嵌入式系统之接口技术篇(一)

judy的头像
judy 发布于:周三, 01/31/2018 - 17:58 ,关键词:

1. Flash 存储器

(1)Flash 存储器是一种非易失性存储器,根据结构的不同可以将其分为 NOR Flash 和 NAND Flash 两种。

(2) Flash 存储器的特点:

A、 区块结构:在物理上分成若干个区块,区块之间相互独立。

B、 先擦后写:Flash 的写操作只能将数据位从1写成0,不能从0写成1,所以在对存储器进行写入之前必须先执行擦除操作,将预写入的数据位初始化为1。擦除操作的最小单位是一个区块,而不是单个字节。

C、 操作指令:执行写操作,它必须输入一串特殊指令(NOR Flash)或者完成一段时序(NAND Flash )才能将数据写入。

D、 位反转:由于 Flash 的固有特性,在读写过程中偶尔会产生一位或几位的数据错误。位反转无法避免,只能通过其他手段对结果进行事后处理。

E、 坏块:区块一旦损坏,将无法进行修复。对已损坏的区块操作其结果不可预测。

(3) NOR Flash 的特点:

应用程序可以直接在闪存内运行,不需要再把代码读到系统 RAM 中运行。NOR Flash 的传输效率很高,在1MB~4MB 的小容量时具有很高的成本效益,但是很低的写入和擦除速度大大影响了它的性能。

(4) NAND Flash 的特点

能够提高极高的密度单元,可以达到高存储密度,并且写入和擦除的速度也很快,这也是为何所有的 U盘都使用 NAND Flash 作为存储介质的原因。应用 NAND Flash 的困难在于闪存需要特殊的系统接口。

(5)NOR Flash 与 NAND Flash 的 区别:

A、NOR Flash 的读速度比 NAND Flash 稍快一些。

B、NAND Flash 的擦除和写入速度比 NOR Flash 快很多

C、NAND Flash 的随机读取能力差,适合大量数据的连续读取。

D、NOR Flash 带有 SRAM 接口,有足够的地址引进来寻址,可以很容易地存取其内部的每一个字节。NAND Flash 的地址、数据和命令共用8位总线(有写公司的产品使用16位),每次读写都要使用复杂的 I/O 接口串行地存取数据。

E、NOR Flash 的容量一般较小,通常在1MB~8MB 之间;NAND Flash 只用在8MB 以上的产品中 。因此,NOR Flash 只要应用在代码存储介质中,NAND Flash 适用于资料存储。

F、NAND Flash 中每个块的最大擦写次数是一百万次,而 NOR Flash 是十万次。

G、NOR Flash 可以像其他内存那样连接,非常直接地使用,并可以在上面直接运行代码;NAND Flash需要特殊的 I/O 接口,在使用的时候,必须先写入驱动程序,才能继续执行其他操作。因为设计师绝不能向坏块写入,这就意味着在 NAND Flash 上自始至终必须进行虚拟映像。

H、NOR Flash 用于对数据可靠性要求较高的代码存储、通信产品、网络处理等领域,被成为 代码闪存;NAND Flash 则用于对存储容量要求较高的 MP3、存储卡、U 盘等领域,被成为 数据闪存。

2 、 RAM 存储器

(1)SRAM 的特点:

SRAM 表示 静态随机存取存储器,只要供电它就会保持一个值,它没有刷新周期,由 触发器构成基本单元, 集成度低,每个 SRAM 存储单元由6 6 6 6 个晶体管组成,因此其 成本较高。它具有 较高速率,常用于高速缓冲存储器。

通常 SRAM 有4种引脚:

CE:片选信号,低电平有效。
R/W:读写控制信号。
ADDRESS:一组地址线。
DATA :用于数据传输的一组双向信号线。

(2)DRAM 的特点:

DRAM 表示 动态随机存取存储器。这是一种 以电荷形式进行存储的半导体存储器。它的每个存储单元由 一个晶体管和一个电容器组成,数据存储在电容器中。电容器会由于漏电而导致电荷丢失,因而 DRAM器件是不稳定的。它必须有规律地 进行刷新,从而将数据保存在存储器中。

DRAM 的接口比较复杂,通常有一下引脚:

CE:片选信号,低电平有效。
R/W:读写控制信号。
RAS:行地址选通信号,通常接地址的高位部分。
CAS:列地址选通信号,通常接地址的低位部分。
ADDRESS:一组地址线。
DATA :用于数据传输的一组双向信号线。

(3)SDRAM 的特点:

SDRAM 表示 同步动态随机存取存储器。同步是指内存工作需要同步时钟,内部的命令发送与数据的传输都以它为基准;动态是指存储器阵列需要不断的刷新来保证数据不丢失。它通常只能工作在 133MHz 的主频。

(4)DDRAM 的特点

DDRAM 表示 双倍速率同步动态随机存取存储器,也称 DDR。DDRAM 是基于 SDRAM 技术的,SDRAM 在一个时钟周期内只传输一次数据,它是在时钟的上升期进行数据传输;而 DDR 内存则是一个时钟周期内传输两次次数据,它能够在时钟的上升期和下降期各传输一次数据。在133MHz 的主频下,DDR内存带宽可以达到133×64b/8×2=2.1GB/s。

3、 GPIO 原理与结构

GPIO 是 I/O 的最基本形式,它是一组输入引脚或输出引脚。有些 GPIO 引脚能够加以编程改变工作方向,通常有两个控制寄存器:数据寄存器和数据方向寄存器。数据方向寄存器设置端口的方向。如果将引脚设置为输出,那么数据寄存器将控制着该引脚状态。若将引脚设置为输入,则此输入引脚的状态由引脚上的逻辑电路层来实现对它的控制。

4、 A/D 接口

(1)A/D 转换器是把电模拟量转换为数字量的电路。实现 A/D 转换的方法有很多,常用的方法有计数法 、双积分法和逐次逼进法。

(2)计数式 A/D 转换法

其电路主要部件包括:比较器、计数器、D/A 转换器和标准电压源。

其 工作原理简单来说就是,有一个计数器,从0开始进行加1计数,每进行一次加1,该数值作为 D/A 转换器的输入,其产生一个比较电压 V O 与输入模拟电压 V IN 进行比较。如果 V O 小于 V IN 则继续进行加1计数 ,直到 V O 大于 V IN ,这时计数器的累加数值就是 A/D 转换器的输出值。这种转换方式的 特点是简单,但是速度比较慢,特别是模拟电压较高时,转换速度更慢。例如对于一个8位 A/D 转换器,若输入模拟量为最大值,计数器要从0开始计数到255,做255次 D/A 转换和电压比较的工作,才能完成转换。

(3)双积分式 A/D 转换法

其电路主要部件包括:积分器、比较器、计数器和标准电压源。其 工作原理是,首先电路对输入待测电压进行固定时间的积分,然后换为标准电压进行固定斜率的反向积分,反向积分进行到一定时间,便返回起始值。由于使用固定斜率,对标准电压进行反向积分的时间正比于输入模拟电压值,输入模拟电压越大,反向积分回到起始值的时间越长。只要用标准的高频时钟脉冲测定反向积分花费的时间,就可以得到相应于输入模拟电压的数字量,也就完成了 A/D 转换。其 特点是,具有很强的抗工频干扰能力,转换精度高,但转换速度慢,通常转换频率小于10Hz,主要用于数字式测试仪表、温度测量等方面。

(4)逐次逼近式 A/D 转换法

其电路主要部件包括:比较器、D/A 转换器、逐次逼近寄存器和基准电压源。其 工作原理是,实质上就是对分搜索法,和平时天平的使用原理一样。在进行 A/D 转换时,由 D/A 转换器从高位到低位逐位增加转换位数,产生不同的输出电压,把输入电压与输出电压进行比较而实现。首先使最高位为1,这相当于取出基准电压的1/2与输入电压比较,如果在输入电压小于1/2的基准电压,则最高位置0,反之置1。之后,次高位置1,相当于在1/2的范围中再作对分搜索,以此类推,逐次逼近。其 特点是,速度快,转换精度高,对 N 位 A/D 转换器只需要 M 个时钟脉冲即可完成,一般可用于测量几十到几百微秒的过渡过程的变化,是目前应用最普遍的转换方法。

(5)A/D 转换的重要指标

A、 分辨率:反映 A/D 转换器对输入微小变化响应的能力,通常用数字输出最低位(LSB)所对应的模拟电压的电平值表示。n 位 A/D 转换器能反映1/2 n 满量程的模拟输入电平。

B、 量程:所能转换的模拟输入电压范围,分为单极性和双极性两种类型。

C、 转换时间:完成一次 A/D 转换所需要的时间,其倒数为转换速率。

D、 精度:精度与分辨率是两个不同的概念,即使分辨率很高,也可能由于温漂、线性度等原因使其精度不够高。精度有绝对精度和相对精度两种表示方法。通常用数字量的最低有效位 LSB 的分数值来表示绝对精度,用其模拟电压满量程的百分比来表示相对精度。例如,满量程10V,10位 A/D 芯片,若其绝对精度为±1/2LSB,则其最小有效位 LSB 的量化单位为 :10/1024=9.77mv,其绝对精度为9.77mv/2=4.88mv,相对精度为:0.048%。

5 、 D/A 接口基本

(1)D/A 转换器使将数字量转换为模拟量。

(2)在集成电路中,通常采用 T 型网络实现将数字量转换为模拟电流,再由运算放大器将模拟电路转换为模拟电压。进行 D/A 转换实际上需要上面的 两个环节。

(3)D/A 转换器的分类:

A、 电压输出型:常作为高速 D/A 转换器。
B、 电流输出型:一般外接运算放大器使用。
C、 乘算型:可用作调制器和使输入信号数字化地衰减。

(4)D/A 转换器的主要指标:分辨率、建立时间、线性度、转换精度、温度系数。

6 、键盘接口

(1)键盘的两种形式:线性键盘和矩阵键盘。

(2)识别键盘上的闭合键通常有两种方法:行扫描法和行反转法。

(3)行扫描法是矩阵键盘按键常用的识别方法,此方法分为两步进行:

A、识别键盘哪一列的键被按下:让所有行线均为低电平,查询各列线电平是否为低,如果有列线为低,则说明该列有按键被按下,否则说明无按键按下。

B、如果某列有按键按下,识别键盘是哪一行按下:逐行置低电平,并置其余各行为高电平,查询各列的变化,如果列电平变为低电平,则可确定此行此列交叉点处按键被按下。

7 、显示接口

(1)LCD 的基本原理是,通过给不同的液晶单元供电,控制其光线的通过与否,从而达到显示的目的。

(2)LCD 的光源提供方式有两种: 投射式和 反射式。笔记本电脑的 LCD 显示器为投射式,屏的背后有一个光源,因此外界环境可以不需要光源。一般微控制器上使用的 LCD 为反射式,需要外界提供电源,靠反射光来工作。 电致发光( EL )是液晶屏提供光源的一种方式。

(3)按照液晶 驱动方式分类,常见的 LCD 可以分为三类:扭转向列类(TN)、超扭曲向列型(STN)和薄膜晶体管型(TFT)。

(4)市面上出售的 LCD 有两种类型:带有驱动电路的 LCD 显示模块,只要 总线方式驱动;没有驱动电路的 LCD 显示器,使用 控制器扫描方式。

(5)通常,LCD 控制器工作的时候,通过 DMA 请求总线,直接通过 SDRAM 控制器读取 SDRAM 中指定地址(显示缓冲区)的数据,此数据经过 LCD 控制器转换成液晶屏扫描数据格式,直接驱动液晶显示器。

(6)VGA 接口本质上是一个 模拟接口,一般都采用统一的 15 引脚接口,包括2个 NC 信号、3根显示器数据总线、5个 GND 信号、3个 RGB 色彩分量、1个行同步信号和1个场同步信号。其色彩分量采用的电平标准为 EIA 定义的 RS343 标准。

8 、触摸屏接口

(1)按工作原理分,触摸屏可以分为:表面声波屏、电容屏、电阻屏和红外屏几种。

(2)触摸屏的控制采用专业芯片,例如 ADS7843。(具体工作原理看《教程》176页)。

9 、音频接口

(1)基本原理:麦克风输入的数据经音频编解码器解码完成 A/D 转换,解码后的音频数据通过音频控制器送入 DSP 或 CPU 进行相应的处理,然后数据经音频控制器发送给音频编码器,经编码 D/A 转换后由扬声器输出。

(2)数字音频的格式有多种,最常用的是下面三种:

A、 采用数字音频 ( PCM) ):是 CD 或 DVD 采用的数据格式。其采样频率为44.1kHz。精度为16位时 ,PCM 音频数据速率为1.41Mb/s;精度为32位时为2.42 Mb/s。一张700MB 的 CD 可以保存大约60分钟的16位 PCM 数据格式的音乐。

B、 MPEG 层3 3 3 3频 音频 ( MP3) ):MP3播放器采用的音频格式。立体声 MP3数据速率为112kb/s 至128kb/s。

C、 ATSC 数字音频压缩标准 ( AC3) ):数字 TV、HDTV 和电影数字音频编码标准,立体声 AC3编码后的数据速率为192kb/s。

(3)IIS 是音频数据的编码或解码常用的串行音频数字接口。IIS 总线只处理声音数据,其他控制信号等则需要单独传输。IIS 使用了3根串行总线:数据线 SD、字段选择线 WS、时钟信号线 SCK。

(4)当接收方和发送方的数据字段宽度不一样时,发送方不考虑接收方的数据字段宽度。如果发送方发送的数据字段小于系统字段宽度,就在低位补0;如果发送方的数据宽度大于接收方的宽度,则超过 LSB的部分被截断。字段选择 WS 用来选择左右声道,WS=0表示选择左声道;WS=1表示选择右声道。此外 ,WS 能让接收设备存储前一个字节,并准备接收下一个字节。

10 、串行接口

(1)串行通信是指,使数据一位一位地进行传输而实现的通信。与并行通信相比,串行通信具有传输线少、成本低等优点,特别适合远距离传送;缺点使速度慢。

(2)串行数据传送有3种基本的通信模式:单工、半双工、全双工。

(3)串行通信在信息格式上可以分为2种方式:同步通信和异步通信。

A、 异步传输:把每个字符当作独立的信息来传输,并按照一固定且预定的时序传送,但在字符之间却取决于字符与字符的任意时序。异步通信时,字符是一帧一帧传送的,每帧字符的传送靠起始位来同步。一帧数据的各个代码间间隔是固定的,而相邻两帧数据其时间间隔是不固定的。

B、 同步传输:同步方式不仅在字符之间是同步的,而且在字符与字符之间的时序仍然是同步的,即同步方式是将许多字符聚集成一字符块后,在每块信息之前要加上1~2个同步字符,字符块之后再加入适当的错误检测数据才传送出去。

(4)异步通信必须遵循3项规定:

A、字符格式:起始位+数据+校验位+停止位(检验位可无),低位先传送。
B、波特率:每秒传送的位数。
C、校验位:奇偶检验。
a、奇校验:要使字符加上校验位有奇数个“1”。
b、偶检验:要使字符加上校验位有偶数个“1”。

(5)RS-232C 的电气特性: 负逻辑。

A、在 TxD 和 RxD 上:逻辑1为-3V~-15V,逻辑0为3V~15V。
B、在 TES、CTS、DTR、DCD 等控制线上:
信号有效(ON 状态)为3V~15V
信号无效(OFF 状态)为-3V~-15V

(6)TTL 标准与 RS-232C 标准之间的电平转换利用集成芯片 RS232实现。(详见《教程》182页)

(7)RS-422串行通信接口

A、RS-422是一种单机发送、多机接收的单向、平衡传输规范,传输速率可达10Mb/s。
B、RS-422采用 差分传输方式,也称做平衡传输,使用一对双绞线。
C、RS-422需要一终端电阻,要求其阻值约等于传输电缆的特性阻抗。

(8)RS-485串行总线接口

A、RS-485是在 RS-422的基础上建立的标准,增加了多点、双向通信能力,通信距离可为几十米到上千米。
B、RS-485收发器采用 平衡发送和 差分接收,具有抑制共模干扰的能力。
C、RS-485需要两个终端电阻。在近距离(300m 一下)传输可不需要终端电阻。

11 、并行接口

(1)并行接口的数据传输率比串行接口快8倍,标准并行接口的数据传输率为1Mb/s,一般用来连接打印机、扫描仪等,所以又称打印口。

(2)并行接口可以分为 SPP(标准并口)、EPP(增强型并口)和 ECP(扩展型并口)。

(3)并行总线分为标准和非标准两类。常用的并行标准总线有 IEEE 488总线和 ANSI SCSI 总线。MXI总线是一种高性能非标准的通用多用户并行总线。

来源:http://www.cnblogs.com/chenshikun/p/7723699.html

围观 536