出1。

即,读取寄存器(SFR)的值,就可以判断外部电压是低电平电压还是高电平电压。

图3:通用I/O的输入功能

使用通用I/O的输入功能构成图4所示的电路,单片机就可以判断出开关(S)的状态。

当开关(S)断开时,电源电压通过上拉电阻(R),连接到引脚A(相当于输入高电平电压),寄存器(SFR)将的值变为1。

当开关(S)关闭时,引脚A被连接到低电平电压,寄存器(SFR)的值变为0。

单片机通过读取引脚A的寄存器(SFR)的值,是“1”还是“0”,可以判断外部开关(S)是断开还是关闭状态。

图4:通用IO输入功能构成的开关电路

单片机上搭载了各种功能的SFR。通过程序来更改或读出这些功能寄存器的值,就可获知单片机外围电路的信息,而对外围电路进行控制。所以可以说,SFR就象是单片机的五官或者手脚。

围观 385

CPU懂的机器语言

单片机的CPU从存储器读取程序,但是一次只能读取一条指令,然后解释每条指令,并执行。存储器中保存的内容,不管是程序还是数据,都是二进制代码“0”和“1”组成的字符串。指令二进制代码告诉CPU要做什么,而数据二进制代码则是CPU操作或处理指令时要使用的值。CPU的操作包含加、减运算等指令。这些像密码一样排列的“0”和“1”字符串就是机器语言。比如图1左边显示的就是一个机器语言指令,意思是“将2放入寄存器A(寄存器是CPU内部的储存区域)。

CPU总是按存储器地址的顺序读取指令代码,除非遇到跳跃指令。例如,如果复位后的地址是0000,则从0000开始按0001、0002、0003的顺序读取并执行指令。也可以说,一个程序就是按处理要求排列一系列的机器语言。

CPU只能理解如上所述的机器语言。因此,为了使CPU运行,就必须使用机器语言的程序。但是,机器语言不易为人们识别和读写。因此,人们用了更简单易懂的字符串来代替机器语言,这就是汇编语言。例如,在“给寄存器A赋值2”这样的处理时,如果用汇编语言来表示,就很简单,请看图1的右边部分。汇编语言中,用MOV字符串表示赋值,所以“给寄存器A赋值2”的处理就可用“MOV A,#02”表示。

图1:机器语言和汇编语言的比较

虽然汇编语言比机器语言更加简单易懂了,但是人们读起来还是挺难理解的。而且,汇编语言还存在另一个问题,就是不同的CPU,机器语言的描述方式也不同。因此,如果更换了CPU,就必须改写与机器语言有着密不可分关系的汇编语言,工作量比较大。(以上例子中的机器语言和汇编语言均为瑞萨的RL78族单片机中的语言。)

如上所述,每更换一次CPU都必须对程序进行改编,不但造成生产性低下,还加重了编程人员的负担。

人性化的C语言

能够解决上述问题的编程语言就是C语言。C语言具有不依存于特定的CPU,又具有程序移植性高等的特点。另外,由于编程时可使用人们熟悉的英文单词,所以对编程人员来说C语言是最容易使用的编程语言。下面我们将C语言和汇编语言做一个简单地比较。(图2)

图2:汇编语言和C语言的比较

虽然C语言不依存于CPU而且还是人们最容易使用的编程语言,但对于CPU来说,C语言却是一种完全无法理解的语言。因此,就需要一种可以将C语言翻译为机器语言的软件,这就是被称为编译器 (编译程序) 的软件。 经过编译器翻译的程序的文件格式被称为目标文件格式。如果目标文件格式最终没有被配置到存储器中,CPU就无法执行该程序。

另外,近来由于程序越来越趋于复杂化,所以几乎都采取了将一个程序分割为多个C语言程序文件的结构。所以,还需要一个工具将多个目标文件格式汇总成一个机器语言并配置到存储器上,能够担当起此重任的就是连接编辑程序(linkage editor,也被称为“linker(链接器)”)。

能够找出程序错误的调试器

由人进行编程的应用程序难免会存在错误(bug)。而用来发现和帮助人们修正程序错误的工具被称为调试器(Debugger)。下面简单介绍调试器的类型。

电路内仿真器(In-Circuit Emulator , 简称:ICE) :ICE可取代实际的单片机,与仿真专用的评价单片机(evaluation chip,评价芯片)连接并进行调试。其中,“In-Circuit Emulator”为美国英特尔公司的注册商标,瑞萨将其命名为“Full-spec Emulators”并向市场提供。

J-TAG仿真器:J-TAG仿真器使用单片机内事先预留的调试电路进行调试。也就是说通过实际使用的单片机来进行调试。和ICE相比,J-TAG仿真器的价格较低。瑞萨将其命名为“On-chip Debug Emulator”并向市场提供。

简易仿真器:简易仿真器是使调试用的监视程序在单片机上运行,在与PC通信的同时进行调试。除了调试对象的程序之外,还需启动其他监视程序,所以,与ICE或J-TAG仿真器相比,简易仿真器的程序运行速度慢而且还有各种功能限制。其最大的优点是价格非常低廉。

综合开发环境

正如上面所讲的,在进行单片机的软件开发时,使用了上述的编译器、连接编辑程序、调试器等各种工具。以前,这些软件都是作为单个软件分别提供的,一般是通过命令提示符调出各个程序、或是通过批处理程序调出使用。但是,最近开始以综合开发环境的方式给予提供,综合开发环境就是将各种程序综合到一个程序包中,只需通过Renesas CS+ 等便可很容易地将程序调出使用。

围观 402

对于每个单片机爱好者及工程开发设计人员,在刚接触单片机的那最初的青葱岁月里,都有过点亮跑马灯的经历。从看到那一排排小灯按着我们的想法在跳动时激动心情。到随着经验越多,越来又会感觉到这个小灯是个好东西,尤其是在调试资源有限的环境中,有时会帮上大忙。

但对于绝大多数人,我们在最最初让灯闪烁起来时大约都会用到阻塞延时实现,会像如下代码的样子:

while(1)
{
LED =OFF;
Delay_ms(500);
LED = ON;
Delay_ms(500);
}

然后,在我们接触到定时器,我们会发现,原来用定时中断来处理会更好。比如我们可以500ms中断一次,让灯亮或灭,其余的时间系统还可以做非常之多的事情,效率一下提升了很多。

这时我们就会慢慢意识到,第一种(阻塞延时)方法效率很低,让芯片在那儿空运行几百毫米,什么也不做,真是莫大的浪费,尤其在芯片频率较高,任务又很多时,这样做就像在平坦宽阔的高速公路上挖了一大坑,出现事故可想而知。

但一个单片机中的定时器毕竟有限,如果我需要几十个或者更多不同时间的定时中断,每一个时间到都完成不同的处理动作,如何去做呢。一般我们会想到在一个定时中断函数中再定义static 变量继续定时,到了所需时间,做不同的动作。而这样又会导致在一个中断里做了很多不同的事情,会抢占主轮询更多时间,有时甚至喧宾夺主,并也不是很如的思维逻辑。

那么有没有更好的方法来实现呢,答案是肯定的。下面介绍我在一个项目中偶遇,一个精妙设计的非阻塞定时延时软件的设计(此设计主要针对于无操作系统的裸机程序)。

比如我要设置其10ms中断一次,如何实现呢?

也很简单,只需调用 core_cm3.h文件中 SysTick_Config 函数 ,当系统时钟为72MHZ,则设置成如下即可 SysTick_Config(720000 ); (递减计数720000次后中断一次) 。此时SysTick_Handler中断函数就会10ms进入一次;

任务定时用软件是如何设计的呢 ?

且先看其数据结构,这也是精妙所在之处,在此作自顶向下的介绍:

其定义结构体类型如:

typedef struct
{
uint8_t Tick10Msec;
Char_Field Status;
} Timer_Struct;
其中Char_Field 为一联合体,设计如下:
typedef union
{
unsigned char byte;
Timer_Bit field;
} Char_Field

而它内部的Timer_Bit是一个可按位访问的结构体:

typedef struct
{
unsigned char bit0: 1;
unsigned char bit1: 1;
unsigned char bit2: 1;
unsigned char bit3: 1;
unsigned char bit4: 1;
unsigned char bit5: 1;
unsigned char bit6: 1;
unsigned char bit7: 1;
} Timer_Bit

此联合体的这样设计的目的将在后面的代码中体现出来。
如此结构体的设计就完成了。

然后我们定义的一全局变量,Timer_Struct gTimer;

并在头文件中宏定义如下:

#define bSystem10Msec gTimer.Status.field.bit0
#define bSystem50Msec gTimer.Status.field.bit1
#define bSystem100Msec gTimer.Status.field.bit2
#define bSystem1Sec gTimer.Status.field.bit3
#define bTemp10Msec gTimer.Status.field.bit4
#define bTemp50Msec gTimer.Status.field.bit5
#define bTemp100Msec gTimer.Status.field.bit6
#define bTemp1Sec gTimer.Status.field.bit

另外为了后面程序清晰,再定义一状态指示:

typedef enum
{
TIMER_RESET = 0,
TIMER_SET = 1,
} TimerStatus;

至此,准备工作就完成了。下面我们就开始大显神通了!

首先,10ms定时中断处理函数如,可以看出,每到达10ms 将把bTemp10Msec置1,每50ms 将把bTemp50Msec 置1,每100ms 将把bTemp100Msec 置1,每1s 将把bTemp1Sec 置1,
void SysTick_Handler(void)
{

bTemp10Msec = TIMER_SET;

++gTimer.Tick10Msec;
if (0 == (gTimer.Tick10Msec % 5))
{
bTemp50Msec = TIMER_SET;
}

if (0 == (gTimer.Tick10Msec % 10))
{
bTemp100Msec = TIMER_SET;
}

if (100 == gTimer.Tick10Msec)
{
gTimer.Tick10Msec = 0;
bTemp1Sec = TIMER_SET;
}
}

而这又有什么用呢 ?

这时,我们需在主轮询while(1)内最开始调用一个定时处理函数如下:

void SysTimer _Process(void)
{
gTimer.Status.byte &= 0xF0;

if (bTemp10Msec)
{
bSystem10Msec = TIMER_SET;
}

if (bTemp50Msec)
{
bSystem50Msec = TIMER_SET;
}

if (bTemp100Msec)
{
bSystem100Msec = TIMER_SET;
}

if (bTemp1Sec)
{
bSystem1Sec = TIMER_SET;
}

gTimer.Status.byte &= 0x0F;
}

此函数开头与结尾两句

gTimer.Status.byte &= 0xF0;
gTimer.Status.byte &= 0x0F

就分别巧妙的实现了bSystemXXX (低4位) 和 bTempXXX(高4位)的清零工作,不用再等定时到达后还需手动把计数值清零。此处清零工作用到了联合体中的变量共用一个起始存储空间的特性。

但要保证while(1)轮询时间要远小于10ms,否则将导致定时延时不准确。这样,在每轮询一次,就先把bSystemXXX ,再根据bTempXXX判断是否时间到达,并把对应的bSystemXXX 置1,而后面所有的任务就都可以通过bSystemXXX 来进行定时延时,在最后函数退出时,又会把bTempXXX清零,为下一次时间到达后查询判断作好了准备。

说了这么多,举例说明一下如何应用:

void Task_A_Processing(void)
{
if(TIMER_SET == bSystem50Msec){
//do something
}
}

void Task_B_Processing(void)
{
if(TIMER_SET == bSystem100Msec){
//do something
}
}

void Task_C_Processing(void)
{
static uint8_t ticks = 0;
if(TIMER_SET == bSystem100Msec){
ticks ++ ;
}

if(5 == ticks){
ticks = 0;
//do something
}

}

void Task_D_Processing(void)
{
if(TIMER_SET == bSystem1Sec){
//do something
}
}

以上示例四个任务进程,

在主轮询里可进行如下处理:

int main(void)
{
while(1)
{
SysTimer _Process();

Task_A_Processing();
Task_B_Processing();
Task_C_Processing();
Task_D_Processing();

}
}

这样,就可以轻松且清晰实现了多个任务,不同时间内处理不同事件。(但注意,每个任务处理中不要有阻塞延时,也不要处理过多的事情,以致处理时间较长。可设计成状态机来处理不同任务。)

围观 365

作者:zhangren_ham

初学者在编写单片机程序时经常会用到延时函数,但是当系统逐步复杂以后(没有复杂到使用操作系统)延时会因为延时降低MCU的利用率,更严重的会影响系统中的“并行”操作例如一个既有按键又有蜂鸣器的系统中,如果要求按下按键发出不同的声音,每次发声时间在1秒-2秒之间, 如果用延时来做代码很简单:

//蜂鸣器发出“哔-哔-哔”声音时间约1s
void BeepFuction(void)
{
unsigned char i;
for(i=0;i<3;i=++)
{
BeepEn(); //开启蜂鸣器
Delayms(220);//延时220ms
BeepDis();//关闭蜂鸣器
Delayms(110);//延时110ms
}
}

当这段代码执行时MCU不可能同时处理按键检查程序因为它大部分时间在执行Delayms()函数中的nop指令,这样就不可能去执行检查按键了(不使用中断时),如果把程序改成流程形式的写法则结果会大为不同,下面先介绍一下基本原理。

我们都知道一般的定时器为16位或8位循环计数,例如对于16位的计数器当计数器数值从0增加到65535时再加一就会回到0那么我们来比较下面两种情况(不考虑计数器在记录当前时刻T后再次回到或超过T这种情况我暂且称它为“压圈”):

情况1:

T1时刻计数器数值为300

T2时刻计数器数值为400

则T1时刻到T2为100个计数单位。

这段时间差也为100个计数单位。

情况2:

T1时刻计数器数值为65535

T2时刻计数器数值为99

则T1到T2 可以算出为65535到0的1个计数单位再加上 0到99的99个计数单位总共为100个计数单位。

所以时间差还是100个计数单位。

在C语言中如果使用两个无符号数作减法会得到如下结果:99-65535=100,这个很好理解就和10进制的借位一样只不过借位后不用管高位了也就相当于99+65536-65535结果是100了,当然这些前提条件都是计数器不会出现“压圈”。

有了上面对定时器的了解就可以从新写这个Beep函数了

//蜂鸣器发出“哔-哔-哔”声音时间约1s
bit BeepFlag = 0;//蜂鸣流程忙标志位
bit BeepCtrl = 0;//蜂鸣器流程控制标志位
void BeepProc(void)
{
static unsigned int BeepTimer;
static unsigned char BeepStatus = 0;
static unsigned char i;
switch(BeepStatus)
{
case 0://
if(BeepCtrl)
{
i = 3;//蜂鸣次数
BeepFlag = 1;//置位忙标志位
BeepCtrl = 0;//清除控制标志位
BeepTimer = TIMER;//这里TIMER为系统定时器计数时钟为1ms
BeepEn(); //开启蜂鸣器
BeepStatus = 1;//进入下一个状态
}
break;
case 1://蜂鸣状态
if(TIMER-BeepTimer>220)//220ms
{
BeepDis(); //关闭蜂鸣器
BeepTimer = TIMER;//记录时刻
BeepStatus = 2;//进入下一个状态
}
break;
case 2://停止蜂鸣状态
if(TIMER-BeepTimer>110)//110ms
{
if(i!=0)
{
i--;
BeepTimer = TIMER;//记录时刻
BeepEn(); //开启蜂鸣器
BeepStatus = 2;//回到蜂鸣状态
}
else
{
BeepStatus = 0;//回到初始状态
BeepFlag = 0;//清除忙标志位
}
}
break;
default:
BeepFlag = 0;//清除忙标志位
BeepStatus = 0;//回到初始状态
break;
}
}

用这样的方法实现的蜂鸣程序在使用时也有不同的地方,因为使用的switch状态所有在主循环中要一直调用:

void main()
{
SystemInitial();//系统初始化
...............

//主循环
while(1)
{
Fun1Proc();//功能1流程
Fun2Proc();//功能2流程
....
BeepProc();//蜂鸣流程
....
}

}

在别的函数中需要使蜂鸣器工作时只需要下面代码即可:

if(!BeepFlag)//检查是否忙
BeepCtrl = 1;//启动蜂鸣器

用这种方法能充分利用MCU,在蜂鸣器发声或发声间隔的等待时间MCU可以处理别的函数,但是还要有几点需要注意

第一,主循环while(1)的循环周期最好小于定时器计数时钟周期

第二,主循环中尽量不要使用硬延时Delayms

第三,代码中如果存在多个地方需要控制一个流程时一定要先读取标志位再控制

文章来源: CSDN

围观 499

常规上ROM是用来存储固化程序的,RAM是用来存放数据的。由于FLASH ROM比普通的ROM读写速度快,擦写方便,一般用来存储用户程序和需要永久保存的数据。譬如说,现在家用的电子式电度表,它的内核是一款单片机,该单片机的程序就是存放在ROM里的。电度表在工作过程中,是要运算数据的,要采集电压和电流,并根据电压和电流计算出电度来。电压和电流时一个适时的数据,用户不关心,它只是用来计算电度用,计算完后该次采集的数据就用完了,然后再采集下一次,因此这些值就没必要永久存储,就把它放在RAM里边。然而计算完的电度,是需要永久保存的,单片机会定时或者在停电的瞬间将电度数存入到FLASH里。

ROM存放指令代码和一些固定数值,程序运行后不可改动;RAM用于程序运行中数据的随机存取,掉电后数据消失..

code就是指将数据定义在ROM区域,具只读属性,例如一些LED显示的表头数据就可以定义成code存储在ROM。

ROM:(Read Only Memory)程序存储器

在单片机中用来存储程序数据及常量数据或变量数据,凡是c文件及h文件中所有代码、全局变量、局部变量、’const’限定符定义的常量数据、startup.asm文件中的代码(类似ARM中的bootloader或者X86中的BIOS,一些低端的单片机是没有这个的)通通都存储在ROM中。

RAM:(Random Access Memory)随机访问存储器

用来存储程序中用到的变量。凡是整个程序中,所用到的需要被改写的量,都存储在RAM中,“被改变的量”包括全局变量、局部变量、堆栈段。

程序经过编译、汇编、链接后,生成hex文件。用专用的烧录软件,通过烧录器将hex文件烧录到ROM中(究竟是怎样将hex文件传输到MCU内部的ROM中的呢?),因此,这个时候的ROM中,包含所有的程序内容:无论是一行一行的程序代码,函数中用到的局部变量,头文件中所声明的全局变量,const声明的只读常量,都被生成了二进制数据,包含在hex文件中,全部烧录到了ROM里面,此时的ROM,包含了程序的所有信息,正是由于这些信息,“指导”了CPU的所有动作。

可能有人会有疑问,既然所有的数据在ROM中,那RAM中的数据从哪里来?什么时候CPU将数据加载到RAM中?会不会是在烧录的时候,已经将需要放在RAM中数据烧录到了RAM中?

要回答这个问题,首先必须明确一条:ROM是只读存储器,CPU只能从里面读数据,而不能往里面写数据,掉电后数据依然保存在存储器中;RAM是随机存储器,CPU既可以从里面读出数据,又可以往里面写入数据,掉电后数据不保存,这是条永恒的真理,始终记挂在心。

清楚了上面的问题,那么就很容易想到,RAM中的数据不是在烧录的时候写入的,因为烧录完毕后,拔掉电源,当再给MCU上电后,CPU能正常执行动作,RAM中照样有数据,这就说明:RAM中的数据不是在烧录的时候写入的,同时也说明,在CPU运行时,RAM中已经写入了数据。关键就在这里:这个数据不是人为写入的,CPU写入的,那CPU又是什么时候写入的呢?听我娓娓道来。

上回说到,ROM中包含所有的程序内容,在MCU上电时,CPU开始从第1行代码处执行指令。这里所做的工作是为整个程序的顺利运行做好准备,或者说是对RAM的初始化(注:ROM是只读不写的),工作任务有几项:

1、为全局变量分配地址空间---如果全局变量已赋初值,则将初始值从ROM中拷贝到RAM中,如果没有赋初值,则这个全局变量所对应的地址下的初值为0或者是不确定的。当然,如果已经指定了变量的地址空间,则直接定位到对应的地址就行,那么这里分配地址及定位地址的任务由“连接器”完成。

2、 设置堆栈段的长度及地址---用C语言开发的单片机程序里面,普遍都没有涉及到堆栈段长度的设置,但这不意味着不用设置。堆栈段主要是用来在中断处理时起“保存现场”及“现场还原”的作用,其重要性不言而喻。而这么重要的内容,也包含在了编译器预设的内容里面,确实省事,可并不一定省心。平时怎么就没发现呢?奇怪。

3、 分配数据段data,常量段const,代码段code的起始地址。代码段与常量段的地址可以不管,它们都是固定在ROM里面的,无论它们怎么排列,都不会对程序产生影响。但是数据段的地址就必须得关心。数据段的数据时要从ROM拷贝到RAM中去的,而在RAM中,既有数据段data,也有堆栈段stack,还有通用的工作寄存器组。通常,工作寄存器组的地址是固定的,这就要求在绝对定址数据段时,不能使数据段覆盖所有的工作寄存器组的地址。必须引起严重关注。

这里所说的“第一行代码处”,并不一定是你自己写的程序代码,绝大部分都是编译器代劳的,或者是编译器自带的demo程序文件。因为,你自己写的程序(C语言程序)里面,并不包含这些内容。高级一点的单片机,这些内容,都是在startup的文件里面。仔细阅读,有好处的。

通常的做法是:普通的flashMCU是在上电时或复位时,PC指针里面的存放的是“0000”,表示CPU从ROM的0000地址开始执行指令,在该地址处放一条跳转指令,使程序跳转到_main函数中,然后根据不同的指令,一条一条的执行,当中断发生时(中断数量也很有限,2~5个中断),按照系统分配的中断向量表地址,在中断向量里面,放置一条跳转到中断服务程序的指令,如此如此,整个程序就跑起来了。决定CPU这样做,是这种ROM结构所造成的。

其实,这里面,C语言编译器作了很多的工作,只是,你不知道而已。如果你仔细阅读编译器自带的help文件就会知道很多的事情,这是对编译器了解最好的途径。

I/O口寄存器:

也是可以被改变的量,它被安排在一个特别的RAM地址,为系统所访问,而不能将其他变量定义在这些位置。

中断向量表:

中断向量表是被固定在MCU内部的ROM地址中,不同的地址对应不同的中断。每次中断产生时,直接调用对应的中断服务子程序,将程序的入口地址放在中断向量表中。

ROM的大小问题:

对于flash类型的MCU,ROM空间的大小通常都是整字节的,即为ak*8bits。这很好理解,一眼就知道,ROM的空间为aK。但是,对于某些OTP类型的单片机,会经常看到数据手册上写的是“OTP progarming ROM 2k*15bit。。。。。”,可能会产生疑惑,这个“15bit”认为是1个字节有余,2个字节又不足,那这个ROM空间究竟是2k,多于2k,还是4k但是少了一点点呢?

这里要明确两个概念:一个是指令的位宽,另一个是指令的长度。指令的位宽是指一条指令所占的数据位的宽度;有些是8位位宽,有些是15位位宽。指令长度是指每条指令所占的存储空间,有1个字节,有2个字节的,也有3个字节甚至4个字节的指令。这个可以打个形象的比方:我们做广播体操时,有很多动作要做,但是每个复杂的动作都可以分解为几个简单的动作。例如,当做伸展运动时,我们只听到广播里面喊“2、2、3、4、5、6、7、8”,而这里每一个数字都代表一个指令,听到“3”这个指令后,我们的头、手、腰、腿、脚分别作出不同的动作:两眼目视前方,左手叉腰,右手往上抬起,五指伸直自然并拢打开,右腿伸直,左腿成弓步······等等一系列的分解动作,而要做完这些动作的指令只有一个“3”,要执行的动作却又很多,于是将多个分解动作合并成一个指令,而每个分解动作的“位宽”为15bits。实事上也确实如此,当在反汇编或者汇编时,可以看到,复合指令的确是有简单的指令组合起来的。

到此,回答前面那个问题,这个OTP的ROM空间应该是2K,指令位宽为15位。一般的,当指令位宽不是8的倍数时,则说明该MCU的大部分指令长度是一个字节(注:该字节宽度为15位,不是8位),极少数为2个或多个字节,虽然其总的空间少,但是其能容下的空间数据并不少。

围观 1984

页面

订阅 RSS - 单片机