MOSFET

电动汽车、商业运输、可再生能源和存储系统设计人员可从碳化硅协议栈解决方案中获益,提高性能和成本效率,可使产品最多提前6个月上市

电动出行和可再生能源系统需要能够提高性能效率和加快开发时间的电源管理解决方案。为满足这些要求,Microchip Technology Inc.(美国微芯科技公司)今日宣布与Mersen合作推出150千伏安(kVA)三相碳化硅电源协议栈参考设计。Mersen是一家为包括电动出行和能源储存在内的众多工业行业提供电源管理解决方案的全球供应商。

“Microchip将为Mersen

Mersen的三相碳化硅电源协议栈参考设计为系统设计人员提供了完整、紧凑的大功率碳化硅解决方案,无需进行单独的器件采购、测试和鉴定。电源协议栈参考设计包括Microchip的碳化硅电源模块和数字栅极驱动器以及Mersen的母线、熔断器、电容器和热管理,在单一的高性能协议栈参考设计中进行了优化设计。凭借Microchip的1200V MSCSM120AM042CD3AG碳化硅MOSFET和AgileSwitch® 2ASC-12A1HP数字栅极驱动器,电源协议栈参考设计使工程师能使用为其应用预先设计的工具包快速开发高电压系统,从而将上市时间最多缩短六个月。

“Microchip将为Mersen

Microchip分立产品业务部副总裁Leon Gross表示:“与Mersen合作提供碳化硅MOSFET和数字栅极驱动器解决方案,将使Microchip的客户受益。功率逆变器设计人员能采购到成熟的解决方案,就可以避免采购单独的部件,并通过可靠性降低风险,这有助于避免停机。设计人员现在有了一个一体化的评估系统。”

电源协议栈参考设计提供16千瓦/升(kW/l)的功率密度和高达130℃的Tj,峰值效率为98%,开关频率高达20千赫兹(kHz)。凭借Microchip坚固的碳化硅MOSFET和AgileSwitch系列可配置数字栅极驱动器,该参考设计使工程师能够从700V和1200V选项中选择电流高达750A的产品。Microchip还提供模块结构选项,包括基板材料、直接接合铜(DBC)陶瓷材料和芯片连接方法。

Mersen副总裁兼全球战略营销执行专家Phillipe Roussel博士表示:“鉴于可以从单一来源获得高度稳健的碳化硅MOSFET和兼容的数字栅极驱动器,我们与Microchip紧密合作,设计和开发了这款碳化硅电源协议栈参考设计。因此,依托我们的高可靠性母线、电容器、熔断器和冷却系统产品线,我们有能力优化客户的任何逆变器拓扑结构。多功能的Microchip碳化硅阵容也使我们有能力将这些主要规格扩展到更高的电压、电流和开关频率,以满足每个客户的操作点需求。”

除了Mersen的电源协议栈参考设计中的产品外,Microchip还是其他碳化硅电源解决方案的供应商,包括650V至1700V的MOSFET和肖特基势垒二极管系列,提供裸片以及各种分立和多芯片模块封装。

Microchip将内部碳化硅芯片生产与低电感功率封装和数字栅极驱动器相结合,使设计人员能够制造出高效、紧凑和可靠的最终产品。这些器件与单片机(MCU)、模拟和MCU外设以及通信、无线和安全技术组合在一起,为许多应用的系统设计人员提供了成熟的整体系统解决方案。

开发工具

Microchip AgileSwitch 2ASC-12A1HP 1200V双通道数字栅极驱动器采用Augmented Switching™技术,可直接用于生产并可完全配置。AgileSwitch 2ASC-12A1HP栅极驱动器和下一代2ASC-12A2HP由Microchip智能配置工具(ICT)支持,该接口允许用户配置栅极驱动器参数,包括栅极开关配置文件、系统关键监控器和控制器接口设置。ICT是一个免费的下载工具,可以节省开发时间。

供货

如需了解关于协议栈的其他信息,请访问Mersen协议栈优化组件网页,或联系Microchip销售代表或全球授权分销商。如需了解更多信息,敬请访问Microchip.com/SiC。

资源

可通过Flickr或联系编辑获取高分辨率图片(可免费发布):

应用图:https://www.flickr.com/photos/microchiptechnology/51655174748/sizes/l/
产品图:https://www.flickr.com/photos/microchiptechnology/51654975011/sizes/l/

Microchip Technology Inc. 简介

Microchip Technology Inc.是致力于智能、互联和安全的嵌入式控制解决方案的领先供应商。其易于使用的开发工具和丰富的产品组合让客户能够创建最佳设计,从而在降低风险的同时减少系统总成本,缩短上市时间。Microchip的解决方案为工业、汽车、消费、航天和国防、通信以及计算市场中12万多家客户提供服务。Microchip总部位于美国亚利桑那州Chandler市,提供出色的技术支持、可靠的产品交付和卓越的质量。详情请访问公司网站www.microchip.com

围观 11

新器件提供卓越的开关特性,使电源能符合80 PLUS Titanium能效标准

领先于智能电源和智能感知技术的安森美(onsemi,美国纳斯达克股票代号:ON),发布新的600 V SUPERFETÒ V MOSFET系列。这些高性能器件使电源能满足严苛的能效规定,如80 PLUS Titanium,尤其是在极具挑战性的10%负载条件下。600 V SUPERFET系列下的三个产品组--FAST、Easy Drive和FRFET经过优化,可在各种不同的应用和拓扑结构中提供领先同类的性能。

“安森美发布高性能、低损耗的SUPERFET

600 V SUPERFET V系列提供出色的开关特性和较低的门极噪声,从而降低电磁干扰(EMI),这对服务器电信系统是个显著的好处。此外,强固的体二极管和较高的VGSS(DC ±30 V)增强了系统可靠性。

安森美先进电源分部高级副总裁兼总经理Asif Jakwani说:“80 Plus Titanium认证以应对气候变化为目标,要求服务器和数据存储硬件在10%负载条件下的电源能效水平达90%,在处理50%负载时的能效达96%。我们的SUPERFET V系列的FAST、Easy Drive和FRFET版本正在满足这些要求,提供强固的方案,确保持续的系统可靠性。”

FAST版本在硬开关拓扑结构(如高端PFC)中提供极高能效,并经过优化以提供更低的门极电荷(Qg)和EOSS损耗,实现快速开关。该版本的最初器件包括NTNL041N60S5H(41 mW RDS(on))和NTHL185N60S5H(185 mW RDS(on)),都采用TO-247封装。NTP185N60S5H则采用TO-220封装,NTMT185N60S5H采用8.0mm x 8.0mm x 1.0mm的Power88封装,保证达到湿度敏感等级MSL 1,并具有开尔文(Kelvin)源架构以改善门极噪声和开关损耗。

Easy Drive版本适用于硬开关和软开关拓扑结构,包含一个内置门极电阻(Rg)及经优化的内置电容。它们适用于许多应用中的一般用途,包括PFC和LLC。在这些器件中,门极和源极之间的内置齐纳二极管的RDS(on) 超过120 mW,对门极氧化物的应力更小,ESD耐用性更高,从而提高封装产量,降低不良率。目前供应的两款器件NTHL099N60S5和NTHL120N60S5Z的RDS(on)为99 mW和120 mW,均采用TO-247封装。

快速恢复(FRFETÒ)版本适用于软开关拓扑结构,如移相全桥(PSFB)和LLC。它们的优势是快速体二极管,并提供降低的Qrr和Trr。。强固的二极管耐用性确保更高的系统可靠性。内置齐纳二极管的NTP125N60S5FZ 的RDS(on)为125 mW,采用TO-220封装,而NTMT061N60S5F 的RDS(on)为61 mW,采用Power88封装。损耗最低的器件是NTHL019N60S5F,RDS(on)仅19 mW,采用TO-247封装。

关于安森美(onsemi)

安森美(onsemi, 纳斯达克股票代号:ON)正推动颠覆性创新,帮助建设更美好的未来。公司专注于汽车和工业终端市场,正加速推动大趋势的变革,包括汽车功能电子化和安全、可持续能源网、工业自动化以及5G和云基础设施等。安森美以高度差异化的创新产品组合,创造智能电源和感知技术,解决世界上最复杂的挑战,并引领创建一个更安全、更清洁、更智能的世界。了解更多请访问:http://www.onsemi.cn

围观 11

STPOWER MDmeshK6 新系列超级结晶体管改进多个关键参数,最大限度减少系统功率损耗,特别适合基于反激式拓扑的照明应用,例如, LED 驱动器、HID 灯,还是适用于电源适配器和平板显示器的电源。

“意法半导体新MDmesh™

意法半导体800V STPOWER MDmesh K6系列,为这种超级结晶体管技术树立了高性能和易用性兼备的标杆。MDmesh K6 的RDS(on) x 面积参数在市场上现有800V产品中处于领先水平,能够实现紧凑的集高功率密度与市场领先的能效于一身新的新设计。

此外,K6 系列的阈压比上一代 MDmesh K5更低,可使用更低的电压驱动,从而降低功耗并提高能效,主要用于零功耗待机应用。总栅极电荷 (Qg) 也非常低,可以实现高开关速度和低损耗。

芯片上集成一个 ESD 保护二极管,将 MOSFET 的整体鲁棒性提高到人体模型 (HBM) 2 级。

意大利固态照明创新企业TCI(www.tcisaronno.net)的首席技术官、研发经理 Luca Colombo 表示:“”
我们已经测评了新的超结超高压 MDmesh K6 系列的样片,并注意到其出色的Rdson* 面积和总栅极电荷 (Qg) 性能特点,给我们印象深刻。

采用 TO-220 通孔封装的STP80N240K6 (RDS(on)max= 0.22Ω, Qgtyp= 25.9nC)是首批量产的 MDmesh K6 MOSFET,ST eSTore网上商店现已提供免费样片。DPAK 和 TO-220FP 版本将于 2022 年 1 月前量产。

意法半导体将于 2022 年前推出MDmesh K6 的完整产品组合,将导通电阻RDS(on)范围从 0.22Ω扩大到 4.5Ω,并增加一系列封装选项,包括 SMD 和通孔外壳。

来源:意法半导体PDSA
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 15

国际能源署的数据显示,到 2030 年,太阳能光伏 (PV) 装置的装机容量有望达到 3,300 TWh,与 2019 年的水平相比,年增率为 15%[1],这意味着能源供应的比例在不断上升。光伏装置的安装是将微型、迷你和电力公司规模的混合,但无论哪种情况都采用类似的 PV 技术,电池串联可获得较高的可用电压,并联可获得更高的功率。一个趋势是增加面板串的电压,以获得相应的低电流的优势,在连接和布线中产生较少的功率损失。典型的标称面板安装电压约为 500 V 至 1000 V,但预计未来 1500 V 会更常见[2]

“涨知识!IGBT和SiC

为实现可扩展性、经济性和容错性,每个板串通常都各自配备功率相对较低的逆变器,而不是使用单个中央逆变器。设备内部的 PV 电压通常会提升至适合输入到 DC-AC 转换级的稳压直流值,最大功率点追踪 (MPPT) 控制器可优化面板上的负载,以实现最佳的能量利用。升压式 DC-DC 转换器和逆变器是高效的开关电路,其使用各种技术的半导体。

PV电源转换半导体选项

过去,绝缘栅双极型晶体管 (IGBT)在大功率 DC-DC 和 AC-DC 转换领域一直占主导地位,而新型宽禁带 (WBG) 半导体(如碳化硅 (SiC) MOSFET)现已问世,其额定功率高达数十千瓦,在并联时甚至更高。这两种技术不仅可以作为通用封装(如 TO-247)中的单个设备使用,还可以作为功率集成模块 (PIM) 使用。

PIM 在工业标准外壳中集成了多个开关,有时还带有二极管,甚至驱动器和保护电路。这可以为单一封装中的转换器和逆变器功能提供完整的功率级。

IGBT 和 SiC MOSFET 在几个方面明显不同;由于动态损耗,IGBT 只能用于低频,但在导电时会降低标称恒定饱和电压,从而导致与电流成正比的功率损耗。

相比之下,SiC MOSFET 可在数百 kHz 频率下切换,且动态损耗较低,但在导电时会出现标称恒定电阻,从而导致与电流平方值成正比的功率损耗,随着功率吞吐量的增加,其劣势就越明显。

图 1 显示,在其他类似的条件下,50 A 额定 IGBT PIM 和 38 A SiC PIM 的电压下降与传导损耗成正比,在大约 25 A 时,可实现最佳效率交叉点。该图标适用于结温为 125℃(典型值)的应用。

“图1:125℃
图1:125℃ 条件下,IGBT 和 SiC MOSFET PIM 的压降比较

动态损耗取决于频率,如果在相同低频(如 16 kHz)下,大约 20 A 至 30 A 开关电流下比较图 1 中的 IGBT 和 SiC MOSFET,两者的传导损耗相似,但动态损耗截然不同。图 2 显示的是两种开关损耗电源,分别为开和关能源(Eon 和 Eoff)。

同样,这里也有一个交叉点,但 Eon 相似,两种设备类型的传导损耗大约为 25%,IGBT 略差,但无论如何,绝对值不是很大。然而,由于存在“尾”电流,IGBT 的 Eoff 明显更高,少数载流子必须在关断时从器件 N 漂移区清除,这会出现集电极电压升高,从而产生瞬态功率损耗。图 2 显示两种设备的 Eoff 大约相差 10 倍。

“图
图 2:16 kHz 下,IGBT 和 SiC MOSFET 的动态损耗比较示例

表 1 总结了在 16 kHz 和 95℃ 温度条件下,实际 PV 升压转换器(输入为 500 V,25 A 以及输出为 800 V DC 时)的差异。SiC 的整体功耗明显降低,总损耗仅为 IGBT 电路的三分之一左右,且结温更低,可靠性更高。

“表1:升压转换器在
表1:升压转换器在 16 kHz 条件下的损耗分解

SiC MOSFET在更高频率条件下表现更为出色

除了节能外,利用 SiC 提高效率的好处可以视为减小尺寸,降低散热成本,同样的散热性能时温升更低,或者,同样的散热性能和温升时功率吞吐量更高。这些都是有价值的增益,但值得研究的是,如果利用 SiC 的高频能力会发生什么。将 SiC MOSFET(40 kHz 频率下)与 IGBT(16 kHz 频率下)进行比较,可得到表 2 中的数字。

“表2:IGBT(16
表2:IGBT(16 kHz 条件下)和 SiC MOSFET(40 kHz 条件下)的损耗比较

SiC 器件拥有更高的结温,但作为 WBG 器件,其额定工作温度通常比硅高 25°C。SiC MOSFET 的结果仍表明其效率明显高于 IGBT,损耗只有 IGBT 的一半多,优势旗鼓相当。

不过,频率的增加也使升压电感值和体积减少大约三倍,从而降低了成本,减小了体积和重量。此外,在基频和低谐波下,EMI 滤波可以更小,从而实现进一步的节省。SiC MOSFET 确实有非常快的边缘速率,但必须仔细考虑高频滤波,以满足排放标准。

损耗并不是 IGBT 和 SiC MOSFET 之间的唯一差异。例如,MOSFET 中有一个体二极管,而 IGBT 中却没有。这对于开关中需要反向或“第三象限”传导的转换级非常有用。虽然 SiC MOSFET 体二极管的正向压降相对较高,但可以用于此。当以这种方式使用 IGBT 时,必须增加一个额外的并联二极管。

因此,我们可以找到一个平衡点,即在更高频率下使用 SiC 会使系统获得大量好处,远远超过两种技术之间 PIM 单位成本的差异。随着新一代器件的推出,SiC MOSFET 的导通电阻下降,越来越多应用的利益交叉点增加到更高的功率等级。

SiC需要精心设计以利用其功能

IGBT 和 SiC MOSFET 的栅极驱动名义上看似相似,但 SiC 器件的片上驱动对于实现最低传导损耗更为重要,且必须尽可能接近实际的绝对最大值,通常为 25 V。为此,通常采用 20 V,以提供一定的安全裕度。

两种设备类型名义上都通过 0 V 栅极驱动关闭,但两者通常都由几伏特的负电压驱动。这样可实现更小的 Eoff、更少的关断时栅源振铃,并有助于防止“幻像开启”,其原因可能是与栅极驱动环路共用的任何源极或发射极电感的尖峰。

任何设备的“米勒”电容也可能会在漏极或集电极电压边缘率较高的情况下伪装开启设备。同样,负栅极驱动有助于避免问题。图 3 说明了效果。

“
图3:共源极电感和米勒电容可防止器件关断

耦的高频布局技术,以避免不可靠的运行和过度的 EMI。驱动器必须靠近 SiC MOSFET PIM,任何至 MOSFET 源极的可用“开尔文”连接应用作为驱动器回路导线,以避免共模电感。

由于边缘速率非常快,准确测量 SiC MOSFET PIM 的动态性能可能较困难,所以通常设备应使用 300 MHz 带宽和高频测量技术。电压探针应与最小的接地回路连接,并通过高性能传感器(如 Rogowski 线圈)监测电流。

总结

开关从 IGBT 向 SiC MOSFET 转换可在更高功率级上实现纯系统优势,同时 PIM 可提供一个简单的解决方案。然而,熟悉使用 IGBT 的人应该知道,简单的换出无法实现好的结果,需要重新评估栅极驱动的安排、布局和 EMI 滤波,才能实现最佳性能。

References

[1] https://www.iea.org/reports/solar-pv

[2] https://www.solarpowerworldonline.com/2018/11/high-voltage-solar-systems...

来源:安森美
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 55

东芝电子元件及存储装置株式会社(“东芝”)今日宣布,面向工业应用推出一款集成最新开发的双通道碳化硅(SiC)MOSFET芯片(具有3300V和800A特征)的模块---“MG800FXF2YMS3”,该产品将于2021年5月投入量产。

为达到175℃的通道温度,该产品采用具有银烧结内部键合技术和高贴装兼容性的iXPLV(智能柔性封装低电压)封装。这款模块可充分满足轨道车辆和可再生能源发电系统等工业应用对高效紧凑设备的需求。

应用

・用于轨道车辆的逆变器和转换器

・可再生能源发电系统

・工业电机控制设备

特性

・漏源额定电压: VDSS =3300V

・漏极额定电流: ID =800A双通道

・宽通道温度范围: Tch =175℃

・低损耗:

Eon =250mJ(典型值)

Eoff =240mJ(典型值)

VDS(on)sense =1.6V(典型值)

・低杂散电感: Ls =12nH(典型值)

・高功率密度的小型iXPLV封装

主要规格

(除非另有说明,@Tc =25℃)

器件型号

MG800FXF2YMS3

封装

iXPLV

额定最大绝对值

漏源电压VDSS(V)

3300

栅源电压VGSS(V)

+25/-10

漏极电流(DC)ID(A)

800

漏极电流(脉冲)IDP(A)

1600

通道温度Tch(℃)

175

隔离电压Visol(Vrms)

6000

电气特性

漏源电压导通电压(感应)

VDS(on)sense典型值(V)

VGS=+20V时,

ID=800A

1.6

源漏电压导通电压(感应)

VSD(on)sense典型值(V)

VGS=+20V时,

IS=800A

1.5

源漏电压关断电压(感应)

VSD(off)sense典型值(V)

VGS=-6V时,

IS=800A

2.3

杂散电感模块LSPN典型值(nH)

12

导通开关损耗

Eon典型值(mJ)

VDD=1800V时,

ID=800A、

Tch=150℃

250

关断开关损耗

Eoff典型值(mJ)

VDD=1800V时,

ID=800A、

Tch=150℃

240

如需了解相关新产品的更多信息,请访问以下网址:

MG800FXF2YMS3

https://toshiba-semicon-storage.com/cn/semiconductor/product/optoelectronics/photorelay-mosfet-output/detail.MG800FXF2YMS3.html

如需了解相关东芝SiC功率器件的更多信息,请访问以下网址:

https://toshiba-semicon-storage.com/cn/semiconductor/product/sic-power-devices.html

关于东芝电子元件及存储装置株式会社

东芝电子元件及存储装置株式会社,融新公司活力与经验智慧于一身。自2017年7月成为独立公司以来,已跻身通用元器件公司前列,为客户和合作伙伴提供分立半导体、系统LSI和HDD领域的杰出解决方案。

公司24,000名员工遍布世界各地,致力于实现产品价值的最大化。东芝电子元件及存储装置株式会社十分注重与客户的密切协作,旨在促进价值共创,共同开拓新市场,实现了超过7500亿日元(68亿美元)的年销售额。公司期望为世界各地的人们建设更加美好的未来。

如需了解有关东芝电子元件及存储装置株式会社的更多信息,请访问以下网址:https://toshiba-semicon-storage.com

围观 28

节省空间的LFPAK56D半桥产品可以帮助动力系统、电机控制和DC/DC应用减少60%的寄生电感并改善散热性能

关键半导体器件领域的专家Nexperia今天宣布推出一系列采用节省空间的LFPAK56D封装技术的半桥(高端和低端)汽车MOSFET。采用两个MOSFET的半桥配置是许多汽车应用(包括电机驱动器和DC/DC转换器)的标准构建模块。这种新封装提供了一种单器件半桥解决方案。与用于三相电机控制拓扑的双通道MOSFET相比,由于去掉了PCB线路,其占用的PCB面积减少了30%,同时支持在生产过程中进行简单的自动光学检测(AOI)。LFPAK56D半桥产品采用现有的大批量LFPAK56D封装工艺,并具有成熟的汽车级可靠性。这种封装形式使用灵活的引脚来提高整体可靠性,并且MOSFET之间采用内部铜夹连接,简化了PCB设计并带来了即插即用式解决方案,电流处理能力达到98A,表现非常出色。

通常,在半桥结构中,高边MOSFET的源极与低边MOSFET的漏极之间的PCB连接会产生大量的寄生电感。但是,通过内部夹式连接,LFPAK56D半桥封装成功减少了60%的寄生电感。

新推出的LFPAK56D半桥MOSFET是BUK7V4R2-40H和BUK9V13-40H。这两款产品都采用高度耐用的Trench 9汽车级晶圆工艺技术,额定电压为40 V,并在关键测试中通过了两倍汽车AEC-Q101规范的验证。这两款器件的RDS(on)分别为4.2 mOhm (BUK7V4R2)和13 mOhm (BUK9V13)。

符合AEC-Q101标准的Nexperia LFPAK56D半桥封装产品适合各类三相汽车动力系统应用,例如燃油泵、水泵、电机控制和DC/DC电源转换。其占用的PCB面积减少30%,寄生电感减少60%,因此适用于高性能开关应用。随着重要汽车客户的设计采用和投入,这项新技术已经取得了成功。

欲了解更多信息,包括产品数据手册和快速学习视频,请访问 www.nexperia.com/lfpak56d-half-bridge

关于Nexperia

Nexperia,作为半导体基础元器件生产领域的高产能生产专家,其产品广泛应用于全球各类电子设计。公司丰富的产品组合包括二极管、双极性晶体管、ESD保护器件、MOSFET器件、氮化镓场效应晶体管(GaN FET)以及模拟和逻辑IC。Nexperia总部位于荷兰奈梅亨,每年可交付900多亿件产品,产品符合汽车行业的严苛标准。其产品在效率(如工艺、尺寸、功率及性能)方面获得行业广泛认可,拥有先进的小尺寸封装技术,可有效节省功耗及空间。

凭借几十年来的专业经验,Nexperia持续不断地为全球各地的优质企业提供高效的产品及服务,并在亚洲、欧洲和美国拥有超过12,000名员工。Nexperia是闻泰科技股份有限公司(600745.SS)的子公司,拥有庞大的知识产权组合,并获得了IATF 16949、ISO 9001、ISO 14001和OHSAS 18001认证。

围观 17

优异的开关和更高的可靠性在各种挑战性应用中提高功率密度

2021年2月18日 —推动高能效创新的安森美半导体 (ON Semiconductor,美国纳斯达克上市代号:ON),发布一系列新的碳化硅 (SiC) MOSFET器件,适用于功率密度、能效和可靠性攸关的高要求应用。设计人员用新的SiC器件取代现有的硅开关技术,将在电动汽车(EV)车载充电器(OBC)、太阳能逆变器、服务器电源(PSU)、电信和不间断电源(UPS)等应用中实现显著更好的性能。


安森美半导体新的车规AECQ101和工业级合格的650伏(V) SiC MOSFET基于一种新的宽禁带材料,提供比硅更胜一筹的开关性能和更好的热性能,因而提高系统级能效、功率密度,及减小电磁干扰(EMI)、系统尺寸和重量。

新一代SiC MOSFET采用新颖的有源单元设计,结合先进的薄晶圆技术,可在650 V击穿电压实现同类最佳的品质因数Rsp (Rdson * area)。NVBG015N065SC1、NTBG015N065SC1、NVH4L015N065SC1和NTH4L015N065SC1采用D2PAK7L和To247封装,具有市场最低的Rdson (12 mOhm)。 这技术还优化能量损失品质因数,从而优化了汽车和工业应用中的性能。 内置门极电阻 (Rg)为设计人员提供更大的灵活性,而无需使用外部门极电阻人为地降低器件的速度。 更高的浪涌、雪崩能力和短路鲁棒性都有助于增强耐用性,从而提供更高的可靠性和更长的器件使用寿命。

安森美半导体先进电源分部高级副总裁Asif Jakwani在发布新品时说:“在现代电源应用中,如电动汽车(EV)车载充电器(OBC)和可再生能源、企业计算及电信等其他应用, 高能效、可靠性和功率密度是设计人员一直面临的挑战。这些新的SiC MOSFET比同等的硅开关技术显著提高性能,使工程师能够满足这些具有挑战性的设计目标。 增强的性能降低损耗,从而提高能效,减少热管理需求,并降低电磁干扰(EMI)。使用这些新的SiC MOSFET的最终结果是更小、更轻、更高效和更可靠的电源方案。”

新器件均为表面贴装,并提供行业标准封装类型,包括TO247和D2PAK。

更多资源及文档:

登陆页:宽禁带方案
产品页:650 V SiC MOSFET

关于安森美半导体

安森美半导体(ON Semiconductor,美国纳斯达克上市代号:ON)致力于推动高能效电子的创新,使客户能够减少全球的能源使用。安森美半导体领先于供应基于半导体的方案,提供全面的高能效电源管理、模拟、传感器、逻辑、时序、互通互联、分立、系统单芯片(SoC)及定制器件阵容。公司的产品帮助工程师解决他们在汽车、通信、计算机、消费电子、工业、医疗、航空及国防应用的独特设计挑战。公司运营敏锐、可靠、世界一流的供应链及品质项目,一套强有力的守法和道德规范计划,及在北美、欧洲和亚太地区之关键市场运营包括制造厂、销售办事处及设计中心在内的业务网络。更多信息请访问http://www.onsemi.cn

围观 25

业内首款采用鸥翼引线结构5 mm x 6 mm 紧凑型PowerPAK® SO-8L封装器件,导通电阻仅为30 mΩ

日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,推出新款通过AEC-Q101认证的100 V p沟道TrenchFET® MOSFET---SQJ211ELP,用以提高汽车应用功率密度和能效。Vishay Siliconix SQJ211ELP不仅是业内首款鸥翼引线结构5 mm x 6 mm 紧凑型PowerPAK® SO-8L封装器件,而且10 V条件下其导通电阻仅为30 mW,达到业内优异水平。

日前发布的新款汽车级MOSFET与最接近的DPAK和D2PAK封装竞品器件相比,导通电阻分别降低26 %和46 %,占位面积分别减小50 %和76 %。SQJ211ELP低导通电阻有助于降低导通功耗,从而节省能源,10 V条件下优异的栅极电荷仅为45 nC,减少栅极驱动损耗。

这款新型MOSFET可在+175°C高温下工作,满足反向极性保护、电池管理、高边负载开关和LED照明等汽车应用牢固性和可靠性要求。此外,SQJ211ELP鸥翼引线结构还有助于提高自动光学检测(AOI)功能,消除机械应力,提高板级可靠性。

器件100 V额定值满足12 V、24 V和48 V系统多种常用输入电压轨所需安全裕度。此外,作为p沟道MOSFET,SQJ211ELP可简化栅极驱动设计,无需配置n沟道器件所需电荷泵。 MOSFET采用无铅(Pb)封装、无卤素、符合RoHS标准,经过100 % Rg和UIS测试。

SQJ211ELP现可提供样品并已实现量产,供货周期为14周。

VISHAY简介

Vishay 是全球最大的分立半导体和无源电子元件系列产品制造商之一,这些产品对于汽车、工业、计算、消费、通信、国防、航空航天和医疗市场的创新设计至关重要。服务于全球客户,Vishay承载着科技基因——The DNA of techÔ。Vishay Intertechnology, Inc. 是在纽约证券交易所上市(VSH)的“财富1,000 强企业”。有关Vishay的详细信息,敬请浏览网站 www.vishay.com

围观 12

~24款适用于工业设备及大型消费电子设备的-40V和-60V耐压产品全新上线~

全球知名半导体制造商ROHM(总部位于日本京都市)推出非常适用于FA和机器人等工业设备以及空调等消费电子产品的共计24款Pch MOSFET*1/*2产品,其中包括支持24V输入电压的-40V和-60V耐压单极型“RQxxxxxAT / RDxxxxxAT / RSxxxxxAT / RFxxxxxAT系列”和双极型“UTxxx5 / QHxxx5 / SHxxx5系列”。


本系列产品作为ROHM拥有丰硕市场业绩的Pch MOSFET产品,采用了第五代新微米工艺,实现了业界超低的单位面积导通电阻*3。-40V耐压产品的导通电阻较以往产品降低62%、-60V耐压产的导通电阻较以往产品降低52%,有助于实现设备的节能性和小型化。

此外,通过优化元件结构并采用有利于改善电场集中问题的新设计,进一步提高了产品品质,并使普遍认为相互矛盾的产品可靠性和低导通电阻两者同时得到兼顾,从而有助于追求高品质的工业设备长期稳定运行。

本系列产品已于2020年8月份开始暂以月产100万个的规模投入量产(样品价格 200日元/个,不含税),产品可通过AMEYA360、SEKORM、Right IC、ONEYAC网售平台购买。前期工序的生产基地为ROHM Co., Ltd.(日本滋贺工厂),后期工序的生产基地为ROHM Integrated Systems (Thailand) Co., Ltd.(泰国)。

未来,ROHM将持续扩充封装阵容,以支持更广泛的应用。同时,还计划推进车载级产品的开发。除此以外,随着人们利用网络的“云端”工作模式和生活模式的快速发展,需要进一步丰富适用于需求日益扩大的数据中心服务器以及5G基站的产品阵容。ROHM在此次推出的第五代Pch MOSFET基础上,还将持续推进更高效率的Nch MOSFET*2开发工作,为减少应用产品的设计工时并提高可靠性和效率做出贡献。

近年来,在工业设备和消费电子设备等领域,采用高输入电压的电源电路来实现高级控制的客户越来越多,对于MOSFET产品,除了低导通电阻的要求之外,也表现出对高耐压性能与日俱增的需求。

MOSFET产品分为Nch与Pch两种,而高效率的Nch应用更为普遍,但在高边使用Nch MOSFET时,需要栅极电压高于输入电压,因此就存在电路结构变得更复杂的问题。而使用Pch MOSFET则可以用低于输入电压的栅极电压进行驱动,因此可简化电路结构,同时还有助于减轻设计负担。

在这种背景下,ROHM采用第五代微米工艺,成功开发出可支持24V输入、-40V/-60V耐压的低导通电阻Pch MOSFET。


新产品特点

1.实现业界超低导通电阻

新产品采用ROHM第五代微米工艺技术,使栅极沟槽结构*4较ROHM以往产品更为细致精密,并提高了电流密度,从而在支持24V输入的-40V/-60V耐压Pch MOSFET领域中,实现了极为出色的单位面积低导通电阻。-40V耐压产品的导通电阻较以往产品降低62%,-60V耐压产品的导通电阻较以往产品降低52%,非常有助于应用设备的节能性与小型化。

2.采用新设计,品质显著提升

新产品充分运用了迄今为止积累的可靠性相关的技术经验和诀窍,优化了元件结构,同时采用新设计,改善了最容易产生电场集中问题的栅极沟槽部分的电场分布,实现了品质的大幅度提升。在不牺牲导通电阻的前提下,又成功提高了原本与之存在此起彼消关系的可靠性,从而可改善在高温偏压状态下的元件特性劣化问题,有助于追求更高品质的工业设备实现长期稳定运行。

3.丰富的产品阵容,有助于减少众多应用产品的设计工时并提高可靠性

此次推出的新产品包括-40V和-60V耐压的共24款产品,适用于FA设备、机器人以及空调设备等应用。未来将继续扩展更丰富的封装阵容,以支持工业设备领域之外的更广泛应用,同时还计划开发车载级产品。此外,采用新结构的新一代工艺不仅应用在Pch MOSFET产品上,还会应用在Nch MOSFET产品上并扩大其产品阵容,为更多的应用产品减少设计工时和提高可靠性贡献力量。

产品阵容




应用示例

■ FA设备、机器人、空调设备等工业设备用风扇电机和电源管理开关

■ 大型消费电子设备用风扇电机和电源管理开关


术语解说

*1) MOSFET(Metal-Oxide-Semiconductor Field Effect Transistorの略)

金属-氧化物-半导体场效应晶体管,是FET中最常用的结构。用作开关元件。

*2) Pch MOSFET / Nch MOSFET

Pch MOSFET:通过向栅极施加相对于源极为负的电压而导通的MOSFET。可用比低于输入电压低的电压驱动,因此电路结构较为简单。

Nch MOSFET:通过向栅极施加相对于源极为正的电压而导通的MOSFET。相比Pch MOSFET,漏源间的导通电阻更小,因此可减少常规损耗。

*3) 导通电阻

使MOSFET启动(ON)时漏极与源极之间的电阻值。该值越小,则运行时的损耗(电力损耗)越少。

*4) 沟槽结构

沟槽(Trench)意为凹槽。是在芯片表面形成凹槽,并在其侧壁形成MOSFET栅极的结构。不存在平面型MOSFET在结构上存在的JFET电阻,比平面结构更容易实现微细化。

关于罗姆(ROHM)

罗姆(ROHM)成立于1958年,由起初的主要产品-电阻器的生产开始,历经半个多世纪的发展,已成为世界知名的半导体厂商。罗姆的企业理念是:“我们始终将产品质量放在第一位。无论遇到多大的困难,都将为国内外用户源源不断地提供大量优质产品,并为文化的进步与提高作出贡献”。

罗姆的生产、销售、研发网络分布于世界各地。产品涉及多个领域,其中包括IC、分立式元器件、光学元器件、无源元器件、功率元器件、模块等。在世界电子行业中,罗姆的众多高品质产品得到了市场的许可和赞许,成为系统IC和先进半导体技术方面的主导企业。

关于罗姆(ROHM)在中国的业务发展

销售网点:起初于1974年成立了罗姆半导体香港有限公司。在1999年成立了罗姆半导体(上海)有限公司, 2006年成立了罗姆半导体(深圳)有限公司,2018年成立了罗姆半导体(北京)有限公司。为了迅速且准确应对不断扩大的中国市场的要求,罗姆在中国构建了与总部同样的集开发、销售、制造于一体的垂直整合体制。作为罗姆的特色,积极开展“密切贴近客户”的销售活动,力求向客户提供周到的服务。目前在中国共设有20处销售网点,其中包括香港、上海、深圳、北京这4家销售公司以及其16家分公司(分公司:大连、天津、青岛、南京、合肥、苏州、杭州、宁波、西安、武汉、东莞、广州、厦门、珠海、重庆、福州)。并且,正在逐步扩大分销网络。

技术中心:在上海和深圳设有技术中心和QA中心,在北京设有华北技术中心,提供技术和品质支持。技术中心配备精通各类市场的开发和设计支持人员,可以从软件到硬件以综合解决方案的形式,针对客户需求进行技术提案。并且,当产品发生不良情况时,QA中心会在24小时以内对申诉做出答复。

生产基地:1993年在天津(罗姆半导体(中国)有限公司)和大连(罗姆电子大连有限公司)分别建立了生产工厂。在天津进行二极管、LED、激光二极管、LED显示器和光学传感器的生产,在大连进行电源模块、热敏打印头、接触式图像传感器、光学传感器的生产,作为罗姆的主力生产基地,源源不断地向中国国内外提供高品质产品。

社会贡献:罗姆还致力于与国内外众多研究机关和企业加强合作,积极推进产学研联合的研发活动。2006年与清华大学签订了产学联合框架协议,积极地展开关于电子元器件先进技术开发的产学联合。2008年,在清华大学内捐资建设“清华-罗姆电子工程馆”,并已于2011年4月竣工。2012年,在清华大学设立了“清华-罗姆联合研究中心”,从事光学元器件、通信广播、生物芯片、SiC功率器件应用、非挥发处理器芯片、传感器和传感器网络技术(结构设施健康监测)、人工智能(机器健康检测)等联合研究项目。除清华大学之外,罗姆还与国内多家知名高校进行产学合作,不断结出丰硕成果。

罗姆将以长年不断积累起来的技术力量和高品质以及可靠性为基础,通过集开发、生产、销售为一体的扎实的技术支持、客户服务体制,与客户构筑坚实的合作关系,作为扎根中国的企业,为提高客户产品实力、客户业务发展以及中国的节能环保事业做出积极贡献。

围观 11

节省空间的器件采用小型PowerPAIR® 3x3S封装,最大RDS(ON)导通电阻降至8.05 m,Qg为6.5 nC

日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,推出新型40 V n沟道MOSFET半桥功率级——SiZ240DT,可用来提高白色家电以及工业、医疗和通信应用的功率密度和效率。Vishay Siliconix SiZ240DT在小型PowerPAIR® 3.3 mm x 3.3 mm单体封装中集成高边和低边MOSFET,导通电阻和导通电阻与栅极电荷乘积,即功率转换应用中MOSFET的重要优值系数(FOM)达到业界出色水平。

SiZ240DT中的两个TrenchFET® MOSFET内部采用半桥配置连接。SiZ240DT的通道1 MOSFET,通常用作同步降压转换器的控制开关,10 V时最大导通电阻为8.05 mΩ,4.5 V时为12.25 mΩ。通道2 MOSFET,通常用作同步开关,10 V时导通电阻为8.41 mΩ,4.5 V时为13.30 mΩ。这些值比紧随其后的竞品低16 %。结合6.9 nC(通道1)和6.5 nC(通道2)低栅极电荷,导通电阻与栅极电荷乘积FOM比位居第二的器件低14 %,有助于提高快速开关应用的效率。

日前发布的双MOSFET比采用6 mm x 5 mm封装的双器件小65 %,是目前市场上体积最小的集成产品之一。除用于同步降压,DC/DC转换半桥功率级之外,新型器件还为设计师提供节省空间的解决方案,适用于真空吸尘器、无人机、电动工具、家庭/办公自动化和非植入式医疗设备的电机控制,以及电信设备和服务器的无线充电器和开关电源。

集成式MOSFET采用无导线内部结构,最大限度降低寄生电感实现高频开关,从而减小磁器件和最终设计的尺寸。其优化的Qgd / Qgs比降低噪声,进一步增强器件的开关特性。SiZ240DT经过100 % Rg和UIS测试,符合RoHS标准,无卤素。

新型双MOSFET现可提供样品并已实现量产,大宗订货供货周期为12周。

VISHAY简介

Vishay 是全球最大的分立半导体和无源电子元件系列产品制造商之一,这些产品对于汽车、工业、计算、消费、通信、国防、航空航天和医疗市场的创新设计至关重要。服务于全球客户,Vishay承载着科技基因——The DNA of techÔ。Vishay Intertechnology, Inc. 是在纽约证券交易所上市(VSH)的“财富1,000 强企业”。有关Vishay的详细信息,敬请浏览网站 www.vishay.com

围观 22

页面

订阅 RSS - MOSFET