二极管“不为人知”的一面

提起二极管,大家一般都会想到它有个“单向导通,反向截至”的“倔脾气”,因此在电路中发挥着重要的功能。也有人用恰好利用了二极管的反向压降作稳压管使用。

但是,二极管也有它不为人知“敏感”的一面。这一点使他更增添了几分神秘色彩。
   
二极管是个敏感体质,它对温度,热量,那是相当的敏感。1N4148这种二极管常见程度已经可以用“俯拾即是”来形容了。在这里,我们就以它为例,对其的“敏感”特性进行介绍。恩,你可以边听,边拿一只在手上观察。

让我们先来看看1N4148二极管的“体检报告”吧:

反向恢复速度:超级快 小于 0.000000004 秒(4纳秒)

正向耐压:较低 约 100V

反向耐压:较低 约

最大正向电流: 约 0.2A
……
还有一大堆,我就不罗嗦了。

单片机中C语言的程序与数据存储

一、五大内存分区:

内存分成5个区,它们分别是堆、栈、自由存储区、全局/静态存储区和常量存储区。

1、栈区(stack):FIFO就是那些由编译器在需要的时候分配,在不需要的时候自动清除的变量的存储区。里面的变量通常是局部变量、函数参数等。

600 V CoolMOS™ CFD7 SJ MOSFET将性能提升到全新水准

凭借600 V CoolMOS™ CFD7,英飞凌科技股份公司推出最新的高压超结MOSFET技术。该600 V CoolMOS™ CFD7是CoolMOS 7系列的新成员。

MSP430单片机IO口简介

IO 口是处理器系统对外沟通的最基本部件,从基本的键盘、LED 到复杂的外设芯片等,都是通过IO 口的输入、输出操作来进行读取或控制的。

智能产品出现新诉求 半导体、MCU如何应对?

随着IoT应用的深入,智能产品在消费领域、工业领域的应用不断普及,用户对智能产品的性能的需求也要求越来越高,这种需求也催了智能产品出现新的诉求。如何满足智能产品的新诉求,这对上游的半导体器件提出了挑战,尤其是MCU微控制器。

IoT深入应用推动智能产品出现新诉求

【下载】使用 CIP 实现斜率补偿的优势

在开关电源(switched-mode power supplies,SMPS)中,电流模式控制相对于电压模式控制具有诸多优势,但存在一个问题——电流环可能发生振荡。这是众所周知的现象,称为次谐波振荡。解决谐波振荡问题的方法是将斜率补偿斜坡加到电流反馈中,或从误差电压中减去斜坡。

单片机最小系统解析(电源、晶振和复位电路)

电源

我们在学习过程中,很多指标都是直接用的概念指标,比如我们说 +5 V 代表1,GND 代表0等等。但在实际电路中的电压值并不是完全精准的,那这些指标允许范围是什么呢?随着我们所学的内容不断增多,大家要慢慢培养一种阅读数据手册的能力。

MM32 FLASH操作

在我们应用开发时,经常会有一些程序运行参数需要保存,如一些修正系数或一些自定义数据。这些数据的特点是:数量少而且不需要经常修改,但又不能定义为常量,因为每台设备可能不一样而且在以后还有修改的可能。将这类数据存在指定的位置,需要修改时直接修改存储位置的数值,需要使用时则直接读取,会是一种方便的做法。

电路可靠性设计的十大误区

电路设计不仅有很多技巧,同样也存在很多误区。本文将介绍电路稳定性设计当中的十个误区。

误区1:产品故障=产品不可靠

产品出现问题,有时候并不是研发的问题,曾经有案例,面向国内中等以上发达地区的设备,因为在国内用的不错,所以出口到了哥伦比亚,但在那里频频故障,故障的原因在于中国大陆中等以上发达地区的海拔都比较低,所以高海拔地区,设备的气密性受到了挑战,设备内外压差增大泄露率增加。

项目立项时只考虑了低海拔,所以人家的设计是没问题的,您老总就这样要求的嘛,谁决策了拿这个型号出口哥伦比亚,他才是罪魁祸首,如果管研发的老总参与决策而没提出反对意见,他简直就是最大的罪人,毕竟销售的高管决策不懂技术还是可以原谅的,技术副总的错误则是无能。

产品可靠性是“规定的时间、规定的条件下,完成规定功能的能力”。读者一定细细品味这个定义,格物致知,看看谁能格这个定义的时候能达到更多的致知。使用现场的条件常常超过了规定的条件,而这个超出很大可能是隐含的。

误区2:过渡过程=稳态过程

《一条影响着产品可靠性和社会和谐的曲线》介绍很能说明此图的内容。

25美分获得25项功能:如何使用MCU进行简单的功能增强

如果有一个25美分的MCU,可以用0.5KB的内存做些什么?

您现在可能已经使用固定功能的集成电路(IC)很长一段时间了,并且在某些情况下,已经适应了它们有限的灵活性。一个简单的通用异步收发器(UART)到串行外设接口(SPI)桥接器、一个复位控制器或一个带有后备存储器的外部实时控制器(RTC)在自身功能方面拥有良好的表现,但却仅限于设定的功能。