开关电源

开关电源(Switched-Mode Power Supply,SMPS)是一种电源供应系统,通过快速切换电子开关器件(通常是晶体管或MOSFET)来将输入电压转换为稳定的输出电压。相对于线性电源,开关电源具有更高的效率和更小的体积,因此在各种应用中广泛使用

通信开关电源技术在20世纪80年代引入我国,如今已广泛应用于通信领域。由于通信开关电源的性能直接影响着通信系统的可靠性,因此正确判别通信电源的优劣也就显得尤为重要。仅从电源的输入、输出特性指标来衡量开关电源的优劣,显然是不够的,还应该从下列几方面着手。

一、功率器件

通信开关电源技术属于电力电子技术,它运用功率变换器进行电能变换,因而从功率器件的类型上很容易推断出产品大致的研发年代。我们知道,大功率硅整流管和晶闸管出现于20世纪60年代;大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GTO)的生产年代在20世纪70年代;功率场效应管(MOSFET)出现于20世纪80年代;绝缘栅双极晶体管 (IGBT)则是出现于20世纪90年代的器件。这里需要说明的是,功率场效应管由于单极性多子导电,显著地减小了开关时间,所以很容易地达到1MHz的开关工作频率。但是功率场效应管要提高器件阻断电压必须加宽器件的漂移区,结果使器件内阻迅速增大,器件的通态压降增高,通态损耗增大。绝缘栅极双极晶体管在结构上类似于功率场效应管,其不同点在于绝缘栅极双极晶体管是在N沟道功率场效应管的N+基板(漏极)上增加了一个P+基板(绝缘栅极双极晶体管的集电极),这一点改进就使得绝缘栅极双极晶体管具有一系列的突出优点:正向偏置,输入阻抗高,导通电阻低,耐压高,安全工作区大以及开关速度高等。   看功率器件的封装也能简单判别通信电源的优劣。管芯直接焊接在基板上,可以提高散热效率,降低寄生电感、电容和热阻。不是直接焊接在基板上的产品,就比较差了。

二、电路原理

1. 要看它采用硬开关技术还是软开关技术。由LC无源元件和快恢复二极管组成的各种无耗缓冲电路,改变了开关管的开关过渡过程,使开关电压、电流的改变不是突变的(即硬开关)而是缓变的(即软开关),从而显著地减小了功率器件的开关损耗,提高系统的开关频率,降低变换器的体积和重量,减少系统的输出纹波,并且可以克服变换电路对寄生分布参数的敏感性,降低系统的开关噪音,展宽系统的频带,改善系统的动态性能。

2.要看它采用变频控制(PFM)还是恒频控制(PWM)。恒频控制(又称相移控制)方式要优于变频控制方式。相移控制的全桥变换电路,综合恒频控制技术和软开关技术的优点,在大范围内实现恒频控制,实现输出电压或电流的大范围无级调节,在功率器件换流瞬间,实现零电压开关换流。

3.功率因数校正技术可以抑制电网侧谐波电流,减少无功功率,从而改善功率因数,同时降低电源高次谐波产生的噪音和污染,达到节能目的。

4.负载均流是一个关键技术,它使得模块并机的输出不平衡程度减少,并使得系统具备冗余容错能力,易于构成大容量的通信电源系统。目前主要有下垂(droop)均流法、主从设置masterslave均流法、平均电流average current均流法、外加均流控制器external controller均流法、最大电流自动highest current均流法。而最大电流自动均流法既能实现电源模块的自动均流,又可以实现电源模块的冗余,电源模块的退出与增加均不影响系统的正常工作,均流母线的开路、短路以及模块的损坏都不会影响系统其他模块的正常工作。

三、保护和防雷措施

除了过压、欠压、缺相、过流、短路、过载、过热,这些我们通常希望设备能提供的保护功能外,还需要了解有没有蓄电池监测、充电限流功能。是否采用进口名牌防雷元器件(如OBO、DEHN、FURSE等),也是保证系统将来能否可靠稳定的依据。

四、告警功能

当系统工作达到预先设置的告警电平或系统出现故障时,监控模块不仅发出声光告警,主动拨号向中心站或上级局报告故障内容,还要自动呼叫事先指定的BP机或手机。对无人值守的通信站而言,这无疑是衡量电源品质的一个重要依据。

五、监控接口

利用计算机技术实现通信电源的遥测、遥控、遥信功能,可以提高系统的维护管理质量,降低系统的维护成本,提高整体工作效率,因此具备远程通信接口是通信电源最起码的要求。同样,接口的类型也从一个侧面反映电源技术含量的高低,总体而言,以太网接口优于RS485接口,RS485接口优于RS232接口。   

六、电磁兼容性

这是一个最容易忽视的方面,由于开关电源容量日益增大,其所产生的谐波污染已严重影响电网的其他用电负载(主要是电子设备),因此在国外,特别是欧洲和美国,对用电设备的电磁兼容性,都制定了新的行业标准,这使得我们在关心所选用的电源输入、输出滤波器特性的好坏以及屏蔽结构的合理与否的同时,还要知道它符不符合CISPR 22及CISPR 24标准。

尽管通信开关电源技术是一门多学科交叉的边缘技术,涉及电力电子、半导体器件、综合自动控制、计算机(微处理器)技术和电磁技术等诸多领域,但是只要掌握一些背景知识和基本原理,对开关电源性能的优劣判断,还是不难把握的。

来源:电源Fan

围观 187

随着高频开关电源技术的不断完善和日趋成熟,其在铁路信号供电系统中的应用也在迅速增加。与此同时,高频开关电源自身存在的电磁骚扰(EMI)问题如果处理不好,不仅容易对电网造成污染,直接影响其他用电设备的正常工作,而且传入空间也易形成电磁污染,由此产生了高频开关电源的电磁兼容(EMC)问题。

本文重点对铁路信号电源屏使用的1200W(24V/50A)高频开关电源模块所存在的电磁骚扰超标问题进行分析,并提出改进措施。高频开关电源产生的电磁骚扰可分为传导骚扰和辐射骚扰两大类。传导骚扰通过交流电源传播,频率低于30MHz;辐射骚扰通过空间传播,频率在30~1000MHz。

1、高频开关电源的电路结构

高频开关电源的主拓扑电路原理,如图1所示。

如何解决高频开关电源的电磁兼容问题?

2、高频开关电源电磁骚扰源的分析

在图1a电路中的整流器、功率管Q1,在图1b电路中的功率管Q2~Q5、高频变压器T1、输出整流二极管D1~D2都是高频开关电源工作时产生电磁骚扰的主要骚扰源,具体分析如下。

(1)整流器整流过程产生的高次谐波会沿着电源线产生传导骚扰和辐射骚扰。

(2)开关功率管工作在高频导通和截止的状态,为了降低开关损耗,提高电源功率密度和整体效率,开关管的打开和关断的速度越来越快,一般在几微秒,开关管以这样的速度打开和关断,形成了浪涌电压和浪涌电流,会产生高频高压的尖峰谐波,对空间和交流输入线形成电磁骚扰。

(3)高频变压器T1进行功率变换的同时,产生了交变的电磁场,向空间辐射电磁波,形成了辐射骚扰。变压器的分布电感和电容产生振荡,并通过变压器初次级之间的分布电容耦合到交流输入回路,形成传导骚扰。

(4)在输出电压比较低的情况下,输出整流二极管工作在高频开关状态,也是一种电磁骚扰源。

由于二极管的引线寄生电感、结电容的存在以及反向恢复电流的影响,使之工作在很高的电压和电流变化率下,二极管反向恢复的时间越长,则尖峰电流的影响也越大,骚扰信号就越强,由此产生高频衰减振荡,这是一种差模传导骚扰。

所有产生的这些电磁信号,通过电源线、信号线、接地线等金属导线传输到外部电源形成传导骚扰。通过导线和器件辐射或通过充当天线的互连线辐射的骚扰信号造成辐射骚扰。

3、针对高频开关电源电磁骚扰的电磁兼容设计

(1)开关电源入口加电源滤波器,抑制开关电源所产生的高次谐波。

(2)输入输出电源线上加铁氧体磁环,一方面抑制电源线内的高频共模,另一方面减小通过电源线辐射的骚扰能量。

(3)电源线尽可能靠近地线,以减小差模辐射的环路面积;把输入交流电源线和输出直流电源线分开走线,减小输入输出间的电磁耦合;信号线远离电源线,靠近地线走线,并且走线不要过长,以减小回路的环面积;PCB板上的线条宽度不能突变,拐角采用圆弧过渡,尽量不采用直角或尖角。

(4)对芯片和MOS开关管安装去耦电容,其位置尽可能地靠近并联在器件的电源和接地管脚。

(5)由于接地导线存在Ldi/dt,PCB板和机壳间接地采用铜柱连接,对不适合用铜柱连接的采用较粗的导线,并就近接地。

(6)在开关管以及输出整流二极管两端加RC吸收电路,吸收浪涌电压。

4、高频开关电源电磁骚扰测试曲线

在3m法电波暗室对试验样机进行测试,其L、N线的传导骚扰检测曲线如图2、3所示,辐射骚扰的垂直极化扫描曲线如图4、5所示。

如何解决高频开关电源的电磁兼容问题?

如何解决高频开关电源的电磁兼容问题?

根据铁路客运专线标准规定,传导骚扰限值和辐射骚扰限值如表1、2所示。

如何解决高频开关电源的电磁兼容问题?

本开关电源一次通过了传导骚扰的测试,测试波形如图2、3所示。辐射骚扰高频段230~1000MHz也测试合格,如图5所示。只是在30~200MHz频段范围内的垂直极化指标超标,最大超标20dB,如图4所示。

由测试结果可以看出,通过电磁兼容设计在传导骚扰抑制方面取得了良好效果,在高频段辐射骚扰的设计也达到了预期效果,下面还需对在30~200MHz频段范围内的辐射骚扰进行改进设计。

5、高频开关电源辐射骚扰的改进设计

由图4可以看出,本开关电源存在辐射骚扰超标的现象,为了抑制电磁骚扰而使用铁氧体元件,价格便宜,效果明显。铁氧体元件等效电路是电感L和电阻R组成的串联电路,L和R都是频率的函数。低频时,R很小,L起主要作用,电磁骚扰被反射而受到抑制;高频时,R增大,电磁骚扰被吸收并转换成热能,使高频骚扰大大衰减。不同的铁氧体抑制元件,有不同的最佳抑制频率范围。总之,选择和安装铁氧体元件可参照如下几条:

(1)铁氧体的体积越大,抑制效果越好;
(2)在体积一定时,长而细的形状比短而粗的抑制效果好;
(3)内径越小抑制效果也越好;
(4)横截面越大,越不易饱和;
(5)磁导率越高,抑制的频率就越低;
(6)铁氧体抑制元件应当安装在靠近骚扰源的地方;
(7)在输入、输出导线上安装时,应尽量靠近屏蔽壳的进、出口处。

根据上面对高频开关电源骚扰源和铁氧体元件的分析,决定在靠近骚扰源的地方套磁珠与磁环。图1a中电容C1的接地端套铁氧体磁珠(φ3.5×φ1.3×3.5),图1b中整流二极管D1和D2使用肖特基二极管,其阳极套铁氧体磁珠(φ3.5×φ1.3×3.5),直流输出线缆用铁氧体磁环(φ13.5×φ7.5×7)绕两圈且靠近出口处。经过处理后重新测试,其扫描曲线如图6所示。由此可见,大部分频段的辐射骚扰已被抑制到标准要求以下,但在频率81、138、165kHz附近处仍然超标。

如何解决高频开关电源的电磁兼容问题?

根据对开关电源电磁骚扰源的分析可知,在图1b电路中高频变压器T1也是一个骚扰源。为了阻止高频变压器产生的骚扰信号以辐射方式发射,把变压器的外壳用屏蔽材料铜箔环绕一圈构成一回路加以屏蔽,以切断变压器通过空间耦合形成的辐射骚扰传播途径。并且为了减少因变压器一次侧开通时电流瞬间突变产生的di/dt骚扰,在变压器T1的一次侧串进1个电感,以减小器件的开通损耗,降低辐射骚扰信号。经过整改后,辐射骚扰大大下降,再次对本电源辐射骚扰进行测试,完全达到了标准要求,其测试结果如图7所示。

如何解决高频开关电源的电磁兼容问题?

6、结语

随着高频开关电源等电子产品电磁兼容重要性的凸现,我们应该在产品设计初期阶段,同时进行电磁兼容设计,此时结构和电路方案尚未定型,可选用的方法较多。如果等到生产阶段再去解决,不但给技术和工艺上带来很大难度,而且会造成人力、财力和时间的极大浪费。所以,要走出设计修改法的误区,正确运用系统设计法。

与EMI相关的因素多且复杂,仅做到上述的几点措施是远远不够的,还有接地技术、PCB布局走线等都很重要。电磁兼容的设计任重而道远,我们要不断进行研究探索,使我国的电子产品电磁兼容水平与国际同步。

来源:网络

围观 406

小功率电源被广泛地应用于电子电气行业,在应用的过程中也时常出现一些电源故障,如启机不良、输出电压偏低、模块过热等问题,针对这些电源供电故障现象,如何定位背后的问题?本文将一一为您揭晓。

目前,市场上电源模块种类繁多,不同电源产品的输入电压、输出功率、功能及拓扑结构等都各不相同,其特点都是为微控制器、集成电路、数字信号处理器、模拟电路、及其他数字或模拟等负载供电。电源模块的可靠性比较高,但也可能会发生故障,下面以ZLG致远电子的DC-DC电源为例分析几种常见的电源故障。

输出电压偏低

电源输出电压过低,会让后级电路无法正常工作,如在微控制器系统中,负载突然增大,会拉低微控制器的供电电压,而造成微控制器复位,这会对整个系统级的电路带来毁灭性的打击,会造成一子落错全盘毁的连锁式反应。

输出电压过低通常是由那些原因造成的呢?

  •   输出级并联多个负载,在正常工作后,有负载需要较大的瞬态电流,造成电压被瞬间拉低,从而影响其它并联的负载;

  •   输出线路过长或过细,造成线损过大,从而在线路间产生了不小的压降,最终导致电源模块的输出电压到真正的负载两端时,电压偏低;

  •   防反接二极管的压降过大,一般二极管的正向压降在0.2~0.6V之间,如果电源模块输出的是5V电压,那么高导通压降的二极管所产生的电压降就会使后级电路的电压偏低,从而不能正常工作;

  •   模块外围电路中的输入滤波电感过大,导致内阻变大,电流扼制作用增强,当后级负载突然变重时,电流供应不上而导致负载两端的电压偏低。

如何解决开关电源应用中的常见问题?

解决方法
  •   在输出端并一个大电容或换用更大功率输入电源;
  •   调整布线,增大导线截面积或缩短导线长度,减小内阻,如果其电源模块有Trim功能调节,可以调高输出电压来抵消线损产生的压降;
  •   换用导通压降小的二极管;
  •   减小滤波电感值且降低电感的内阻。

输入电压偏高

由于某些电源模块内部的电子元器件的电压余量设计不够,在输入电压过高时,造成模块损坏,甚至烧毁,这是就需要我们在外围做一些保护,哪些常见原因易造成输入电压偏高呢?

  •   在电源模块输入端进行热插拔上电,此时其电压尖峰及浪涌电流都较高,抗压差的模块会被瞬间击穿损坏;

  •   输出端负载过轻,轻于10%的额定负载,对一些非线性稳压的电源产品来说,模块不一定会损坏,但会影响后级的一些性能,如效率偏低,模块偏热等;

  •   前级供电电源的电压冲击导致输入电压偏高或产生干扰电压,电磁兼容也较容易造成输入电压高,如雷击浪涌、群脉冲。

解决方法
  •  确保输出端不小于少10%的额定负载,若实际电路工作中常有空载现象,就在输出端并接一个额定功率10%的假负载;
  •  更换一个合理且稳定范围的输入电压源,存在干扰电压时要考虑在输入端并上TVS管或稳压管,也可加EMC的外围电路。

模块发热严重

电源模块在电压转换过程中有能量损耗,产生热能导致模块发热,降低电源的转换效率,影响电源模块正常工作,但什么情况下会造成电源模块发热较严重呢?

  •  使用的是线性电源模块,由于线性电源内部的电路结构使得其功率导通压降大,在相同的输出功率下,线性电源模块内部产生的损耗更大;

  •  负载过流,超出数据手册应用范围使得内部关键器件温度飙升;

  •  环境温度过高或散热不良;

  •  其他大发热源热传递。

热成像仪观测发热电源模块E7805OS-500在标称电压下的温度分布,如下图所示:

如何解决开关电源应用中的常见问题?

解决方法
  •   使用线性电源时要加散热片,或选择效率高的开关电源;
  •   换输出功率更大的模块,确保有70%~80%的负载降额;
  •   降低环境温度,保持散热良好。

输出噪声较大

噪声是衡量电源模块优劣的一大关键指标,在应用电路中,模块周边元器件的设计布局等也会影响输出噪声,哪些因素对输出噪声有较大影响呢?

  •   电源模块与主电路噪声敏感元件距离过近;
  •   主电路噪声敏感元件的电源输入端处未接去耦电容;
  •   多路系统中各单路输出的电源模块之间产生差频干扰;
  •   地线处理不合理;
  •   电源模块输入端的噪声过大,未处理,直接耦合到电源模块输出端;

ZDS2024示波器测试对比模块受到干扰与未被干扰的电源模块输出纹波噪声,对比下图如图所示:

如何解决开关电源应用中的常见问题?
未受外界干扰的纹波噪声,Vz=104mV

如何解决开关电源应用中的常见问题?
未受外界干扰的纹波噪声,Vz=734mV

解决方法
  •   将电源模块尽可能远离主电路噪声敏感元件或模块与主电路噪声敏感元件进行隔离;
  •   主电路噪声敏感元件(如:A/D、D/A或MCU等)的电源输入端处接0.1μF去耦电容;
  •   使用一个多路输出的电源模块代替多个单路输出模块消除差频干扰;
  •   采用远端一点接地、减小地线环路面积。

电源模块启动困难

在电源的应用电路中,经常会出现电源模块输出端电压不正常,输出端就是没有任何输出,电源模块也无损坏,是什么原因呢?或许是电源模块本身就无法启动?

  •   外接电容过大(即容性负载过大),需要充电的时间变长,有些电源模块在规定时间内不能建立好输出电压,就会进入过流保护,从而模块无输出;

  •   电子负载在CC模式下也会造成部分启动能力弱的电源模块启机不良,由于在CC模式下启机的时候,其模拟的负载趋近于零,且反应调节时间相对较长,绝大多数的电源模块应用的环境属于纯电阻模式;

  •   负载需要的电流过大,而电源模块单位输出的最大平均电流不够导致模块无法启动;

  •   输入线路过长,使得线路之间产生的压降过大,而导致输入电压低于模块输入电压的下限要求。

解决方法
  •   外接电容过大,在电源模块启动时向其充电时间较长,难以启动,需要选择合适的容性负载;
  •   模块测试尽量选择更接近纯阻模式负载测试;
  •   选择功率合适的电源模块;
  •   先测试电源模块输入端引脚电压是否低于数据手册要求的最低电压,再根据实际情况提高电源输入端的电压。

耐压不良

一般隔离电源模块的耐压值可高达几千伏,但在应用电路中,哪些因素会导致其耐压能力降低?

  •   选用的模块隔离电压值不够,往往是应用工程师评估的耐压值比在实际应用环境下的耐压值低造成的;

  •   维修中多次使用回流焊、热风枪;

  •   外围电路布线与器件放置时未按安规相关的爬电距离来要求,也会造成耐压不良。

用耐压仪测试电源模块隔离电压的方法如下图所示:

如何解决开关电源应用中的常见问题?

解决方法
  •   根据现场环境的实际评估值来选取耐压值合适电源模块,最好能预留500V以上的余量;
  •   焊接电源模块时要选取合适的温度,避免反复焊接,损坏电源模块;
  •   严格按照安规规定的要求布置输入与输出之间的线路后器件。

总结

电源模块故障问题种类繁多,小编针对以上几种常见的应用型故障问题,浅浅而谈,以作抛砖引玉。

转自: ZLG致远电子

围观 376

1、基本名词

常见的基本拓扑结构
■Buck降压
■Boost升压
■Buck-Boost降压-升压
■Flyback反激
■Forward正激
■Two-Transistor Forward双晶体管正激
■Push-Pull推挽
■Half Bridge半桥
■Full Bridge全桥
■SEPIC
■C’uk
基本的脉冲宽度调制波形
这些拓扑结构都与开关式电路有关。
基本的脉冲宽度调制波形定义如下:

20种开关电源拓扑的优缺点对比!

2、Buck降压

20种开关电源拓扑的优缺点对比!

特点
■把输入降至一个较低的电压。
■可能是最简单的电路。
■电感/电容滤波器滤平开关后的方波。
■输出总是小于或等于输入。
■输入电流不连续 (斩波)。
■输出电流平滑。

3、Boost升压

20种开关电源拓扑的优缺点对比!

特点
■把输入升至一个较高的电压。
■与降压一样,但重新安排了电感、开关和二极管。
■输出总是比大于或等于输入(忽略二极管的正向压降)。
■输入电流平滑。
■输出电流不连续 (斩波)。

4、Buck-Boost降压-升压

20种开关电源拓扑的优缺点对比!

特点
■电感、开关和二极管的另一种安排方法。
■结合了降压和升压电路的缺点。
■输入电流不连续 (斩波)。
■输出电流也不连续 (斩波)。
■输出总是与输入反向 (注意电容的极性),但是幅度可以小于或大于输入。
■“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。

5、Flyback反激

20种开关电源拓扑的优缺点对比!

特点
■如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。
■输出可以为正或为负,由线圈和二极管的极性决定。
■输出电压可以大于或小于输入电压,由变压器的匝数比决定。
■这是隔离拓扑结构中最简单的
■增加次级绕组和电路可以得到多个输出。

6、Forward正激

20种开关电源拓扑的优缺点对比!

特点
■降压电路的变压器耦合形式。
■不连续的输入电流,平滑的输出电流。
■因为采用变压器,输出可以大于或小于输入,可以是任何极性。
■增加次级绕组和电路可以获得多个输出。
■在每个开关周期中必须对变压器磁芯去磁。常用的做法是增加一个与初级绕组匝数相同的绕组。
■在开关接通阶段存储在初级电感中的能量,在开关断开阶段通过另外的绕组和二极管释放。

7、Two-Transistor Forward双晶体管正激

20种开关电源拓扑的优缺点对比!

特点
■两个开关同时工作。
■开关断开时,存储在变压器中的能量使初级的极性反向,使二极管导通。
■主要优点:
■每个开关上的电压永远不会超过输入电压。
■无需对绕组磁道复位。

8、Push-Pull推挽

20种开关电源拓扑的优缺点对比!

特点
■开关(FET)的驱动不同相,进行脉冲宽度调制(PWM)以调节输出电压。
■良好的变压器磁芯利用率---在两个半周期中都传输功率。
■全波拓扑结构,所以输出纹波频率是变压器频率的两倍。
■施加在FET上的电压是输入电压的两倍。

9、Half-Bridge半桥

20种开关电源拓扑的优缺点对比!

特点
■较高功率变换器极为常用的拓扑结构。
■开关(FET)的驱动不同相,进行脉冲宽度调制(PWM)以调节输出电压。
■良好的变压器磁芯利用率---在两个半周期中都传输功率。而且初级绕组的利用率优于推挽电路。
■全波拓扑结构,所以输出纹波频率是变压器频率的两倍。
■施加在FET上的电压与输入电压相等。

10、Full-Bridge全桥

20种开关电源拓扑的优缺点对比!

特点
■较高功率变换器最为常用的拓扑结构。
■开关(FET)以对角对的形式驱动,进行脉冲宽度调制(PWM)以调节输出电压。
■良好的变压器磁芯利用率---在两个半周期中都传输功率。
■全波拓扑结构,所以输出纹波频率是变压器频率的两倍。
■施加在 FETs上的电压与输入电压相等。
■在给定的功率下,初级电流是半桥的一半。

11、SEPIC单端初级电感变换器

20种开关电源拓扑的优缺点对比!

特点
■输出电压可以大于或小于输入电压。
■与升压电路一样,输入电流平滑,但是输出电流不连续。
■能量通过电容从输入传输至输出。
■需要两个电感。

12、C’uk(Slobodan C’uk的专利)

20种开关电源拓扑的优缺点对比!

特点
■输出反相
■输出电压的幅度可以大于或小于输入。
■输入电流和输出电流都是平滑的。
■能量通过电容从输入传输至输出。
■需要两个电感。
■电感可以耦合获得零纹波电感电流。

13、电路工作的细节
下面讲解几种拓扑结构的工作细节
■降压调整器:
连续导电
临界导电
不连续导电
■升压调整器 (连续导电)
■变压器工作
■反激变压器
■正激变压器

14、Buck-降压调整器-连续导电

20种开关电源拓扑的优缺点对比!

■电感电流连续。
■Vout 是其输入电压 (V1)的均值。
■输出电压为输入电压乘以开关的负荷比 (D)。
■接通时,电感电流从电池流出。
■开关断开时电流流过二极管。
■忽略开关和电感中的损耗, D与负载电流无关。
■降压调整器和其派生电路的特征是:
输入电流不连续 (斩波), 输出电流连续 (平滑)。

15、Buck-降压调整器-临界导电

20种开关电源拓扑的优缺点对比!

■电感电流仍然是连续的,只是当开关再次接通时 “达到”零。
这被称为 “临界导电”。
输出电压仍等于输入电压乘以D。

16、Buck-降压调整器-不连续导电

20种开关电源拓扑的优缺点对比!

■在这种情况下,电感中的电流在每个周期的一段时间中为零。
■输出电压仍然 (始终)是 v1的平均值。
■输出电压不是输入电压乘以开关的负荷比 (D)。
■当负载电流低于临界值时,D随着负载电流而变化(而Vout保持不变)。

17、Boost升压调整器

20种开关电源拓扑的优缺点对比!

■输出电压始终大于(或等于)输入电压。
■输入电流连续,输出电流不连续(与降压调整器相反)。
■输出电压与负荷比(D)之间的关系不如在降压调整器中那么简单。在连续导电的情况下:
20种开关电源拓扑的优缺点对比!

在本例中,Vin = 5,
Vout = 15, and D = 2/3.
Vout = 15,D = 2/3.

18、变压器工作(包括初级电感的作用)

20种开关电源拓扑的优缺点对比!

■变压器看作理想变压器,它的初级(磁化)电感与初级并联。

19、反激变压器

20种开关电源拓扑的优缺点对比!

■此处初级电感很低,用于确定峰值电流和存储的能量。当初级开关断开时,能量传送到次级。

20、Forward 正激变换变压器

20种开关电源拓扑的优缺点对比!

■初级电感很高,因为无需存储能量。
■磁化电流 (i1) 流入 “磁化电感”,使磁芯在初级开关断开后去磁 (电压反向)。

21、总结

■此处回顾了目前开关式电源转换中最常见的电路拓扑结构。
■还有许多拓扑结构,但大多是此处所述拓扑的组合或变形。
■每种拓扑结构包含独特的设计权衡:
施加在开关上的电压
斩波和平滑输入输出电流
绕组的利用率
■选择最佳的拓扑结构需要研究:
输入和输出电压范围
电流范围
成本和性能、大小和重量之比

来源: 电源研发精英圈

围观 1550

开关电源已普遍运用在当前的各类电子设备上,其单位功率密度也在不断地提高.高功率密度的定义从1991年的25w/in3、1994年36w/in3、1999年52w/in3、2001年96w/in3,目前已高达数百瓦每立方英寸.由于开关电源中使用了大量的大功率半导体器件,如整流桥堆、大电流整流管、大功率三极管或场效应管等器件。它们工作时会产生大量的热量,如果不能把这些热量及时地排出并使之处于一个合理的水平将会影响开关电源的正常工作,严重时会损坏开关电源.为提高开关电源工作的可靠性,热设计在开关电源设计中是必不可少的重要一个环节。

1.热设计中常用的几种方法

为了将发热器件的热量尽快地发散出去,一般从以下几个方面进行考虑: 使用散热器、冷却风扇、金属pcb、散热膏等.在实际设计中要针对客户的要求及最佳费/效比合理地将上述几种方法综合运用到电源的设计中。

开关电源的几种热设计方法

2.半导体器件的散热器设计

由于半导体器件所产生的热量在开关电源中占主导地位,其热量主要来源于半导体器件的开通、关断及导通损耗.从电路拓扑方式上来讲,采用零开关变换拓扑方式产生谐振使电路中的电压或电流在过零时开通或关断可最大限度地减少开关损耗但也无法彻底消除开关管的损耗故利用散热器是常用及主要的方法.

2.1 散热器的热阻模型

由于散热器是开关电源的重要部件,它的散热效率高与低关系到开关电源的工作性能.散热器通常采用铜或铝,虽然铜的热导率比铝高2倍但其价格比铝高得多,故目前采用铝材料的情况较为普遍.通常来讲,散热器的表面积越大散热效果越好.散热器的热阻模型及等效电路如上图所示

半导体结温公式如下式如示:
pcmax(ta)= (tjmax-ta)/θj-a (w) -----------------------(1)
pcmax(tc)= (tjmax-tc)/θj-c (w) -----------------------(2)
pc: 功率管工作时损耗
pc(max): 功率管的额定最大损耗

tj: 功率管节温
tjmax: 功率管最大容许节温
ta: 环境温度
tc: 预定的工作环境温度

θs : 绝缘垫热阻抗
θc : 接触热阻抗(半导体和散热器的接触部分)
θf : 散热器的热阻抗(散热器与空气)
θi : 内部热阻抗(pn结接合部与外壳封装)
θb : 外部热阻抗(外壳封装与空气)

根据图2热阻等效回路, 全热阻可写为:
θj-a=θi+[θb *(θs +θc+θf)]/( θb +θs +θc+θf) ----------------(3)
又因为θb比θs +θc+θf大很多,故可近似为
θj-a=θi+θs +θc+θf ---------------------(4)

①pn结与外部封装间的热阻抗(又叫内部热阻抗) θi是由半导体pn结构造、所用材料、外部封装内的填充物直接相关.每种半导体都有自身固有的热阻抗.

②接触热阻抗θc是由半导体、封装形式和散热器的接触面状态所决定.接触面的平坦度、粗糙度、接触面积、安装方式都会对它产生影响。当接触面不平整、不光滑或接触面紧固力不足时就会增大接触热阻抗θc。在半导体和散热器之间涂上硅油可以增大接触面积,排除接触面之间的空气而硅油本身又有良好的导热性,可以大大降低接触热阻抗θc。

当前有一种新型的相变材料,专门设计用采取代硅油作为传热介面,在65℃(相变温度)时从固体变为流体,从而确保界面的完全润湿,该材料的触变特性避免其流到介面外。其传热效果与硅油相当,但没有硅油带来的污垢,环境污染和难于操作等缺点。用于不需要电气绝缘的场合。典型应用包括cpu散热片,功率转换模块或者其它任何簧片固定的硅油应用场合,它可涂布在铝质基材的两面,可单面附胶,双面附胶或不附胶。

③绝缘垫热阻抗θs
绝缘垫是用于半导体器件和散热器之间的绝缘.绝缘垫的热阻抗θs取决于绝缘材料的材质、厚度、面积。下表中列出几种常用半导体封装形式的θs+θc

开关电源的几种热设计方法

④散热器热阻抗θf
散热器热阻抗θf与散热器的表面积、表面处理方式、散热器表面空气的风速、散热器与周围的温度差有关。因此一般都会设法增强散热器的散热效果,主要的方法有增加散热器的表面积、设计合理的散热风道、增强散热器表面的风速。散热器的散热面积设计值如下图所示:

开关电源的几种热设计方法

但如果过于追求散热器的表面积而使散热器的叉指过于密集则会影响到空气的对流,热空气不易于流动也会降低散热效果。自然风冷时散热器的叉指间距应适当增大,选择强制风冷则可适当减小叉指间距。如上图所示:

⑤散热器表面积计算
s=0.86w/(δt*α) (m2)
δt: 散热器温度与周围环境温度(ta)的差(℃)
α: 热传导系数,是由空气的物理性质及空气流速决定。α由下式决定。
α=nu*λ/l ()
λ:热电导率(kcal/m2h)空气物理性质

l:散热器高度(m)

nu:空气流速系数。由下式决定。
nu=0.664*√[(vl)/v’]*3√pr
v:动粘性系数(m2/sec),空气物理性质。
v’:散热器表面的空气流速(m/sec)
pr: 系数,见下表

开关电源的几种热设计方法

2.2 散热设计举例

[例] 2scs5197在电路中消耗的功率为pdc=15w,工作环境温度ta=60℃,求在正常工作时散热器的面积应是多少?

解: 查2scs5197的产品目录得知:pcmax=80w(tc=25℃),tjmax=150℃且该功率管使用了绝缘垫和硅油. θs+θc=0.8℃/w

从(2)式可得
θi=θj-c=(tjmax-tc)/pcmax-=(150-25)/80≒1.6℃/w

从(1)式可得
θj-a=(tjmax-ta)/pdc=(150-60)/15=6℃/w

从(4)式可得
θf=θj-a-(θi+θc+θs) ≒6-(1.6+0.8)=3.6℃/w

根据上述计算散热器的热阻抗须选用3.6℃/w以下的散热器.从散热器散热面积设计图中可以查到:使用2mm厚的铝材至少需要200cm2,因此需选用140*140*2mm以上的铝散热器.

注:在实际运用中,tjmax必须降额使用,以80%额定节温来代替tjmax确保功率管的可靠工作。

3、自然风冷与强制风冷

在开关电源的实际设计过程中,通常采用自然风冷与风扇强制风冷二种形式。自然风冷的散热片安装时应使散热片的叶片竖直向上放置,若有可能则可在pcb上散热片安装位置的周围钻几个通气孔便于空气的对流。

强制风冷是利用风扇强制空气对流,所以在风道的设计上同样应使散热片的叶片轴向与风扇的抽气方向一致,为了有良好的通风效果越是散热量大的器件越应靠近排气风扇,在有排气风扇的情况下,散热片的热阻如下表所示:

开关电源的几种热设计方法

4、金属pcb

随着开关电源的小型化,表面贴片元件广泛地运用到实际产品中,这时散热片难于安装到功率器件上。当前克服该问题主要采取金属pcb作为功率器件的载体,主要有铝基覆铜板、铁基覆铜板,金属pcb的散热性远好于传统的pcb且可以贴装smd元件。另有一种铜芯pcb,基板的中间层是铜板绝缘层采用高导热的环氧玻纤布粘结片或高导热的环氧树脂,它是可以双面贴装smd元件,大功率smd元件可以将smd自身的散热片直接焊接在金属pcb上,利用金属pcb中的金属板来散热。

5、发热元件的布局

开关电源中主要发热元件有大功率半导体及其散热器,功率变换变压器,大功率电阻。发热元件的布局的基本要求是按发热程度的大小,由小到大排列,发热量越小的器件越要排在开关电源风道风向的上风处,发热量越大的器件要越靠近排气风扇。

为了提高生产效率,经常将多个功率器件固定在同一个大散热器上,这时应尽量使散热片靠近pcb的边缘放置。但与开关电源的外壳或其它部件至少应留有1cm以上的距离。若在一块电路板中有几块大的散热器则它们之间应平行且与风道的风向平行。在垂直方向上则发热小的器件排在最低层而发热大的器件排在较高处。

发热器件在pcb的布局上同时应尽可能远离对温度敏感的元器件,如电解电容等。

6、结语

开关电源的热设计应充分考虑产品所处的工 作环境及实际的工作状态并将上述几种方法综合运用才能设计出既经济又能充分保证半导体散热的开关电源产品。

来源:电源研发精英圈

围观 325

目前,许多大学及科研单位都进行了开关电源EMI(Electromagnetic Interference)的研究,他们中有些从EMI产生的机理出发,有些从EMI 产生的影响出发,都提出了许多实用有价值的方案。这里分析与比较了几种有效的方案,并为开关电源EMI 的抑制措施提出新的参考建议。

开关电源电磁干扰的产生机理

开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种,若按耦合通路来分,可分为传导干扰和辐射干扰两种。现在按噪声干扰源来分别说明:

1、二极管的反向恢复时间引起的干扰

高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。

2、开关管工作时产生的谐波干扰

功率开关管在导通时流过较大的脉冲电流。例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。当采用零电流、零电压开关时,这种谐波干扰将会很小。另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。

3、交流输入回路产生的干扰

无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。

开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。这种通过电磁辐射产生的干扰称为辐射干扰。

4、其他原因

元器件的寄生参数,开关电源的原理图设计不够完美,印刷线路板(PCB)走线通常采用手工布置,具有很大的随意性,PCB的近场干扰大,并且印刷板上器件的安装、放置,以及方位的不合理都会造成EMI干扰。

开关电源EMI的特点

作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大;干扰源主要集中在功率开关期间以及与之相连的散热器 和高平变压器,相对于数字电路干扰源的位置较为清楚;开关频率不高(从几十千赫和数兆赫兹),主要的干扰形式是传导干扰和近场干扰;而印刷线路板 (PCB)走线通常采用手工布线,具有更大的随意性,这增加了PCB分布参数的提取和近场干扰估计的难度。

EMI测试技术

目前诊断差模共模干扰的三种方法:射频电流探头、差模抑制网络、噪声分离网络。用射频电流探头是测量差模 共模干扰最简单的方法,但测量结果与标准限值比较要经过较复杂的换算。差模抑制网络结构简单(见图1),测量结果可直接与标准限值比较,但只能测量共模干 扰。噪声分离网络是最理想的方法,但其关键部件变压器的制造要求很高。

几种有效的开关电源电磁干扰抑制措施

目前抑制干扰的几种措施

形成电磁干扰的三要素是干扰源、传播途径和受扰设备。因而,抑制电磁干扰也应该从这三方面着手。首先应该抑制干扰源,直接消除干扰原因;其次是 消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径(见图2);第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度。目前抑制干扰的几种措 施基本上都是用切断电磁干扰源和受扰设备之间的耦合通道,它们确是行之有效的办法。常用的方法是屏蔽、接地和滤波。

采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰。例如,功率开关管和输出二极管通常有较大的功率损耗,为了散热往往需要安装散热器或直接安 装在电源底板上。器件安装时需要导热性能好的绝缘片进行绝缘,这就使器件与底板和散热器之间产生了分布电容,开关电源的底板是交流电源的地线,因而通过器 件与底板之间的分布电容将电磁干扰耦合到交流输入端产生共模干扰,解决这个问题的办法是采用两层绝缘片之间夹一层屏蔽片,并把屏蔽片接到直流地上,割断了 射频干扰向输入电网传播的途径。为了抑制开关电源产生的辐射,电磁干扰对其他电子设备的影响,可完全按照对磁场屏蔽的方法来加工屏蔽罩,然后将整个屏蔽罩 与系统的机壳和地连接为一体,就能对电磁场进行有效的屏蔽。电源某些部分与大地相连可以起到抑制干扰的作用。例如,静电屏蔽层接地可以抑制变化电场的干 扰;电磁屏蔽用的导体原则上可以不接地,但不接地的屏蔽导体时常增强静电耦合而产生所谓“负静电屏蔽”效应,所以仍以接地为好,这样使电磁屏蔽能同时发挥 静电屏蔽的作用。电路的公共参考点与大地相连,可为信号回路提供稳定的参考电位。因此,系统中的安全保护地线、屏蔽接地线和公共参考地线各自形成接地母线 后,最终都与大地相连。

在电路系统设计中应遵循“一点接地”的原则,如果形成多点接地,会出现闭合的接地环路,当磁力线穿过该回路时将产生磁感应噪声,实际上很难实现 “一点接地”。因此,为降低接地阻抗,消除分布电容的影响而采取平面式或多点接地,利用一个导电平面(底板或多层印制板电路的导电平面层等)作为参考地, 需要接地的各部分就近接到该参考地上。为进一步减小接地回路的压降,可用旁路电容减少返回电流的幅值。在低频和高频共存的电路系统中,应分别将低频电路、 高频电路、功率电路的地线单独连接后,再连接到公共参考点上。

滤波是抑制传导干扰的一种很好的办法。例如,在电源输入端接上滤波器,可以抑制开关电源产生并向电网反馈的干扰,也可以抑制来自电网的噪声对电 源本身的侵害。在滤波电路中,还采用很多专用的滤波元件,如穿心电容器、三端电容器、铁氧体磁环,它们能够改善电路的滤波特性。恰当地设计或选择滤波器, 并正确地安装和使用滤波器,是抗干扰技术的重要组成部分。

几种有效的开关电源电磁干扰抑制措施

EMI滤波技术是一种抑制尖脉冲干扰的有效措施,可以滤除多种原因产生的传导干扰。图3是一种由电容、电感组成的EMI滤波器,接在开关电源的 输入端。电路中,C1、C5是高频旁路电容,用于滤除两输入电源线间的差模干扰;L1与C2、C4;L2与C3、C4组成共模干扰滤波环节,用于滤除电源线与地之间非对称的共模干扰;L3、L4的初 次级匝数相等、极性相反,交流电流在磁芯中产生的磁通相反,因而可有效地抑制共模干扰。测试表明,只要适当选择元器件的参数,便可较好地抑制开关电源产生 的传导干扰。

现有的抑制措施大多从消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径出发,这确是抑制干扰的一种行之有效的办法,但很少有人涉及直接控制干扰源,消除干扰,或提高受扰设备的抗扰能力,殊不知后者还有许多发展的空间。

改进措施的建议

目前从电磁干扰的传播途径出发来抑制干扰,已渐进成熟。我们的视点要回到开关电源器件本身来。从多年的工作实践来看,在电路方面要注意以下几点:

(1)印制板布局时,要将模拟电路区和数字电路区合理地分开,电源和地线单独引出,电源供给处汇集到一点;PCB布线时,高频数字信号线要用短线,主要信号线最好集中在PCB板中心,同时电源线尽可能远离高频数字信号线或用地线隔开。其次,可以根据耦合系数来布线,尽量减少干扰耦合。(见表1)

几种有效的开关电源电磁干扰抑制措施

(2)印制板的电源线和地线印制条尽可能宽,以减小线阻抗,从而减小公共阻抗引起的干扰噪声。

(3)器件多选用贴片元件和尽可能缩短元件的引脚长度,以减小元件分布电感的影响。

(4)在Vdd及Vcc电源端尽可能靠近器件接入滤波电容,以缩短开关电流的流通途径,如用10μF铝电解和0 1μF电容并联接在电源脚上。对于高速数字IC的电源端可以用钽电解电容代替铝电解电容,因为钽电解的对地阻抗比铝电解小得多。

结论

产生开关电源电磁干扰的因素还很多,抑制电磁干扰还有大量的工作。全面抑制开关电源的各种噪声会使开关电源得到更广泛的应用。

转自:电子工程世界

围观 372

1、反复短路测试

测试说明
在各种输入和输出状态下将模块输出短路,模块应能实现保护或回缩,反复多次短路,故障排除后,模块应该能自动恢复正常运行。

测试方法
a、空载到短路:在输入电压全范围内,将模块从空载到短路,模块应能正常实现输出限流或回缩,短路排除后,模块应能恢复正常工作。让模块反复从空载到短路不断的工作,短路时间为1s,放开时间为1s,持续时间为2小时。这以后,短路放开,判断模块是否能够正常工作。

b、满载到短路:在输入电压全范围内,将模块从满载到短路,模块应能正常实现输出限流或回缩,短路排除后,模块应能恢复正常工作。让模块从满载到短路然后保持短路状态2小时。然后短路放开,判断模块是否能够正常工作。

c、短路开机:将模块的输出先短路,再上市电,再模块的输入电压范围内上电,模块应能实现正常的限流或回缩,短路故障排除后,模块应能恢复正常工作,重复上述试验10次后,让短路放开,判断模块是否能够正常工作。

判定标准
上述试验后,电源模块开机能正常工作;开机壳检查,电路板及其他部分无异常现象(如输入继电器在短路的过程中触电是否粘住了等),合格;否则不合格。

2、反复开关机测试

测试说明
电源模块输出带最大负载情况下,输入电压分别为220v,(输入过压点-5v)和(输入欠压点+5v)条件下,输入反复开关,测试电源模块反复开关机的性能。

测试方法
a、输入电压为220v,电源模块快带最大负载,用接触器控制电压输入,合15s,断开5s(或者可以用ac source进行模拟),连续运行2小时,电源模块应能正常工作;

b、输入电压为过压点-5v,电源模块带最大负载,用接触器控制电压输入,合15s,断开5s(或者可以用ac source进行模拟),连续运行2小时,电源模块应能正常工作;

c、输入电压为欠压点-5v,电源模块带最大负载,用接触器控制电压输入,合15s,断开5s(或者可以用ac source进行模拟),连续运行2小时,电源模块应能正常工作。

判定标准
以上试验中,电源模块工作正常,试验后电源模块能正常工作,性能无明显变化,合格;否则不合格。

3、输入低压点循环测试

测试说明
一次电源模块的输入欠压点保护的设置回差,往往发生以下情况:输入电压较低,接近一次电源模块欠压点关断,带载时欠压,断后,由于电源内阻原因,负载卸掉后电压将上升,可能造成一次电源模块处于在低压时反复开发的状态。

测试方法
电源模块带满载运行,输入电压从(输入欠压点-3v)到(输入欠压点+3v)缓慢变化,时间设置为5~8分钟,反复循环运行,电源模块应能正常稳定工作,连续运行最少0.5小时,电源模块性能无明显变化。

判定标准
一次电源模块正常连续运行,最少0.5小时后性能无明显变化,合格;否则不合格。

4、输入瞬态高压测试

测试说明
pfc电路采用平均值电路进行过欠压保护,因此在输入瞬态高压时,pfc电路可能会很快实现保护,从而造成损坏,测试一次电源模块在瞬态情况下的稳定运行能力以评估可靠性。

测试方法
a、额定电压输入,用双踪示波器测试输入电压波形合过压保护信号,输入电压从限功率点加5v跳变为300v,从示波器上读出过压保护前300v的周期数n,作为以下试验的依据。

b、额定输入电压,电源模块带满载运行,在输入上叠加300v的电压跳变,叠加的周期数为(n-1),叠加频率为1次/30s,共运行3小时。

判定标准
一次电源模块在上述条件下能够稳定运行,不出现损坏或其他不正常现象,合格;否则不合格。

5、输入电压跌落及输出动态负载

测试说明
一次模块在实际使用过程中,当输入电压跌落时,电源模块突加负载的极限况是可能发生的,此时功率器件、磁性元件工作在最大瞬态电流状态,试验可以检验控制时序、限流保护等电路及软件设计的合理性。

测试方法
a、将输入电压调整为在欠压点+5v(持续时间为5s)、过压点-5v(持续时间为5s)之间跳变,输出调整在最大负载(最大额定容量,持续时间为500ms)、空载(持续时间为500ms)之间跳变,运行1小时;

b、将输入电压调整为欠压点+5v(持续时间为5s)、过压点-5v(持续时间为5s)之间跳变,输出调整在最大负载(最大额定容量,持续时间为1s)、空载(持续时间为500ms)之间跳变,运行1小时。

判定标准
在上述条件下,应能稳定运行,不出现损坏或其他不正常现象,合格;否则不合格。若出现损坏情况,记录故障问题,以提供分析损坏原因的依据。

6、高压空载,低压限流态运行试验

测试说明
高压空载运行是测试模块的损耗情况,尤其是带软开关技术的模块,在空载情况下,软开关变为硬开关,模块的损耗相应增大。低压满载运行是测试模块在最大输入电流时,模块的损耗情况,通常状态下,模块在低压输入、满载输出时,效率最低,此时模块的发热最为严重。

测试方法
a、将模块的输入电压调整为输入过压保护点-3v,模块的输出为最低输出电压,空载运行,此时,模块的占空比为最小,连续运行2小时,模块不应损坏;

b、将模块的输入电压调整为欠压点+3v,模块的输出为最高输出电压的拐点状态,此时模块的占空比为最大,连续运行2小时,模块不应出现损坏;

c、将模块的输入电压调整为效率最低点时的输入电压,模块输出为最高输出电压的拐点状态,连续运行2小时,模块不应损坏;

d、将模块的输入电压调整为过压点-3v,模块的输出为最高输出电压的拐点状态,此时模块的占空比为最大,连续运行2小时,模块不应出现损坏;

e、将模块的输入电压调整为效率最低点时的输入电压,模块输出为最高输出电压的拐点状态,连续运行2小时,模块不应损坏。
注意:上述的测试,必须在规格书规定的最高工作温度下进行。

判定标准
在上述条件下工作,模块没有出现损坏,合格;否则不合格。

7、电源特殊波形试验

测试说明
检验电源模块在电网波形畸变可能形成的尖锋、毛刺和谐波情形下稳定运行能力。以下几种波形必须输入进行试验:

(1)毛刺输入测试波形
电网的毛刺是电网中最常见的波形,毛刺的大小和幅值并没有限值,一般情况下,通过振荡波输入测试和振铃输入波形,基本上可以模拟电网中的毛刺输入,但还需做以下毛刺输入试验
特点:电网尖锋有过冲并会跌落到0v,过冲和跌落脉宽很窄,一般不会大于100ms,过冲幅度一般不超过100v。跌落的相位并不仅只限于峰值点,在任何相位都有可能发生。这种波形在实际电网中很常见,开通任何开关都会造成该现象。

(2)电压削波波形输入
这种波形也是电网中很常见的,特点是:电网从不定的相位突然跌落到0v,然后直到下个半波开始才恢复。在iec1004-4-11中对于波形的跌落是从大于半个周期开始的,但实际电网中还是存在很多类似的跌落时间小于半个周期的波形。测试时要求,输入电压波形从90度开始跌落,跌落1/4个周期,长时间工作2小时。

(3)电网的半个波头陡升至倍电压,这个波形主要是用来模拟实际电网中会突然出现的谐振过电压,而且在这种情况下,模块的输入过电压保护线路不起作用,这种冲击对于有pfc的电路是存在危险的。测试内容:a、在输入电压为180v,输出满载的情况下,用ac source模拟该波形,要求180v工作3分钟,然后电压突然增加到380v,持续100ms,然后恢复到180v,让模块在这种情况下长时间工作1小时,不应损坏;b、设置ac source使得输入电压为0v,持续5分钟,然后电压突然增加到380v,持续100ms,然后恢复到0v,让模块在这种情况下长时间工作1小时,不应损坏。

测试方法
利用ac source对模块供电,模块满载输出;用ac source模拟尖锋、毛刺和谐波电压输入,每种特殊的电压输入工作2小时,测量输入电流和输出电压。模块应能稳定运行,试验中注意x电容,辅助电源,软启动电阻等其他可能出现问题的地方。

判定标准
在实际中可能出现尖锋、毛刺、谐波电压情形下能稳定运行,不损坏,合格;否则不合格。

8、有源pfc性能测试

测试说明
带有源pfc的电源模块,对电网尖锋、毛刺合和谐波比较敏感,应进行全面仔细的测试。

测试方法
利用ac source交流源作为输入电压源,输出分别带半载、满载,测试输入电流波形和电压波形,同时监测pfc后的电压;测试电网在尖锋、毛刺、谐波情况下输入电压、电流的相位及幅值关系;测量pfc开关管的电流和电压,验证在全电压范围和毛刺、尖锋、谐波等情况下开关管和其他功率器件的安全性及电流跟踪电压变化的能力。

判定标准
pfc测试可以作为可靠性参考,出现严重问题时,应及时解决。

9、操作电压测试

测试说明
电网中存在多种操作过电压,其中最常见的时空载线路合闸过电压,这种过电压对模块的威胁也较大,本项测试在于验证模块抗操作过电压的能力。

测试方法
过电压线路的模拟十分简单,原理如下:
其中电感的参数为10mh(供参考:ees的模块测试方法中,没有接地电容,输入电阻与电感串联,电阻值为0欧、电感为8mh和电阻为79欧、电感为10mh两种情况的测试),电容为16.7uf,测试波形如下(未画出)。

将被测试的设备连接在电容两端,在k合闸瞬间,在电容两端会产生过电压,用来模拟在上电过程中,过电压对设备的损害程度。作为极限测试项目,输入接l、n线,将被测试的设备接在电容两端,频繁开关机,重复频率为1次/5分钟,连续测试5小时。对于三相输入设备,输入接在l、l线上,被测试设备接在电容两端,重复频率为1次/5分钟,连续测试2小时。

判定标准
在测试过程中出现短时功能下降或性能劣化,但能自动恢复的,合格;但出现性能永久性劣化或需要人工干预才能恢复的,不合格。

来源:电子工程专辑

围观 485

1 引言

PWM 开关稳压或稳流电源基本工作原理就是在输入电压变化、内部参数变化、外接负载变化的情况下,控制电路通过被控制信号与基准信号的差值进行闭环反馈,调节主电路开关器件的导通脉冲宽度,使得开关电源的输出电压或电流等被控制信号稳定。 PWM 的开关频率一般为恒定,控制取样信号有:输出电压、输入电压、输出电流 、输出电感电压、开关器件峰值电流。由这些信号可以构成单环、双环或多环反馈系统 ,实现稳压、稳流及恒定功率的目的,同时可以实现一些附带的过流保护、抗偏磁、均流等功能。现在主要有五种 PWM 反馈控制模式。下面以 VDMOS 开关器件构成的稳压正激型降压斩波器为例,说明五种PWM反馈控制模式的发展过程、基本工作原理、详细电路原理示意图、波形、特点及应用要点,以利于选择应用及仿真建模研究。

2 开关电源 PWM 的五种反馈控制模式

一般来讲,正激型开关电源主电路可用图1所示的降压斩波器简化表示,Ug表示控制电路的 PWM 输出驱动信号。根据选用不同的 PWM 反馈控制模式,电路中的输入电压 Uin、输出电压 Uout、开关器件电流(由 b 点引出)、电感电流(由 c 点引出或 d 点引出)均可作为取样控制信号。输出电压 Uout在作为控制取样信号时,通常经过图 2 所示的电路进行处理,得到电压信号 Ue,Ue 再经处理或直接送入 PWM 控制器。

图 2 中电压运算放大器(e/a)的作用有三:

①将输出电压与给定电压 Uref 的差值进行放大及反馈,保证稳态时的稳压精度。该运放的直流放大增益理论上为无穷大,实际上为运放的开环放大增益。

②将开关电源主电路输出端的附带有较宽频带开关噪声成分的直流电压信号转变为具有一定幅值的比较“干净”的直流反馈控制信号(Ue)即保留直流低频成分 ,衰减交流高频成分。因为开关噪声的频率较高,幅值较大,高频开关噪声衰减不够的话,稳态反馈不稳;高频开关噪声衰减过大的话,动态响应较慢。虽然互相矛盾,但是对电压误差运算放大器的基本设计原则仍是“低频增益要高,高频增益要低”。

③对整个闭环系统进行校正,使得闭环系统稳定工作

开关电源五种 PWM 反馈控制模式

输入电压、电流等信号在作为取样控制信号时,大多也需经过处理。由于处理方式不同,下面介绍不同控制模式时再分别说明。

2.1 电压模式控制 PWM (Voltage-mode Control PWM)

图 3(a)为 BUCK 降压斩波器的电压模式控制 PWM 反馈系统原理图。电压模式控制 PWM 是 60 年代后期开关稳压电源刚刚开始发展而采用的第一种控制方法。该方法与一些必要的过电流保护电路相结合,至今仍然在工业界很好地被广泛应用。电压模式控制只有一个电压反馈闭环,采用脉冲宽度调制法,即将电压误差放大器采样放大的慢变化的直流信号与恒定频率的三角波上斜坡相比较,通过脉冲宽度调制原理,得到当时的脉冲宽度,见图 3(a)中波形所示。逐个脉冲的限流保护电路必须另外附加。当输入电压突然变小或负载阻抗突然变小时,因为主电路有较大的输出电容 C 及电感L 相移延时作用,输出电压的变小也延时滞后,输出电压变小的信息还要经过电压误差放大器的补偿电路延时滞后,才能传至 PWM 比较器将脉宽展宽。这两个延时滞后作用是暂态响应慢的主要原因。

开关电源五种 PWM 反馈控制模式

电压模式控制的优点:
①PWM 三角波幅值较大,脉冲宽度调节时具有较好的抗噪声裕量;
②占空比调节不受限制;
③对于多路输出电源,它们之间的交互调节效应较好 ;
④单一反馈电压闭环设计、调试比较容易;
⑤对输出负载的变化有较好的响应调节。

缺点:
①对输入电压的变化动态响应较慢;
②补偿网络设计本来就较为复杂,闭环增益随输入电压而变化使其更为复杂;
③输出 LC 滤波器给控制环增加了双极点,在补偿设计误差放大器时,需要将主极点低频衰减,或者增加一个零点进行补偿;
④在传感及控制磁芯饱和故障状态方面较为麻烦复杂。

改善加快电压模式控制瞬态响应速度的方法有二种:

一是增加电压误差放大器的带宽,保证具有一定的高频增益。但是这样容易受高频开关噪声干扰影响,需要在主电路及反馈控制电路上采取措施进行抑制或同相位衰减平滑处理;

另一方法是采用电压前馈模式控制 PWM 技术,原理如图 3(b)所示。用输入电压对电阻电容(RFF、CFF)充电产生的具有可变化上斜坡的三角波取代传统电压模式控制 PWM 中振荡器产生的固定三角波。此时输入电压变化能立刻在脉冲宽度的变化上反映出来,因此该方法对输入电压的变化引起的瞬态响应速度明显提高。对输入电压的前馈控制是开环控制,而对输出电压的控制是闭环控制,目的是增加对输入电压变化的动态响应速度。这是一个有开环和闭环构成的双环控制系统。

开关电源五种 PWM 反馈控制模式

2.2 峰值电流模式控制 PWM (Peak Current-mode Control PWM)

峰值电流模式控制简称电流模式控制。它的概念在 60 年代后期来源于具有原边电流保护功能的单端自激式反激开关电源。在 70 年代后期才从学术上作深入地建模研究 。直至 80 年代初期,第一批电流模式控制 PWM 集成电路(UC3842、UC3846)的出现使得电流模式控制迅速推广应用,主要用于单端及推挽电路。近年来,由于大占空比时所必需的同步不失真斜坡补偿技术实现上的难度及抗噪声性能差,电流模式控制面临着改善性能后的电压模式控制的挑战。如图 4 所示,误差电压信号 Ue 送至 PWM 比较器后,并不是象电压模式那样与振荡电路产生的固定三角波状电压斜坡比较,而是与一个变化的其峰值代表输出电感电流峰值的三角状波形或梯形尖角状合成波形信号 UΣ比较,然后得到 PWM 脉冲关断时刻。因此(峰值)电流模式控制不是用电压误差信号直接控制 PWM 脉冲宽度,而是直接控制峰值输出侧的电感电流大小,然后间接地控制 PWM 脉冲宽度。

电流模式控制是一种固定时钟开启、峰值电流关断的控制方法。因为峰值电感电流容易传感,而且在逻辑上与平均电感电流大小变化相一致。但是,峰值电感电流的大小不能与平均电感电流大小一一对应,因为在占空比不同的情况下,相同的峰值电感电流的大小可以对应不同的平均电感电流大小。而平均电感电流大小才是唯一决定输出电压大小的因素。在数学上可以证明,将电感电流下斜坡斜率的至少一半以上斜率加在实际检测电流的上斜坡上,可以去除不同占空比对平均电感电流大小的扰动作用,使得所控制的峰值电感电流最后收敛于平均电感电流[1]。因而合成波形信号UΣ要有斜坡补偿信号与实际电感电流信号两部分合成构成。当外加补偿斜坡信号的斜率增加到一定程度,峰值电流模式控制就会转化为电压模式控制。因为若将斜坡补偿信号完全用振荡电路的三角波代替,就成为电压模式控制,只不过此时的电流信号可以认为是一种电流前馈信号,见图 4所示。当输出电流减小,峰值电流模式控制就从原理上趋向于变为电压模式控制。当处于空载状态,输出电流为零并且斜坡补偿信号幅值比较大的话,峰值电流模式控制就实际上变为电压模式控制了。

峰值电流模式控制 PWM 是双闭环控制系统,电压外环控制电流内环。电流内环是瞬时快速按照逐个脉冲工作的。功率级是由电流内环控制的电流源,而电压外环控制此功率级电流源。在该双环控制中,电流内环只负责输出电感的动态变化,因而电压外环仅需控制输出电容,不必控制 LC 储能电路。由于这些,峰值电流模式控制 PWM 具有比起电压模式控制大得多的带宽。

峰值电流模式控制 PWM 的优点:
①暂态闭环响应较快,对输入电压的变化和输出负载的变化的瞬态响应均快;
②控制环易于设计;
③输入电压的调整可与电压模式控制的输入电压前馈技术相妣美;
④简单自动的磁通平衡功能;
⑤瞬时峰值电流限流功能 ,即内在固有的逐个脉冲限流功能;
⑥自动均流并联功能。

缺点:
①占空比大于 50%的开环不稳定性,存在难以校正的峰值电流与平均电流的误差;
②闭环响应不如平均电流模式控制理想;
③容易发生次谐波振荡,即使占空比小于 50%,也有发生高频次谐波振荡的可能性。因而需要斜坡补偿;
④对噪声敏感,抗噪声性差。因为电感处于连续储能电流状态,与控制电压编程决定的电流电平相比较,开关器件的电流信号的上斜坡通常较小,电流信号上的较小的噪声就很容易使得开关器件改变关断时刻,使系统进入次谐波振荡;
⑤电路拓扑受限制;
⑥对多路输出电源的交互调节性能不好。

2.3 平均电流模式控制 PWM (Average Current-mode Control PWM)

平均电流模式控制概念产生于 70 年代后期。平均电流模式控制 PWM集成电路出现在 90 年代初期,成熟应用于 90 年代后期的高速 CPU 专用的具有高 di/dt 动态响应供电能力的低电压大电流开关电源。图 5(a)所示为平均电流模式控制 PWM 的原理图[1]。将误差电压 Ue 接至电流误差信号放大器(c/a)的同相端,作为输出电感电流的控制编程电压信号 Ucp(Ucurrent- program)。带有锯齿纹波状分量的输出电感电流信号 Ui 接至电流误差信号放大器(c/a)的反相端,代表跟踪电流编程信号 Ucp 的实际电感平均电流。Ui 与 Ucp 的差值经过电流放大器(c/a)放大后,得到平均电流跟踪误差信号 Uca 。再由 Uca 及三角锯齿波信号 UT 或 Us 通过比较器比较得到 PWM 关断时刻。Uca 的波形与电流波形 Ui 反相,所以,是由 Uca的下斜坡(对应于开关器件导通时期)与三角波 UT 或 Us 的上斜坡比较产生关断信号。显然,这就无形中增加了一定的斜坡补偿。为了避免次谐波振荡,Uca 的上斜坡不能超过三角锯齿波信号 UT 或 Us 的上斜坡。

开关电源五种 PWM 反馈控制模式

平均电流模式控制的优点是:

①平均电感电流能够高度精确地跟踪电流编程信号 ;
②不需要斜坡补偿;
③调试好的电路抗噪声性能优越;
④适合于任何电路拓扑对输入或输出电流的控制;⑤易于实现均流。

缺点是:

①电流放大器在开关频率处的增益有最大限制;
②双闭环放大器带宽、增益等配合参数设计调试复杂。

图 5(b)为增加输入电压前馈功能的平均电流模式控制,非常适合输入电压变化幅度大、变化速度快的中国电网情况。澳大利亚 R-T 公司的 48 V/100A 半桥电路通信开关电源模块实际上采用图 5(b)的控制方式。

2.4 滞环电流模式控制 PWM (Hysteretic Current-mode Control PWM)

滞环电流模式控制 PWM 为变频调制,也可以为定频调制[2]。图 6 所示为变频调制的滞环电流模式控制 PWM。将电感电流信号与两个电压值比较,第一个较高的控制电压值 Uc(Uc=Ue)由输出电压与基准电压的差值放大得到,它控制开关器件的关断时刻;第二个较低电压值 Uch 由控制电压 Uc减去一个固定电压值 Uh 得到,Uh 为滞环带,Uch 控制开关器件的开启时刻。滞环电流模式控制是由输出电压值 Uout、控制电压值 Uc 及 Uch 三个电压值确定一个稳定状态,比电流模式控制多一个控制电压值 Uch,去除了发生次谐波振荡的可能性,见图 6 右下示意图。因为 Uch1=Uch2,图 6右下示意图的情况不会出现。

开关电源五种 PWM 反馈控制模式

滞环电流控制模式的优点:
①不需要斜坡补偿;
②稳定性好,不容易因噪
声发生不稳定振荡。

缺点:
①需要对电感电流全周期的检测和控制;
②变频控制容易产生变频噪声。

2.5 相加模式控制 PWM (Summing-mode Control PWM)

图 7 所示为相加模式控制 PWM 的原理图。与图 3 所示的电压模式控制有些相似,但有两点不同[3]:
一是放大器(e/a)是比例放大器,没有电抗性补偿元件。控制电路中电容 C1 较小,起滤除高频开关杂波作用。主电路中的较小的 Lf、Cf 滤波电路(如图中虚线所示,也可以不用)也起减小输出高频杂波作用。若输出高频杂波小的话,均可以不加。因此,电压误差放大没有延时环节,电流放大也没有大延时环节;
二是经过滤波后的电感电流信号 Ui 也与电压误差信号 Ue 相加在一起构成一个总和信号 UΣ与三角锯齿波比较,得到 PWM 控制脉冲宽度。相加模式控制 PWM 是单环控制,但它有输出电压、输出电流两个输入参数。如果输出电压或输出电流变化,那么占空比将按照补偿它们变化的方向而变化。

开关电源五种 PWM 反馈控制模式

相加控制模式的优点是:动态响应快(比普通电压模式控制快 3~5 倍),动态过冲电压小,输出滤波电容需要较少。相加模式控制中的 Ui 注入信号容易用于电源并联时的均流控制。缺点是:需要精心处理电流、电压取样时的高频噪声抑制。

3 结论

1)不同的 PWM 反馈控制模式具有各自不同的优缺点,在设计开关电源选用时要根据具体情况选择合适的 PWM 的控制模式。

2)各种控制模式PWM反馈方法的选择一定要结合考虑具体的开关电源的输入输出电压要求、主电路拓扑及器件选择、输出电压的高频噪声大小、占空比变化范围等。

3)PWM 控制模式是发展变化的,是互相联系的,在一定的条件下是可以互相转化的 。

转载出处:电源网

围观 858

PCB Layout是开关电源研发过程中的极为重要的步骤和环节,关系到开关电源能否正常工作,生产是否顺利进行,使用是否安全等问题。

开关电源PCB Layout比起其它产品PCB Layout来说都要复杂和困难,要考虑的问题要多得多,归纳起来主要有以下几个方面的要求:

一、电路要求

1PCB 中的元器件必须与BOM一致。

2线条走线必须符合原理图,利用网络联机可以轻做到这一点。

3线条宽度必须满足最大电流要求,不得小于1mm/1A,以保证线条温升不超过70℃.为了减少电压降有时还必须加宽宽度。

4为了减小电压降和损耗,视需要在线条上镀锡。

二、安规要求

1一次侧和二次侧电路要用隔离带隔开,隔离带清晰明确. 靠隔离带的组件,在10N的推力作用下应保持电气距离要求。

2 隔离带中线要用1mm的丝印虚线隔开,并在高压区标识DANGER / HIGH VOLTAGE。

3各电路间电气间隙(空间距离):

(1) 一次侧交流部分:

保险丝前 L-N≧2..5mm

L.N↔大地(PE) ≧2. 5mm

保险丝后 不做要求.

(2) 一次侧交流对直流部分≧2mm

(3) 一次侧直流地对大地≧4mm

(4) 一次侧对二次侧部分4mm(一二次侧组件之间)

(5) 二次侧部分:

电压低于100V≧0.5mm

电压高于100V≧1.0mm

(6) 二次侧地对大地 ≧1mm

5各电路间的爬电距离:

(1) 一次侧交流电部分:

保险丝前 L-N≧2..5mm

L.N↔大地(PE) ≧2. 5mm

保险丝后不做要求.

(2) 一次侧交流对直流部分≧2mm

(3) 一次侧直流地对大地≧4mm

(4) 一次侧对二次侧≧6.4mm

光耦,Y电容,脚间距≦6.4时要开槽。

(5) 二次侧部分之间:电压低于100V时≧0.5mm; 电压高于100V时,按电压计算。

(6) 二次侧对大地≧2mm.

(7) 变压器二次侧之间≧8mm

5导线与PCB边缘距离应≧1mm

6PCB上的导电部分与机壳之空间距离小于4 mm时, 应加0.4 mm麦拉片。

7PCB必须满足防燃要求。

三. EMI要求

1初级电路与次级电路分开布置。

2交流回路, PFC、PWM回路,整流回路,,滤波回路这四大回路包围的面积越小越好,即要求:

(1)各回路中功率组件彼此尽量靠近。

(2)功率线条(两交流线之间、正线与地线之间)彼此靠近。

3控制IC要尽量靠近被控制的MOS管。

4控制IC周边的组件尽量靠近IC布置,尤其是直接与IC连接的组件, 如RT、CT电阻电容, 校正网络电阻电容, 应尽量在IC对应PIN附近布置. RT、CT 到PIN线条要尽量短。

5PFC、PWM回路要单点接地. IC周边组件的地先接到IC地再接到MOS的S极, 再由S极引到PFC电容负极。

6反馈线条应尽量远离干扰源( 如PFC电感、 PFC二极管引线、 MOS管)的引线,不得与它们靠近平行走线。

7数字地与仿真地要分开, 地线之间的间距应满足一定要求。

8偏置绕阻的回线要直接接到PFC电容的负极。.

9功率线条(流过大电流的线条)要短而宽, 以降低损耗, 提高响应频率, 降低接收干扰频谱范围.。

10在X电容、PFC电容引脚附近,铜条要收窄,以便充分利用电容滤波。

11输出滤波电容必要时可用两个小电容并联以减少ESR。

12PFC MOS和D、PWM MOS散热片必须接一次地,以减少共模干扰。

13二次侧的散热片、变压器外屏蔽应接二次地。

14变压器一次地和二次侧地之间或直流正极和二次侧地之间应接一个电容,为共模干扰提供放电快捷方式。

15变压器的内屏蔽层应接一次侧直流正极,以抑制二次侧共模干扰。

16交流回路应远离PFC、PWM回路, 以减少来自后者的干扰。

17双层PCB的上层尽可能用宽线,地线尽量布在上层。

18多层PCB应用一层作为地线、一层作为电源线,以充分利用层间电容去耦,减小干扰.

四. 散热要求

1PCB整体布置时应充分考虑使用时PCB的安装姿态和位置。在自然散热条件下,PCB板是竖直放置时,,发热量大的电感、变压器尽可能放在上面,以免给其它热敏感组件加热;如果是水平放置的, 也要考虑对热敏感的组件,如小卡、MOS管,应远离电感、变压器。

2 散热片的选取,要考虑热流方向,要有利于空气对流;自然散热时, 齿应向上;在强迫通风时,齿要顺着风向.

3变压器、电感、整流器等发热量大的组件应放在出风口或边缘,以便将热量直接带到机壳外。

4散热片齿的方向最好顺风,以利于对流。

5必要时在组件下面或附近将PCB开孔,以利于散热。

6热敏组件如电解电容、IC应远离热源。

7温度高的零件,如变压器、PFC电感、滤波电感散热片周围的组件不要太近,以免烫伤。对温度敏感组件要远离这些零件。

五. 制作工艺和安装使用要求

1外形尺寸、安装尺寸、入输出接口必须满足Spec要求(与主机配套), 必须保证安装使用方便。

2所有元器件(插件、贴片)都应使用Lead year组件库标准封装。自建组件封装时,孔的大小应保证组件能顺利插入。孔直径=组件脚直径+0.3mm。

3元器件之间及组件与散热片之间,应留有足够间隙,以方便插件及防止短路.

4所有孔包括焊盘孔、过孔、 安装孔、通风孔与PCB边缘的距离至少1mm。

5轴向组件和跳线的脚距尽量一致,以减少组件成型和安装工具。

6兼容组件孔要分开并用线连起来.

7贴装器件用的PCB膨胀系数不要太大,否则会拉断焊点。

8小卡应多个合成一块大板,大板两边应留5mm的边条,以过锡炉。最多不超过3排,以V槽分开。

9进板方向要标明。

10贴装组件焊盘同距离、本体间距离应满足以下要求:

开关电源Layout 5大规则

11不同类型器件尺寸与距离如表:

12大于0805的陶瓷电容, 其方向应与进板方向,( 垂直时应力大, 易损坏)

13插件附近3mm以内不要贴片,以免插板损伤贴片。

14插件焊盘间最小距离应>1mm。

15DIP焊盘可采用椭圆,以保证最小距离>0.6mm。

16所有的元器件离V-CUT>1mm。

17可插拔及可调器件,就留有足够空间,以方便插拔或调试。

18安装禁布区内不应有组件或走线, ∮5 mm以下安装孔禁布区为∮10-12。

19电缆折弯部分要留有一定空间让电线通过,否则会压弯组件。

20散热片下方有走线时,跳线或组件应有一定高度,以保证安规要求。

21孤立焊盘与走线连接应尽量采用滴泪焊盘.

22小卡拼板时, 其上应有基准点。

23丝印

(1). 每个元器件、小卡、散热片、引出线孔都应有丝印标号,标号应与BOM一致,丝印方向应尽量保持在两个方向。

(2). 在焊盘、导通孔、锡道上不能放丝印,丝印不能放在元器件下面(密度较高的除外)。

(3). 电解电容、二极管极性要标明,TO-220,TO-247等器件的符号应保证插件方向不会搞错。

(4).PCB上应有商标、产品型号、 PCB号/件号、版本、日期,.位置应醒目,大小应适中。

24保险丝要有规格, 警告文字。

转自: Dongeasy

围观 273

一个良好的布局设计可优化效率,减缓热应力并尽量小走线与元件之间噪声作用。这切都源于设计人员对电中流传导路径以及信号的理解。

当一块原型电源板首次加时,最好的情况 是它不仅能工作而且还安静、发热低。然这种并不多见。

开关电源的一个常见问题是“不稳定 ”的开关波形。有些时候,抖动处于声段磁性元件会产生出音频噪声。如果问题在印刷电路板的布局上,要找原因可能会很困难此开关电源设计初期的正确PCB布局就非常关键。

电源设计者要很好地理解技术细节,以及最终产品的功能需求。因此从电路板设计项目一开始源设计者应就关键性电布局,与PCB布局设计人员展开密切合作。

一个好的布局设计可优化电源效率,减缓热应力;更重要的是,它最大限度地减小了噪声,以及走线与元件之间的相互作用。为实现这些目标,设计者必须了解开关电源内部的电流传导路径以及信号流。要实现非隔离开关电源的正确布局设计,务必牢记以下这些设计要素。

布局规划

对一块大电路板上的嵌入dc/dc电源,要获得最佳的电压调节、负载瞬态响应和系统效率,就要使电源输出靠近负载器件,尽量减少PCB走线上的互连阻抗和传导压降。确保有良好的空气流,限制热应力;如果能采用强制气冷措施,则要将电源靠近风扇位置。

另外,大型无源元件(如电感和电解电容)均不得阻挡气流通过低矮的表面封装半导体元件,如功率MOSFET或PWM控制器。为防止开关噪声干扰到系统中的模拟信号,应尽可能避免在电源下方布放敏感信号线;否则,就需要在电源层和小信号层之间放置一个内部接地层,用做屏蔽。

关键是要在系统早期设计和规划阶段,就筹划好电源的位置,以及对电路板空间的需求。有时设计者会无视这种忠告,而把关注点放在大型系统板上那些更“重要”或“让人兴奋”的电路。电源管理被看作事后工作,随便把电源放在电路板上的多余空间上,这种做法对高效率而可靠的电源设计十分不利。

对于多层板,很好的方法是在大电流的功率元件层与敏感的小信号走线层之间布放直流地或直流输入/输出电压层。地层或直流电压层提供了屏蔽小信号走线的交流地,使其免受高噪声功率走线和功率元件的干扰。

作为一般规则,多层PCB板的接地层或直流电压层均不应被分隔开。如果这种分隔不可避免,就要尽量减少这些层上走线的数量和长度,并且走线的布放要与大电流保持相同的方向,使影响最小化。

图1a和1c分别是六层和四层开关电源PCB的不良层结构。这些结构将小信号层夹在大电流功率层和地层之间,因此增加了大电流/电压功率层与模拟小信号层之间耦合的电容噪声。

非隔离式开关电源PCB布局优化设计

图中的1b和1d则分别是六层和四层PCB设计的良好结构,有助于最大限度减少层间耦合噪声,地层用于屏蔽小信号层。要点是:一定要挨着外侧功率级层放一个接地层,外部大电流的功率层要使用厚铜箔,尽量减少PCB传导损耗和热阻。

功率级的布局

开关电源电路可以分为功率级电路和小信号控制电路两部分。功率级电路包含用于传输大电流的元件,一般情况下,要首先布放这些元件,然后在布局的一些特定点上布放小信号控制电路。

大电流走线应短而宽,尽量减少PCB的电感、电阻和压降。对于那些有高di/dt脉冲电流的走线,这方面尤其重要。

图2给出了一个同步降压转换器中的连续电流路径和脉冲电流路径,实线表示连续电流路径,虚线代表脉冲(开关)电流路径。脉冲电流路径包括连接到下列元件上的走线:输入去耦陶瓷电容CHF;;上部控制FET QT;以及下部同步FET QB,还有选接的并联肖特基二极管。

非隔离式开关电源PCB布局优化设计

图3a给出了高di/dt电流路径中的PCB寄生电感。由于存在寄生电感,因此脉冲电流路径不仅会辐射磁场,而且会在PCB走线和MOSFET上产生大的电压振铃和尖刺。为尽量减小PCB电感,脉冲电流回路(所谓热回路)布放时要有最小的圆周,其走线要短而宽。

高频去耦电容CHF应为0.1μF~10μF,X5R或X7R电介质的陶瓷电容,它有极低的ESL(有效串联电感)和ESR(等效串联电阻)。较大的电容电介质(如Y5V)可能使电容值在不同电压和温度下有大的下降,因此不是CHF的最佳材料。

图3b为降压转换器中的关键脉冲电流回路提供了一个布局例子。为了限制电阻压降和过孔数量,功率元件都布放在电路板的同一面,功率走线也都布在同一层上。当需要将某根电源线走到其它层时,要选择在连续电流路径中的一根走线。当用过孔连接大电流回路中的PCB层时,要使用多个过孔,尽量减小阻抗。

图4显示的是升压转换器中的连续电流回路与脉冲电流回路。此时,应在靠近MOSFET QB与升压二极管D的输出端放置高频陶瓷电容CHF.

非隔离式开关电源PCB布局优化设计

图5是升压转换器中脉冲电流回路的一个布局例子。此时关键在于尽量减小由开关管QB、整流二极管D和高频输出电容CHF形成的回路。

非隔离式开关电源PCB布局优化设计

图5.本图显示的是升压转换器中的热回路与寄生PCB电感(a);为减少热回路面积而建议采用的布局(b)。

图6和图7(略)提供了一个同步降压电路的例子,它强调了去耦电容的重要性。图6a是一个双相12VIN、2.5VOUT/30A(最大值)的同步降压电源,使用了LTC3729双相单VOUT控制器IC.在无负载时,开关结点SW1和SW2的波形以及输出电感电流都是稳定的(图6b)。但如果负载电流超过13A,SW1结点的波形就开始丢失周期。负载电流更高时,问题会更恶化(图6c)。

非隔离式开关电源PCB布局优化设计

在各个通道的输入端增加两只1μF的高频陶瓷电容,就可以解决这个问题,电容隔离开了每个通道的热回路面积,并使之最小化。即使在高达30A的最大负载电流下,开关波形仍很稳定。

高DV/DT开关区

图2和图4中,在VIN(或VOUT)与地之间的SW电压摆幅有高的dv/dt速率。这个结点上有丰富的高频噪声分量,是一个强大的EMI噪声源。为了尽量减小开关结点与其它噪声敏感走线之间的耦合电容,你可能会让SW铜箔面积尽可能小。但是,为了传导大的电感电流,并且为功率MOSFET管提供散热区,SW结点的PCB区域又不能够太小。一般建议在开关结点下布放一个接地铜箔区,提供额外的屏蔽。

如果设计中没有用于表面安装功率MOSFET与电感的散热器,则铜箔区必须有足够的散热面积。对于直流电压结点(如输入/输出电压与电源地),合理的方法是让铜箔区尽可能大。

多过孔有助于进一步降低热应力。要确定高dv/dt开关结点的合适铜箔区面积,就要在尽量减小dv/dt相关噪声与提供良好的MOSFET散热能力两者间做一个设计平衡。

控制电路布局

使控制电路远离高噪声的开关铜箔区。对降压转换器,好的办法是将控制电路置于靠近VOUT+端,而对升压转换器,控制电路则要靠近VIN+端,让功率走线承载连续电流。

如果空间允许,控制IC与功率MOSFET及电感(它们都是高噪声高热量元件)之间要有小的距离(0.5英寸~1英寸)。如果空间紧张,被迫将控制器置于靠近功率MOSFET与电感的位置,则要特别注意用地层或接地走线,将控制电路与功率元件隔离开来。

控制电路应有一个不同于功率级地的独立信号(模拟)地。如果控制器IC上有独立的SGND(信号地)和PGND(功率地)引脚,则应分别布线。对于集成了MOSFET驱动器的控制IC,小信号部分的IC引脚应使用SGND.

信号地与功率地之间只需要一个连接点。合理方法是使信号地返回到功率地层的一个干净点。只在控制器IC下连接两种接地走线,就可以实现两种地。

此焊盘应焊到PCB上,以尽量减少电气阻抗与热阻。应在接地焊盘区放置多个过孔。

回路面积与串扰

两个或多个邻近导体可以产生容性耦合。一个导体上的高dv/dt会通过寄生电容,在另一个导体上耦合出电流。为减少功率级对控制电路的耦合噪声,高噪声的开关走线要远离敏感的小信号走线。如果可能的话,要将高噪声走线与敏感走线布放在不同的层,并用内部地层作为噪声屏蔽。

空间允许的话,控制IC要距离功率MOSFET和电感有一个小的距离(0.5英寸~1英寸),后者既有大噪声又发热。

走线宽度的选择

对具体的控制器引脚,电流水平和噪声敏感度都是唯一的,因此,必须为不同信号选择特定的走线宽度。通常情况下,小信号网络可以窄些,采用10mil~15mil宽度的走线。大电流网络(栅极驱动、VCC以及PGND)则应宽一些,具体宽度根据电流大小定义。

来源: 中电网

围观 336

页面

订阅 RSS - 开关电源