LDO

东芝电子元件及存储装置株式会社(“东芝”)今日宣布,推出新TCR1HF系列LDO稳压器的前三款产品——“TCR1HF18B”、“TCR1HF33B”和“TCR1HF50B”,分别提供1.8V、3.3V和5.0V的输出电压。该系列稳压器可提供高电压、宽输入电压范围及业界最低[1]的待机电流消耗。三款器件于今日开始支持批量出货。

1.jpg

在使用具有LDO稳压器的电源电路时,为了降低电子产品在待机模式下的功耗,需要将电源直接连接到LDO稳压器上,并通过关闭内部电路来降低功耗。

新产品支持4V至36V的宽输入电压范围,使其可连接至用于USB-PD的4V至20V电源[2]乃至24V电源。

此外,它们还具有堪称业界最低[1]的1μA(典型值)的待机电流消耗,支持电子设备以非常低的功耗保持待机运行。与此同时,-60mV/+50mV(典型值)的快速负载瞬态响应,可确保产品从待机状态转换到工作状态的电流突变期间能够提供稳定的输出电压。

使用新产品的参考设计“电源多路复用器电路”现已发布。

未来,东芝将继续扩展TCR1HF系列产品线,增加具有不同功能或输出电压值的产品,以满足不同应用的需求。

1:负载瞬态特性

2.png

2:电源多路复用器电路模块板及简易方框图

1684811396956.jpg

应用

-    消费类电子产品/个人设备(手机、笔记本电脑、家用电器等)

-    工业设备

特性

-    宽范围输入电压:VIN4V36V

-    低电流消耗:IBON1μA(典型值)

-    最大额定输出电流:IOUT150mA

-    快速负载瞬态响应:VOUT-60mV+50mV(典型值)(IOUT0mA10mA

-    通用SOT-25(SMV)封装

主要规格

器件型号

TCR1HF18B

TCR1HF33B

TCR1HF50B

封装

名称

SOT-25(SMV)

尺寸典型值(mm

2.8×2.9,厚度=1.1

工作范围

输入电压VINV

4至36

工作温度Topr

-40至125

电气特性

(除非另有

说明,

Tj25

输出电压VOUT典型值(V

1.8

3.3

5.0

输出电压精度VOUT%

IOUT10mA

±1

静态电流IBON典型值(μA

IOUT0mA

1

待机电流IB(OFF1)典型值(μA

VIN4V

0.24

负载瞬态响应

VOUT

典型值(mV

IOUT0mA→10mA

-60

IOUT10mA→0mA

50

热关机阈值TSDH

Tj升高

155


在线购买

在线购买

在线购买









注:

[1]与相同额定值的LDO稳压器的待机电流进行比较,截至2023年5月的东芝调查。

[2] USB-PD(USB Power Delivery):一种快速充电标准,使用USB可提供最高100W的功率。

如需了解有关新产品的更多信息,请访问以下网址:

TCR1HF18B

https://toshiba-semicon-storage.com/cn/semiconductor/product/power-management-ics/low-dropout-regulators-ldo-regulators/detail.TCR1HF18B.html

TCR1HF33B

https://toshiba-semicon-storage.com/cn/semiconductor/product/power-management-ics/low-dropout-regulators-ldo-regulators/detail.TCR1HF33B.html

TCR1HF50B

https://toshiba-semicon-storage.com/cn/semiconductor/product/power-management-ics/low-dropout-regulators-ldo-regulators/detail.TCR1HF50B.html

如需了解使用新产品参考设计的更多相关内容,请访问以下网址

电源多路复用器电路

https://toshiba-semicon-storage.com/cn/semiconductor/design-development/referencedesign/detail.RD221.html

如需了解有关新产品在线分销商网站的供货情况,请访问以下网址

TCR1HF18B

https://toshiba-semicon-storage.com/cn/semiconductor/where-to-buy/stockcheck.TCR1HF18B.html

TCR1HF33B

https://toshiba-semicon-storage.com/cn/semiconductor/where-to-buy/stockcheck.TCR1HF33B.html

TCR1HF50B

https://toshiba-semicon-storage.com/cn/semiconductor/where-to-buy/stockcheck.TCR1HF50B.html

关于东芝电子元件及存储装置株式会社

东芝电子元件及存储装置株式会社是先进的半导体和存储解决方案的领先供应商,公司累积了半个多世纪的经验和创新,为客户和合作伙伴提供分立半导体、系统LSI和HDD领域的杰出解决方案。

公司22,200名员工遍布世界各地,致力于实现产品价值的最大化,东芝电子元件及存储装置株式会社十分注重与客户的密切协作,旨在促进价值共创,共同开拓新市场,公司现已拥有超过8,598亿日元(62亿美元)的年销售额,期待为世界各地的人们建设更美好的未来并做出贡献。

如需了解有关东芝电子元件及存储装置株式会社的更多信息,请访问以下网址:https://toshiba-semicon-storage.com

围观 14

在之前LDO 基础知识:噪声 - 降噪引脚如何提高系统性能一文中,我们讨论了如何使用与基准电压 (CNR/SS) 并联的电容器降低输出噪声和控制压摆率。在本文中,我们将讨论降低输出噪声的另一种方法:使用前馈电容器 (CFF)。

什么是前馈电容器?

前馈电容器是与电阻分压器顶部电阻并联的可选电容器,如图 1 所示。

“图
图 1:使用前馈电容器的低压降稳压器 (LDO)

类似于降噪电容器 (CNR/SS),添加前馈电容器具有多种影响。这些影响包括改善噪声、稳定性、负载响应和电源抑制比 (PSRR)。应用报告“使用前馈电容器和低压降稳压器的优缺点”详细介绍了这些优点。另外,还值得注意的是,前馈电容器仅在使用可调 LDO 时才可行,因为电阻器网络是外部的。

改善噪声

作为电压调节控制环路的一部分,LDO 的误差放大器使用电阻器网络(R1 和 R2)来提高基准电压的增益,类似于驱动场效应晶体管栅极的同相放大器电路,以使 VOUT = VREF × (1 + R1/R2)。这种增加意味着基准的直流电压将按 1 + R1/R2 系数提高。在误差放大器的带宽内,基准电压的交流元件(例如噪声)也会被放大。

通过在顶部电阻器 (CFF) 上添加电容器,会为特定频率范围引入交流分流器。换句话说,该频率范围中的交流元件会保持在单位增益范围内。请记住,您使用的电容器的阻抗特性将决定这个频率范围。

图 2 演示了 TPS7A91 噪声的减小(通过使用不同的 CFF 值)。

“图
图 2:TPS7A91 噪声与频率和 CFF 值的关系

通过在顶部电阻器上添加一个 100nF 电容器,您可将噪声从 9μVRMS 降至 4.9μVRMS。

改进稳定性和瞬态响应

添加 CFF 还会在 LDO 反馈环路中引入零点 (ZFF) 和极点 (PFF),使用公式 1 和 2 计算得出:

ZFF = 1 / (2 × π × R1 × CFF) (1)

PFF = 1 / (2 × π × R1 // R2 × CFF) (2)

将零点置于发生单位增益的频率之前可提高相位裕度,如图 3 所示。

“图
图 3:仅使用前馈补偿的典型 LDO 的增益/相位图

您可以看到,如果没有 ZFF,单位增益会更早出现,大约为 200kHz。通过添加零点,单位增益频率在大约 300kHz 处略微向右推,但相位裕度也有所改善。由于 PFF 位于单位增益频率的右侧,因此其对相位裕度的影响将是最小的。

在提高 LDO 的负载瞬态响应后,额外的相位裕度将很明显。通过增加相位裕度,LDO 输出将出现较少的振铃,稳定速度会更快。

改善PSRR

根据零点和极点的位置,您还可以战略性地减少增益滚降。图 3 显示了零点对从 100kHz 开始的增益滚降的影响。通过增加频带的增益,您还将改善该频带的环路响应,从而使特定频率范围的 PSRR 得到改善。请参阅图 4。

“图
图 4:TPS7A8300 PSRR 与频率和 CFF 值间的关系

如您所见,增加 CFF 电容会将零点向左推,从而改善环路响应和较低频率范围内的相应 PSRR。

当然,您必须选择 CFF 的值以及 ZFF 和 PFF 的对应位置,以避免导致不稳定性。您可以通过遵循数据表中规定的 CFF 限制来避免不稳定性,但我们通常建议选择介于 10nF 和 100nF 之间的值。较大的 CFF 可能会带来前面提到的优缺点应用报告中概述的其他挑战。

表 1 列出了一些关于 CNR 和 CFF 如何影响噪声的经验法则。

表 1:CNR 和 CFF 的优势与频率间的关系

“表

结语

添加前馈电容器可以改善噪声、稳定性、负载响应和 PSRR。当然,您必须仔细选择电容器以保持稳定性。与降噪电容器配合使用时,可以大大提高交流性能。这些只是优化电源时需要牢记的一些工具。

相关阅读:

LDO 基础知识:噪声 - 降噪引脚如何提高系统性能

来源:德州仪器
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 133

使用低压降稳压器 (LDO) 来过滤开关模式电源产生的纹波电压并不是实现清洁直流电源的唯一考虑因素。由于 LDO 是电子器件,因此它们会自行产生一定量的噪声。选择低噪声 LDO 并采取措施来降低内部噪声对于生成不会影响系统性能的清洁电源轨而言不可或缺。

识别噪声

理想的 LDO 会生成没有交流元件的电压轨。遗憾的是,LDO 会像其他电子器件一样自行产生噪声。图 1 显示了这种噪声在时域中的表现方式。

“图
图 1:电源噪声的屏幕截图

时域分析并非易事。因此,检查噪声的主要方法有两种:跨频率检查和以积分值形式检查。

您可以使用频谱分析仪来识别 LDO 输出端的各种交流元件。图 2 描绘了 1A 低噪声 LDO TPS7A94 的输出噪声。

“图
图 2:TPS7A94 的噪声频谱密度与频率和 VOUT 的关系

从各条曲线可以看出,以微伏/平方根赫兹 (μV/√Hz) 表示的输出噪声集中在频谱的低端。这种噪声主要来自内部基准电压,但误差放大器、场效应晶体管 (FET) 和电阻分压器也会产生一定噪声。

在确定相关频率范围的噪声曲线时,跨频率查看输出噪声会有所助益。例如,音频应用设计人员会关心电源噪声可能会降低音质的可听频率(20Hz 至 20kHz)。

数据表通常为同类比较提供单一综合噪声值。输出噪声通常在 10Hz 至 100kHz 范围内积分,并以微伏均方根 (μVRMS) 表示。一些半导体制造商集成了从 100Hz 到 100kHz 或自定义频率范围的噪声。在特定频率范围内进行积分有助于掩盖令人不快的噪声特性,因此除了积分值之外,检查噪声曲线也很重要。图 2 显示了与各种曲线相对应的积分噪声值。德州仪器提供的 LDO 产品系列,其集成噪声值测量值可低至 0.47μVRMS。

降低噪声

除了选择具有低噪声品质的 LDO 之外,您还可以采用几种技术来确保您的 LDO 具有超低噪声特性。这些技术涉及使用降噪和前馈电容器,我们会在之后关于 LDO 基础知识的技术干货中进行讨论。

降噪电容器

TI 产品组合中的许多低噪声 LDO 都具有指定为 “NR/SS” 的特殊引脚。图 3 显示了用于实现降噪功能的常见拓扑。

“图
图 3:带有 NR/SS 引脚的 LDO 的常见拓扑

该引脚的功能是双重的。它用于过滤来自内部基准电压的噪声,并在启动期间降低压摆率或启用 LDO。

在此引脚 (CNR/SS) 上添加一个电容器可形成一个具有内部电阻的电阻电容 (RC) 滤波器,有助于分流由基准电压产生的不良噪声。由于基准电压是噪声的主要来源,因此增大电容有助于将低通滤波器的截止频率推至较低频率。图 4 显示了该电容器对输出噪声的影响。

“图
图 4:TPS7A91 的噪声频谱密度与频率和 CNR/SS 的关系

如图 4 所示,较大的 CNR/SS 值会产生更好的噪声系数。在某个时刻,增大电容将不再降低噪声。剩余的噪声来自误差放大器、FET 等。

添加电容器还会在启动期间引入 RC 延迟,从而导致输出电压以较慢的速度斜升。当输出或负载上存在大容量电容并且您需要减轻浪涌电流时,这是有利的。

以下公式将浪涌电流表示为:

“LDO

为了减少浪涌电流,您必须降低输出电容或降低压摆率。幸好,CNR/SS 有助于实现后者,如图 5 所示的 TPS7A85 相关内容。

“图
图 5:TPS7A85 的启动过程与 CNR/SS 的关系

如您所见,增加 CNR/SS 值会导致启动时间延长,从而防止浪涌电流尖峰并可能触发限流事件。请注意,某些具有 NR 引脚的 LDO 不会实现软启动功能。它们能够实现快速启动电路,即便使用大型降噪电容器也有助于实现超短启动时间。

结语

低噪声 LDO 对于确保清洁直流电源至关重要。选择具有低噪声特性的 LDO 并实施相关技术以确保尽可能干净的输出非常重要。使用 CNR/SS 有两大优势:它使您能够控制压摆率和过滤基准噪声。

来源:德州仪器
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 75

当对产品进行快速上下电测试时,若未能满足MCU的上下电要求,MCU往往会出现无法启动甚至锁死的问题。对于单电源供电的MCU来说,电路无需整改,本文推荐给您一颗LDO,可以解决MCU启动异常问题。

对于需要进行掉电保存或掉电报警功能的产品,利用大容量电容的储能作用,为保存数据和系统关闭提供时间,往往是很多工程师的选择。而在不需要掉电保存数据的系统中,为了抑制电源纹波、电源干扰和负载变化,在电源端也会并接一个适当容量的电容。

然而电路中电容并不是越大越好,由于电容的储能作用,大容量的电容则可能延长系统的上电时间和下电时间,而上下电时间的延长,则容易导致MCU启动失败或进入栓锁状态,因此缩短MCU电源的上电和放电时间就显得尤为重要。针对单电源的系统,ZLG推出了带EN控制和内嵌快速放电功能的LDO:ZL6205,来为您的系统助力。

图1 ZL6205

巧用EN,缩短上电时间

众所周知,满足MCU的上电时序,是系统设计最基本最重要的要求之一,因此仔细研读芯片的上下电时序是非常有必要的。如下图2所示为某系列MCU对上电时间的要求。

图2 上电要求

由上图可知该MCU对上电的主要要求有:
① 上电时间tr不能超过为500ms;
② 上电前的电压VI需要低于200mV至少12us

这就要求尽可能地缩短上电时间,特别是电路中存在大电容或者超级电容时,上电时间过长容易导致系统无法启动或者器件闩锁的问题。

缩短上电时间,一种简单的方法莫过于控制电源芯片的EN引脚。巧用EN引脚的分压电阻就能够很好地缩短系统的上电时间。很多人在使用电源芯片时一般都是外部上拉来默认使能,而过早地达到使能阈值,输出就会跟随输入,即输入有多慢输出就有多慢,且上电时输入端的抖动也会传送给输出。如下图3所示为设置EN直接上拉和采用分压电路时的输出曲线示意图。

图3 EN上拉至输入和采用分压电路时的输出曲线

曲线①,使能上拉至输入,此时输出上升时间长且会受到输入波动的影响;

曲线②,合理采用分压电阻,当VIN上升到70%~80%的时候,再使EN的电压到达使能阈值,此时输出上升边沿陡峭,输出平稳,摒除了输入电源的不稳定阶段,减小了输入电压波动的影响。同时预留了20%~30%的余量,避免电源波动导致输出关闭。此时的上电对于MCU来说才是干净利落的!

说到这里就不得不说ZLG的自主芯片ZL6205了,采用SOT-23封装,带有EN使能引脚,可以灵活地控制输出电源,给后级电路一个干净、快速、稳定的电源。如下图4所示为ZL6205的典型应用图。

图4 ZL6205典型应用电路

解决了上电问题还不够?还有下电问题?别急,ZL6205还内嵌了快速放电电路,提升系统下电速度。

ZL6205自带放电电路,为快速下电助力

前面我们解决了上电缓慢的问题,并不意味着系统就能稳定的启动,由图2可知,还需要满足MCU上电时的输入电压低于200mV至少12us,这表明在快速上下电时,系统的下电是否掉的“干净”和系统的启动也是息息相关。

图5 掉电缓慢示意图

如图5所示,当系统掉电负载不能很快地泄放能量时,就会出现MCU等数字器件掉电缓慢的情况。若此时重新上电,由于芯片内部无法及时“归零”,对MCU等数字器件来说,这是一种不确定的状态,此时再对系统进行重新上电的操作,就容易造成MCU逻辑混乱,从而出现器件闩锁,系统不能启动的情况。

因此电源关闭后使MCU的电源快速下降至近0V,使系统在短时间内到达一种确定的状态,也是快速重新上电时系统能正常启动的关键因素。

下电缓慢的问题在设计过程中容易被忽略,在产品调试阶段才发现问题往往为时已晚,重新为系统增加快速放电电路既耗时又耗力。但若是系统中搭配了我司的ZL6205,掉电问题则可迎刃而解!

图6 ZL6205内部框图

如上图6所示为ZL6205的内部框图,当输入电压下电时,若EN电压低于使能阈值,则会启动内部的快速放电电路,在输出端加载一个240Ω的泄放电阻,以使输出电压迅速掉电。此时LDO的输出电压即MCU的输入电源,能够快速的“归零”,避免再次快速上电时系统启动失败。

解决方案推荐

当遇到系统启动失败的问题时,请先使用示波器检查器件的供电引脚是不是存在上电缓慢,掉电不彻底的情况。当遇到该情况时,可以选择在电路中搭配使用广州致远微电子有限公司自主研发的LDO:ZL6205。ZL6205是我司自行设计的一款500mA低压差线性稳压器,可在负载电流和电源电压变化时做出快速响应。

主要特性有:
500mA最大输出电流;
低压差(典型值为240mV@IO=500mA);
必要时外部10nF旁路电容,用于低噪声;
快速启动;
具有快速放电功能;
静态电流典型值50μA;
初始电压精度±1.0%;
欠压保护;
过流保护;
短路保护;
过温保护。

选型表则如下表所示。

表1 ZL6205选型表

结语

系统中的器件对于电源的上下电有严格的要求,在产品的设计当中,要关注核心器件的上下电要求,包括上下电的时序,斜率等。不合理的设计往往会引起系统上电无法启动等异常情况。当然遇到这种情况时也别着急,尝试使用ZLG的ZL6205吧!

来源: ZLG立功科技

围观 556

传统的稳压器显然是不适合市场,因为对于一些特定的应用,输入和输出的压差过低就无法使用,这时LDO类的电源转换芯片才诞生了,帮助我们很好的解决了这个问题。不过在此提醒大家在设计LDO时主要应考虑以下问题。

1

1、压差(Uin-Uout)

压差是LDO的重要参数,它表示输入与输出之间的电位差,LDO的压差越小越好。但是当输入电压不能满足“最小压差”的要求时,LDO就无法正常工作。此时误差放大器会进入完全导通状态,使环路的增益变为零,对负载的稳压能力会变得很差,电源抑制比也大幅度降低。

需要注意以下几点:

第一,在LDO的参数表中可以有多个甚至多组压差数据,例如在轻载、中等负载、满载条件下压差的最小值、典型值和最大值。其中,典型值仅供设计时参考。最具有实际意义的应是满载条件下压差的最大值,该参数值是在最不利的情况下测得的。设计时应以此为依据,以便留出足够的余量,确保LDO在最坏的情况下也能正常工作。

第二,为可靠起见,有时可按Uin=Uout+△U+lV的关系式来选择最低输入电压值。功率按1.5倍以上选择有点浪费(但加上加上20%-30%的余量一点不为过)。一般LDO的自损功耗为Pd_max=(Uin-Uout)*Iout。

第三,输入一输出压差并非固定值,它随输出电流的增加而增大,随温度升高而增加。

2、最大输出电流()

最大输出电流是LDO的一个基本参数。通常,输出电流越大,LDO的价格越高。LDO必须能在最不利的工作条件下给负载提供足够的电流。

3、输入电压

要求输入电压必须大于额定输出电压与输入一输出压差之和,即Uin>Uout+△U。否则LDO将失去稳压功能,输出电压会随输入电压而改变,此时Uout就等于输入电压减去调整管导通电阻(RON)与负载电流的乘积,即Uout=Uin-RONI0。

4、输出电压

固定输出式LDO的外围电路简单,使用方便,并且能节省外部取样电阻分压器的成本和空间。其输出电压值在出厂时已趋于一致(仅限于通用电压),输出电压精度一般为±5%,这对于大多数应用已经足够了。新型LDO采用激光修正技术,精度指标可达±1%~±2%。特别需要注意产品说明书所给出精度指标的适用条件,例如是在室温下还是在整个工作温度范围内,是满载条件下还是在中等负载或空载条件下。

可调输出式LDO允许在规定范围内连续调节输出电压。若将输出端与反馈端相连,使输出电压等于内部基准电压,则最低输出电压一般为1.2V左右。

5、输入电源类型

输入电源有两种类型,一种是直流电源,另一种是交流电源。采用交流电时,首先要经过电源变压器和整流滤波器变成脉动直流电,然后给LDO提供输入电压,此时LDO的压差已不再是关键指标,因为通过增加电源变压器二次绕组的匝数,很容易提高LDO的输入电压,满足LDO对压差的需要。

6、静态电流

静态电流是指在空载条件下或关断输出时,LDO内部流向地的总电流。静态电流越小,稳压器的功耗越低,在某些应用中,经常选择待机模式将输出关断,此时电池的使用寿命就取决于静态电流的大小。最近推出的新型LDO,静态电流可低至75~150μA,并且比普通LDO的稳压特性更好。需要强调的是LDO的静态电流不是一个固定值,它随负载电流的增大而增加。但VLDO的静态电流可近似认为是恒定值。

7、LDO的附加功能

(1)通/断控制功能允许用机械开关、门电路或单片机来关断LDO的输出,使之进入低功耗的待机模式(亦称备用模式)。

(2)输入电压反极性保护功能用来防止当输入电压极性接反时损坏LDO。

(3)故障标记输出功能当输出电压(或输入电压)低于规定阈值电压时,LDO能输出故障标记信号。微处理器在接收到此信号后,可及时完成数据存储等项工作。

(4)瞬变电压保护功能将LDO用于汽车电子设备时,需要对负载的瞬态变化(如突然卸载)进行保护。一旦输出端出现瞬变电压,立即将输出关断。等瞬变电压过去之后,又迅速恢复正常工作。

(5)跟踪能力某些多路输出式LDO需要具有跟踪能力,其中一路或几路辅助输出电压能自动跟踪主输出电压的变化,并及时调整自己的输出电压值,以减小各路输出之间的相对变化量。

(6)排序所谓排序,就是在多个稳压电源构成的电源系统中,使每个稳压电源的输出都能按照规定的顺序接通或关断。

在设计LDO时,如果能将以上七种因素都考虑在内,那么你所设计的LDO无疑是最佳的。

1

输出纹波控制可能通过改进C61的值来实现220uf、100uf等。

来源:电源Fan

围观 93

技巧十:一5V→3.3V有源钳位

使用二极管钳位有一个问题,即它将向 3.3V 电源注入电流。在具有高电流  5V 输出且轻载 3.3V 电源轨的设计中,这种电流注入可能会使 3.3V 电源电压超过  3.3V。

为了避免这个问题,可以用一个三极管来替代,三极管使过量的输出驱动电流流向地,而不是 3.3V 电源。设计的电路如图 11-1 所示。

Q1的基极-发射极结所起的作用与二极管钳位电路中的二极管相同。

区别在于,发射极电流只有百分之几流出基极进入 3.3V  轨,绝大部分电流都流向集电极,再从集电极无害地流入地。

基极电流与集电极电流之比,由晶体管的电流增益决定,通常为10-400,取决于所使用的晶体管。

技巧十二:5V→3.3V电阻分压器

可以使用简单的电阻分压器将 5V 器件的输出降低到适用于 3.3V 器件输入的电平。这种接口的等效电路如图 12-1 所示。

通常,源电阻 RS 非常小 (小于 10Ω),如果选择的 R1 远大于RS 的话,那么可以忽略 RS 对 R1 的影响。在接收端,负载电阻 RL 非常大 (大于500 kΩ),如果选择的R2远小于RL的话,那么可以忽略 RL 对 R2 的影响。

在功耗和瞬态时间之间存在取舍权衡。为了使接口电流的功耗需求最小,串联电阻 R1 和 R2 应尽可能大。

但是,负载电容 (由杂散电容 CS 和 3.3V 器件的输入电容 CL 合成)可能会对输入信号的上升和下降时间产生不利影响。如果 R1 和 R2 过大,上升和下降时间可能会过长而无法接受。

如果忽略 RS 和 RL 的影响,则确定 R1 和 R2 的式子由下面的公式 12-1 给出。

公式 12-2 给出了确定上升和下降时间的公式。为便于电路分析,使用戴维宁等效计算来确定外加电压 VA 和串联电阻R。戴维宁等效计算定义为开路电压除以短路电流。

根据公式 12-2 所施加的限制,对于图 12-1 所示电路,确定的戴维宁等效电阻 R 应为 0.66*R1,戴维宁等效电压 VA 应为0.66*VS。

例如,假设有下列条件存在:

• 杂散电容 = 30 pF

• 负载电容 = 5 pF

• 从 0.3V 至 3V 的最大上升时间 ≤ 1 μs

• 外加源电压 Vs = 5V

确定最大电阻的计算如公式 12-3 所示。

技巧十三:3.3V→5V电平转换器

尽管电平转换可以分立地进行,但通常使用集成解决方案较受欢迎。电平转换器的使用范围比较广泛:有单向和双向配置、不同的电压转换和不同的速度,供用户选择最佳的解决方案。

器件之间的板级通讯 (例如, MCU 至外设)通过 SPI 或 I2C™ 来进行,这是最常见的。对于SPI,使用单向电平转换器比较合适;对于 I2C,就需要使用双向解决方案。下面的图 13-1 显示了这两种解决方案。

模拟:3.3V 至 5V  接口的最后一项挑战是如何转换模拟信号,使之跨越电源障碍。低电平信号可能不需要外部电路,但在 3.3V 与 5V  之间传送信号的系统则会受到电源变化的影响。

例如,在 3.3V 系统中,ADC转换1V峰值的模拟信号,其分辨率要比5V系统中 ADC  转换的高,这是因为在 3.3V ADC 中,ADC 量程中更多的部分用于转换。

但另一方面,3.3V  系统中相对较高的信号幅值,与系统较低的共模电压限制可能会发生冲突。

因此,为了补偿上述差异,可能需要某种接口电路。本节将讨论接口电路,以帮助缓和信号在不同电源之间转换的问题。

技巧十四:3.3V→5V模拟增益模块

从3.3V 电源连接至 5V 时,需要提升模拟电压。33 kΩ 和 17kΩ 电阻设定了运放的增益,从而在两端均使用满量程。11 kΩ 电阻限制了流回 3.3V 电路的电流。

技巧十五:3.3V→5V模拟补偿模块

该模块用于补偿 3.3V 转换到 5V 的模拟电压。下面是将 3.3V  电源供电的模拟电压转换为由 5V电源供电。右上方的 147 kΩ、 30.1 kΩ 电阻以及+5V 电源,等效于串联了 25 kΩ 电阻的  0.85V 电压源。

这个等效的 25 kΩ 电阻、三个 25 kΩ 电阻以及运放构成了增益为 1 V/V 的差动放大器。

 0.85V等效电压源将出现在输入端的任何信号向上平移相同的幅度;以 3.3V/2 = 1.65V 为中心的信号将同时以 5.0V/2 =  2.50V 为中心。左上方的电阻限制了来自 5V 电路的电流。

技巧十六:5V→3.3V有源模拟衰减器

此技巧使用运算放大器衰减从 5V 至 3.3V 系统的信号幅值。

要将 5V 模拟信号转换为 3.3V 模拟信号,最简单的方法是使用 R1:R2 比值为 1.7:3.3 的电阻分压器。然而,这种方法存在一些问题。

1)衰减器可能会接至容性负载,构成不期望得到的低通滤波器。

2)衰减器电路可能需要从高阻抗源驱动低阻抗负载。

无论是哪种情形,都需要运算放大器用以缓冲信号。所需的运放电路是单位增益跟随器 (见图 16-1)。

电路输出电压与加在输入的电压相同。

为了把 5V 信号转换为较低的 3V 信号,我们只要加上电阻衰减器即可。

如果电阻分压器位于单位增益跟随器之前,那么将为 3.3V 电路提供最低的阻抗。此外,运放可以从3.3V 供电,这将节省一些功耗。如果选择的 X 非常大的话, 5V 侧的功耗可以最大限度地减小。

如果衰减器位于单位增益跟随器之后,那么对 5V源而言就有最高的阻抗。运放必须从 5V 供电,3V 侧的阻抗将取决于 R1||R2 的值。

技巧十七:5V→3.3V模拟限幅器

在将 5V 信号传送给 3.3V  系统时,有时可以将衰减用作增益。如果期望的信号小于 5V,那么把信号直接送入 3.3V ADC 将产生较大的转换值。

当信号接近 5V  时就会出现危险。所以,需要控制电压越限的方法,同时不影响正常范围中的电压。

这里将讨论三种实现方法:

1. 使用二极管,钳位过电压至 3.3V 供电系统。

2. 使用齐纳二极管,把电压钳位至任何期望的电压限。

3. 使用带二极管的运算放大器,进行精确钳位。

进行过电压钳位的最简单的方法,与将 5V 数字信号连接至 3.3V  数字信号的简单方法完全相同。使用电阻和二极管,使过量电流流入 3.3V 电源。

选用的电阻值必须能够保护二极管和 3.3V  电源,同时还不会对模拟性能造成负面影响。如果 3.3V 电源的阻抗太低,那么这种类型的钳位可能致使3.3V 电源电压上升。

即使 3.3V  电源有很好的低阻抗,当二极管导通时,以及在频率足够高的情况下,当二极管没有导通时 (由于有跨越二极管的寄生电容),此类钳位都将使输入信号向  3.3V 电源施加噪声。

为了防止输入信号对电源造成影响,或者为了使输入应对较大的瞬态电流时更为从容,对前述方法稍加变化,改用齐纳二极管。齐纳二极管的速度通常要比第一个电路中所使用的快速信号二极管慢。

不过,齐纳钳位一般来说更为结实,钳位时不依赖于电源的特性参数。钳位的大小取决于流经二极管的电流。这由 R1 的值决定。如果 VIN 源的输出阻抗足够大的话,也可不需要 R1。

如果需要不依赖于电源的更为精确的过电压钳位,可以使用运放来得到精密二极管。电路如图 17-3所示。

运放补偿了二极管的正向压降,使得电压正好被钳位在运放的同相输入端电源电压上。如果运放是轨到轨的话,可以用 3.3V 供电。

由于钳位是通过运放来进行的,不会影响到电源。

运放不能改善低电压电路中出现的阻抗,阻抗仍为R1 加上源电路阻抗。

技巧十八:驱动双极型晶体管

在驱动双极型晶体管时,基极 “驱动”电流和正向电流增益  (Β/hFE)将决定晶体管将吸纳多少电流。

如果晶体管被单片机 I/O 端口驱动,使用端口电压和端口电流上限 (典型值 20  mA)来计算基极驱动电流。

如果使用的是 3.3V 技术,应改用阻值较小的基极电流限流电阻,以确保有足够的基极驱动电流使晶体管饱和。

RBASE的值取决于单片机电源电压。公式18-1 说明了如何计算 RBASE。

如果将双极型晶体管用作开关,开启或关闭由单片机 I/O 端口引脚控制的负载,应使用最小的 hFE规范和裕度,以确保器件完全饱和。

3V 技术示例:

对于这两个示例,提高基极电流留出裕度是不错的做法。将 1mA 的基极电流驱动至 2 mA 能确保饱和,但代价是提高了输入功耗。

技巧十九:驱动N沟道MOSFET晶体管

在选择与 3.3V 单片机配合使用的外部 N 沟道MOSFET  时,一定要小心。

MOSFET 栅极阈值电压表明了器件完全饱和的能力。对于 3.3V 应用,所选 MOSFET 的额定导通电阻应针对 3V  或更小的栅极驱动电压。

例如,对于具有 3.3V 驱动的100 mA负载,额定漏极电流为250 μA的FET在栅极 - 源极施加 1V  电压时,不一定能提供满意的结果。

在从 5V 转换到 3V 技术时,应仔细检查栅极- 源极阈值和导通电阻特性参数,如图  19-1所示。稍微减少栅极驱动电压,可以显著减小漏电流。

对于 MOSFET,低阈值器件较为常见,其漏-源电压额定值低于 30V。漏-源额定电压大于 30V的 MOSFET,通常具有更高的阈值电压 (VT)。

如表 19-1 所示,此 30V N 沟道 MOSFET 开关的阈值电压是 0.6V。栅极施加 2.8V 的电压时,此MOSFET 的额定电阻是 35 mΩ,因此,它非常适用于 3.3V 应用。

对于 IRF7201 数据手册中的规范,栅极阈值电压最小值规定为 1.0V。

这并不意味着器件可以用来在1.0V 栅 - 源电压时开关电流,因为对于低于 4.5V 的VGS (th),没有说明规范。

对于需要低开关电阻的 3.3V 驱动的应用,不建议使用 IRF7201,但它可以用于 5V 驱动应用。

来源:EDA365电子论坛

围观 161

技巧一:使用LDO稳压器,从5V电源向3.3V系统供电

标准三端线性稳压器的压差通常是 2.0-3.0V。要把 5V 可靠地转换为  3.3V,就不能使用它们。

压差为几百个毫伏的低压降 (Low Dropout, LDO)稳压器,是此类应用的理想选择。图 1-1 是基本LDO  系统的框图,标注了相应的电流。从图中可以看出, LDO 由四个主要部分组成:

1. 导通晶体管

2. 带隙参考源

3. 运算放大器

4. 反馈电阻分压器

在选择 LDO 时,重要的是要知道如何区分各种LDO。器件的静态电流、封装大小和型号是重要的器件参数。根据具体应用来确定各种参数,将会得到最优的设计。

LDO的静态电流IQ是器件空载工作时器件的接地电流 IGND。IGND 是 LDO 用来进行稳压的电流。当IOUT>>IQ 时, LDO 的效率可用输出电压除以输入电压来近似地得到。然而,轻载时,必须将  IQ 计入效率计算中。

具有较低 IQ 的 LDO 其轻载效率较高。轻载效率的提高对于 LDO 性能有负面影响。静态电流较高的 LDO  对于线路和负载的突然变化有更快的响应。

技巧二:采用齐纳二极管的低成本供电系统

这里详细说明了一个采用齐纳二极管的低成本稳压器方案。

可以用齐纳二极管和电阻做成简单的低成本 3.3V稳压器,如图 2-1  所示。在很多应用中,该电路可以替代 LDO 稳压器并具成本效益。但是,这种稳压器对负载敏感的程度要高于 LDO 稳压器。

另外,它的能效较低,因为 R1 和 D1 始终有功耗。R1 限制流入D1 和 PICmicro® MCU的电流,从而使VDD  保持在允许范围内。由于流经齐纳二极管的电流变化时,二极管的反向电压也将发生改变,所以需要仔细考虑 R1 的值。

R1 的选择依据是:在最大负载时——通常是在PICmicro MCU  运行且驱动其输出为高电平时——R1上的电压降要足够低从而使PICmicro MCU有足以维持工作所需的电压。同时,在最小负载时——通常是  PICmicro MCU 复位时——VDD 不超过齐纳二极管的额定功率,也不超过 PICmicro MCU的最大 VDD。

技巧三:采用3个整流二极管的更低成本供电系统

图 3-1 详细说明了一个采用 3 个整流二极管的更低成本稳压器方案。

我们也可以把几个常规开关二极管串联起来,用其正向压降来降低进入的 PICmicro MCU 的电压。这甚至比齐纳二极管稳压器的成本还要低。这种设计的电流消耗通常要比使用齐纳二极管的电路低。

所需二极管的数量根据所选用二极管的正向电压而变化。二极管 D1-D3  的电压降是流经这些二极管的电流的函数。连接 R1 是为了避免在负载最小时——通常是 PICmicro MCU  处于复位或休眠状态时——PICmicro MCU VDD 引脚上的电压超过PICmicro MCU 的最大 VDD 值。

根据其他连接至VDD  的电路,可以提高R1 的阻值,甚至也可能完全不需要 R1。二极管 D1-D3 的选择依据是:在最大负载时——通常是 PICmicro MCU  运行且驱动其输出为高电平时——D1-D3 上的电压降要足够低从而能够满足 PICmicro MCU 的最低 VDD 要求。

技巧四:使用开关稳压器,从5V电源向3.3V系统供电

如图 4-1  所示,降压开关稳压器是一种基于电感的转换器,用来把输入电压源降低至幅值较低的输出电压。输出稳压是通过控制 MOSFET Q1  的导通(ON)时间来实现的。

由于 MOSFET 要么处于低阻状态,要么处于高阻状态(分别为 ON  和OFF),因此高输入源电压能够高效率地转换成较低的输出电压。

当 Q1 在这两种状态期间时,通过平衡电感的电压- 时间,可以建立输入和输出电压之间的关系。

对于 MOSFET Q1,有下式:

在选择电感的值时,使电感的最大峰 - 峰纹波电流等于最大负载电流的百分之十的电感值,是个很好的初始选择。

在选择输出电容值时,好的初值是:使 LC 滤波器特性阻抗等于负载电阻。这样在满载工作期间如果突然卸掉负载,电压过冲能处于可接受范围之内。

在选择二极管 D1 时,应选择额定电流足够大的元件,使之能够承受脉冲周期 (IL)放电期间的电感电流。

数字连接:在连接两个工作电压不同的器件时,必须要知道其各自的输出、输入阈值。知道阈值之后,可根据应用的其他需求选择器件的连接方法。

表 4-1 是本文档所使用的输出、输入阈值。在设计连接时,请务必参考制造商的数据手册以获得实际的阈值电平。

技巧五:3.3V →5V直接连接

将 3.3V 输出连接到 5V 输入最简单、最理想的方法是直接连接。直接连接需要满足以下 2 点要求:

• 3.3V输出的 VOH 大于 5V 输入的 VIH

• 3.3V输出的 VOL 小于 5V 输入的 VIL

能够使用这种方法的例子之一是将 3.3V LVCMOS输出连接到 5V TTL 输入。从表 4-1 中所给出的值可以清楚地看到上述要求均满足。

3.3V LVCMOS 的 VOH (3.0V)大于5V TTL 的VIH (2.0V)且3.3V LVCMOS 的 VOL (0.5V)小于 5V TTL 的VIL (0.8V)。

如果这两个要求得不到满足,连接两个部分时就需要额外的电路。可能的解决方案请参阅技巧 6、7、 8 和 13。

技巧六:3.3V→5V使用MOSFET转换器

如果 5V 输入的 VIH 比 3.3V CMOS 器件的 VOH 要高,则驱动任何这样的 5V 输入就需要额外的电路。图 6-1 所示为低成本的双元件解决方案。

在选择 R1 的阻值时,需要考虑两个参数,即:输入的开关速度和 R1 上的电流消耗。

当把输入从 0切换到 1 时,需要计入因 R1 形成的 RC 时间常数而导致的输入上升时间、 5V 输入的输入容抗以及电路板上任何的杂散电容。输入开关速度可通过下式计算:

由于输入容抗和电路板上的杂散电容是固定的,提高输入开关速度的惟一途径是降低 R1 的阻值。而降低 R1 阻值以获取更短的开关时间,却是以增大5V 输入为低电平时的电流消耗为代价的。

通常,切换到 0 要比切换到 1 的速度快得多,因为 N 沟道 MOSFET 的导通电阻要远小于 R1。另外,在选择 N 沟道 FET 时,所选 FET 的VGS 应低于3.3V 输出的 VOH。

技巧七:3.3V→5V使用二极管补偿

表 7-1 列出了 5V CMOS 的输入电压阈值、 3.3VLVTTL 和 LVCMOS 的输出驱动电压。

从上表看出, 5V CMOS 输入的高、低输入电压阈值均比 3.3V 输出的阈值高约一伏。

因此,即使来自 3.3V 系统的输出能够被补偿,留给噪声或元件容差的余地也很小或者没有。我们需要的是能够补偿输出并加大高低输出电压差的电路。

输出电压规范确定后,就已经假定:高输出驱动的是输出和地之间的负载,而低输出驱动的是 3.3V和输出之间的负载。

如果高电压阈值的负载实际上是在输出和 3.3V 之间的话,那么输出电压实际上要高得多,因为拉高输出的机制是负载电阻,而不是输出三极管。

如果我们设计一个二极管补偿电路 (见图 7-1),二极管 D1 的正向电压  (典型值 0.7V)将会使输出低电压上升,在 5V CMOS 输入得到 1.1V 至1.2V 的低电压。它安全地处于 5V CMOS  输入的低输入电压阈值之下。

输出高电压由上拉电阻和连至3.3V 电源的二极管 D2 确定。这使得输出高电压大约比 3.3V 电源高  0.7V,也就是 4.0 到 4.1V,很安全地在 5V CMOS 输入阈值 (3.5V)之上。

注: 为了使电路工作正常,上拉电阻必须显著小于 5V CMOS 输入的输入电阻,从而避免由于输入端电阻分压器效应而导致的输出电压下降。上拉电阻还必须足够大,从而确保加载在 3.3V 输出上的电流在器件规范之内。

技巧八:3.3V→5V使用电压比较器

比较器的基本工作如下:

• 反相 (-)输入电压大于同相 (+)输入电压时,比较器输出切换到 Vss。

• 同相 (+)输入端电压大于反相 (-)输入电压时,比较器输出为高电平。

为了保持 3.3V 输出的极性, 3.3V 输出必须连接到比较器的同相输入端。比较器的反相输入连接到由 R1 和 R2 确定的参考电压处,如图 8-1 所示。

计算 R1 和 R2:R1 和 R2 之比取决于输入信号的逻辑电平。对于3.3V 输出,反相电压应该置于VOL 与VOH之间的中点电压。对于 LVCMOS 输出,中点电压为:

如果 R1 和 R2 的逻辑电平关系如下,

若 R2 取值为 1K,则 R1 为 1.8K。

经过适当连接后的运算放大器可以用作比较器,以将 3.3V 输入信号转换为 5V 输出信号。这是利用了比较器的特性,即:根据 “反相”输入与 “同相”输入之间的压差幅值,比较器迫使输出为高(VDD)或低 (Vss)电平。

注: 要使运算放大器在 5V 供电下正常工作,输出必须具有轨到轨驱动能力。

技巧九:5V→3.3V直接连接

通常 5V 输出的 VOH 为 4.7 伏, VOL 为 0.4 伏;而通常 3.3V LVCMOS 输入的 VIH 为 0.7 x VDD, VIL为 0.2 x VDD。

当 5V 输出驱动为低时,不会有问题,因为 0.4 伏的输出小于 0.8  伏的输入阈值。

当 5V 输出为高时, 4.7 伏的 VOH 大于 2.1 伏  VIH,所以,我们可以直接把两个引脚相连,不会有冲突,前提是3.3V CMOS 输出能够耐受 5 伏电压。

如果 3.3V CMOS 输入不能耐受 5 伏电压,则将出现问题,因为超出了输入的最大电压规范。可能的解决方案请参见技巧 10-13。

技巧十:5V→3.3V使用二极管钳位

很多厂商都使用钳位二极管来保护器件的 I/O  引脚,防止引脚上的电压超过最大允许电压规范。钳位二极管使引脚上的电压不会低于 Vss 超过一个二极管压降,也不会高于 VDD  超过一个二极管压降。

要使用钳位二极管来保护输入,仍然要关注流经钳位二极管的电流。流经钳位二极管的电流应该始终比较小  (在微安数量级上)。

如果流经钳位二极管的电流过大,就存在部件闭锁的危险。由于5V 输出的源电阻通常在 10Ω  左右,因此仍需串联一个电阻,限制流经钳位二极管的电流,如图 10-1所示。

使用串联电阻的后果是降低了输入开关的速度,因为引脚 (CL)上构成了  RC 时间常数。

如果没有钳位二极管,可以在电流中添加一个外部二极管,如图 10-2 所示。

来源:EDA365电子论坛

围观 770

LDO:LOW DROPOUT VOLTAGE LDO(是low dropout voltage regulator的缩写,整流器)低压差线性稳压器,故名思意,为线性的稳压器,仅能使用在降压应用中。也就是输出电压必需小于输入电压。

优点:稳定性好,负载响应快。输出纹波小。

缺点:效率低,输入输出的电压差不能太大。负载不能太大,目前最大的LDO为5A(但要保证5A的输出还有很多的限制条件)

DC/DC:直流电压转直流电压。严格来讲,LDO也是DC/DC的一种,但目前DC/DC多指开关电源。具有很多种拓朴结构,如BUCK,BOOST等。

优点:效率高,输入电压范围较宽。

缺点:负载响应比LDO差,输出纹波比LDO大。

DC/DC和LDO的区别是什么?

DC/DC转换器一般由控制芯片,电杆线圈,二极管,三极管,电容构成。

DC/DC转换器为转变输入电压后有效输出固定电压的电压转换器。
DC/DC转换器分为三类:升压型DC/DC转换器、降压型DC/DC转换器以及升降压型DC/DC转换器。
根据需求可采用三类控制。PWM控制型效率高并具有良好的输出电压纹波和噪声。PFM控制型即使长时间使用,尤其小负载时具有耗电小的优点。PWM/PFM转换型小负载时实行PFM控制,且在重负载时自动转换到PWM控制。目前DC-DC转换器广泛应用于手机、MP3、数码相机、便携式媒体播放器等产品中。

DC-DC(简述原理)

其实内部是先把DC直流电源转变为交流电电源AC。通常是一种自激震荡电路,所以外面需要电感等分立元件。

然后在输出端再通过积分滤波,又回到DC电源。由于产生AC电源,所以可以很轻松的进行升压跟降压。两次转换,必然会产生损耗,这就是大家都在努力研究的如何提高DC-DC效率的问题。
对比:

1、DCtoDC包括boost(升压)、buck(降压)、Boost/buck(升/降压)和反相结构,具有高效率、高输出电流、低静态电流等特点,随着集成度的提高,许多新型DC-DC转换器的外围电路仅需电感和滤波电容;但该类电源控制器的输出纹波和开关噪声较大、成本相对较高。

2、LDO:低压差线性稳压器的突出优点是具有最低的成本,最低的噪声和最低的静态电流。它的外围器件也很少,通常只有一两个旁路电容。新型LDO可达到以下指标:30μV输出噪声、60dBPSRR、6μA静态电流及100mV的压差。

LDO简述原理:

线性稳压器能够实现这些特性的主要原因在于内部调整管采用了P沟道场效应管,而不是通常线性稳压器中的PNP晶体管。P沟道的场效应管不需要基极电流驱动,所以大大降低了器件本身的电源电流;另一方面,在采用PNP管的结构中,为了防止PNP晶体管进入饱和状态降低输出能力,必须保证较大的输入输出压差;而P沟道场效应管的压差大致等于输出电流与其导通电阻的乘积,极小的导通电阻使其压差非常低。当系统中输入电压和输出电压接近时,LDO是最好的选择,可达到很高的效率。所以在将锂离子电池电压转换为3V电压的应用中大多选用LDO,尽管电池最后放电能量的百分之十没有使用,但是LDO仍然能够在低噪声结构中提供较长的电池寿命。

便携电子设备不管是由交流市电经过整流(或交流适配器)后供电,还是由蓄电池组供电,工作过程中,电源电压都将在很大范围内变化。比如单体锂离子电池充足电时的电压为4.2V,放完电后的电压为2.3V,变化范围很大。各种整流器的输出电压不仅受市电电压变化的影响,还受负载变化的影响。为了保证供电电压稳定不变,几乎所有的电子设备都采用稳压器供电。小型精密电子设备还要求电源非常干净(无纹波、无噪声),以免影响电子设备正常工作。为了满足精密电子设备的要求,应在电源的输入端加入线性稳压器,以保证电源电压恒定和实现有源噪声滤波。

一、LDO的基本原理

低压差线性稳压器(LDO)的基本电路如图1-1所示,该电路由串联调整管VT(PNP晶体管,注:实际应用中,此处常用的是P沟道场效应管)、取样电阻R1和R2、比较放大器A组成。

图1-1低压差线性稳压器基本电路

取样电压Uin加在比较器A的同相输入端,与加在反相输入端的基准电压Uref(Uout*R2/(R1+R2))相比较,两者的差值经放大器A放大后.Uout=(U+-U-)*A注A为比较放大器的倍数,)控制串联调整管的压降,从而稳定输出电压。

当输出电压Uout降低时,基准电压Uref与取样电压Uin的差值增加,比较放大器输出的驱动电流增加,串联调整管压降减小,从而使输出电压升高。

相反,若输出电压Uout超过所需要的设定值,比较放大器输出的前驱动电流减小,从而使输出电压降低。供电过程中,输出电压校正连续进行,调整时间只受比较放大器和输出晶体管回路反应速度的限制。
应当说明,实际的线性稳压器还应当具有许多其它的功能,比如负载短路保护、过压关断、过热关断、反接保护等,而且串联调整管也可以采用MOSFET。

二、低压差线性稳压器的主要参数

1.输出电压(OutputVoltage)

输出电压是低压差线性稳压器最重要的参数,也是电子设备设计者选用稳压器时首先应考虑的参数。低压差线性稳压器有固定输出电压和可调输出电压两种类型。固定输出电压稳压器使用比较方便,而且由于输出电压是经过厂家精密调整的,所以稳压器精度很高。但是其设定的输出电压数值均为常用电压值,不可能满足所有的应用要求,但是外接元件数值的变化将影响稳定精度。

2.最大输出电流(MaximumOutputCurrent)

用电设备的功率不同,要求稳压器输出的最大电流也不相同。通常,输出电流越大的稳压器成本越高。为了降低成本,在多只稳压器组成的供电系统中,应根据各部分所需的电流值选择适当的稳压器。

3.输入输出电压差(DropoutVoltage)

输入输出电压差是低压差线性稳压器最重要的参数。在保证输出电压稳定的条件下,该电压压差越低,线性稳压器的性能就越好。比如,5.0V的低压差线性稳压器,只要输入5.5V电压,就能使输出电压稳定在5.0V。

4.接地电流(GroundPinCurrent)

接地电路IGND是指串联调整管输出电流为零时,输入电源提供的稳压器工作电流。该电流有时也称为静态电流,但是采用PNP晶体管作串联调整管元件时,这种习惯叫法是不正确的。通常较理想的低压差稳压器的接地电流很小。

5.负载调整率(LoadRegulation)

负载调整率可以通过图2-1和式2-1来定义,LDO的负载调整率越小,说明LDO抑制负载干扰的能力越强。

图2-1OutputVoltage&OutputCurrent

(2-1)

式中
△Vload—负载调整率
Imax—LDO最大输出电流
Vt—输出电流为Imax时,LDO的输出电压
Vo—输出电流为0.1mA时,LDO的输出电压
△V—负载电流分别为0.1mA和Imax时的输出电压之差

6.线性调整率(LineRegulation)

线性调整率可以通过图2-2和式2-2来定义,LDO的线性调整率越小,输入电压变化对输出电压影响越小,LDO的性能越好。

图2-2OutputVoltage&InputVoltage

(2-2)

式中
△Vline—LDO线性调整率
Vo—LDO名义输出电压
Vmax—LDO最大输入电压
△V—LDO输入Vo到Vmax'输出电压最大值和最小值之差

7.电源抑制比(PSSR)

LDO的输入源往往许多干扰信号存在。PSRR反映了LDO对于这些干扰信号的抑制能力。

三、LDO的典型应用

低压差线性稳压器的典型应用如图3-1所示。图3-1(a)所示电路是一种最常见的AC/DC电源,交流电源电压经变压器后,变换成所需要的电压,该电压经整流后变为直流电压。在该电路中,低压差线性稳压器的作用是:在交流电源电压或负载变化时稳定输出电压,抑制纹波电压,消除电源产生的交流噪声。

各种蓄电池的工作电压都在一定范围内变化。为了保证蓄电池组输出恒定电压,通常都应当在电池组输出端接入低压差线性稳压器,如图3-1(b)所示。低压差线性稳压器的功率较低,因此可以延长蓄电池的使用寿命。同时,由于低压差线性稳压器的输出电压与输入电压接近,因此在蓄电池接近放电完毕时,仍可保证输出电压稳定。

众所周知,开关性稳压电源的效率很高,但输出纹波电压较高,噪声较大,电压调整率等性能也较差,特别是对模拟电路供电时,将产生较大的影响。在开关性稳压器输出端接入低压差线性稳压器,如图2-3(c)所示,就可以实现有源滤波,而且也可大大提高输出电压的稳压精度,同时电源系统的效率也不会明显降低。

在某些应用中,比如无线电通信设备通常只有一足电池供电,但各部分电路常常采用互相隔离的不同电压,因此必须由多只稳压器供电。为了节省共电池的电量,通常设备不工作时,都希望低压差线性稳压器工作于睡眠状态。为此,要求线性稳压器具有使能控制端。有单组蓄电池供电的多路输出且具有通断控制功能的供电系统如图3-1(d)所示。

图3-1低压差线性稳压器(LDO)典型应用

DC-DC

应当可以这样理解:DCDC的意思是直流变(到)直流(不同直流电源值的转换),只要符合这个定义都可以叫DCDC转换器,包括LDO。但是一般的说法是把直流变(到)直流由开关方式实现的器件叫DCDC。

DC-DC转换器包括升压、降压、升/降压和反相等电路。DC-DC转换器的优点是效率高、可以输出大电流、静态电流小。随著集成度的提高,许多新型DC-DC转换器仅需要几只外接电感器和滤波电容器。但是,这类电源控制器的输出脉动和开关噪音较大、成本相对较高。近几年来,随著半导体技术的发展,表面贴装的电感器、电容器、以及高集成度的电源控制芯片的成本不断降低,体积越来越小。由於出现了导通电阻很小的MOSFET可以输出很大功率,因而不需要外部的大功率FET。例如对于3V的输入电压,利用芯片上的NFET可以得到5V/2A的输出。其次,对于中小功率的应用,可以使用成本低小型封装。另外,如果开关频率提高到1MHz,还能够降低成本、可以使用尺寸较小的电感器和电容器。有些新器件还增加许多新功能,如软启动、限流、PFM或者PWM方式选择等。

总的来说,升压是一定要选DCDC的,降压,是选择DCDC还是LDO,要在成本,效率,噪声和性能上比较。

LDO与DC/DC相比:

首先从效率上说,DC/DC的效率普遍要远高于LDO,这是其工作原理决定的.其次,DC/DC有Boost,Buck,Boost/Buck,(有人把ChargePump也归为此类)。而LDO只有降压型。

再次,也是很重要的一点,DC/DC因为其开关频率的原因导致其电源噪声很大,远比LDO大的多,大家可以关注PSRR这个参数.所以当考虑到比较敏感的模拟电路时候,有可能就要牺牲效率为保证电源的纯净而选择LDO。

还有,通常LDO所需要的外围器件简单,占面积小,而DC/DC一般都会要求电感,二极管,大电容,有的还会要MOSFET,特别是Boost电路,需要考虑电感的最大工作电流,二极管的反向恢复时间,大电容的ESR等等,所以从外围器件的选择来说比LDO复杂,而且占面积也相应的会大很多。

来源:电子爱好人士 - 玩转嵌入式

围观 498

延长电池寿命是各种应用中常见的设计要求。无论是玩具还是水表,设计师都有各式技术来提高电池寿命。在这篇博文中,我将阐述一种可策略性地绕过低掉电线性稳压器(LDO)的技术。

生成导轨

使用LDO是从电池产生调节电压的常用方式。对于在完全充电时输出4.2V的单节锂离子(Li-ion)电池尤其如此。

假设您要为电源电压范围在3V至3.6V之间的微控制器(MCU)生成3.3V,并选择TPS706生成该导轨。图1阐述了该电路。

图1:TPS706从电池调压3.3V

图1:TPS706从电池调压3.3V

尽管这个电路很简单,但它有一些限制。其中首要限制因素是掉电,这将导致LDO停止调压,并可能使MCU的供电电压超出规定范围。

掉电的含义

随着电池放电,锂离子电池的电压下降。图2所示为放电曲线的示例。

图2:锂离子电池电压随时间推移下降

图2:锂离子电池电压随时间推移下降

当您记起输入电压接近稳压输出电压时,LDO有可进入压差的风险,这可能令人不安。在某一点上,电池电压将下降到很低电平,使得TPS706将不再能够调压3.3V。相反,输出电压将开始跟踪等于压差电压的差值的电池电压。

当输出电流为50mA,输出电压为3.3V时,TPS706规定了典型的压差为295mV的电压。因此,一旦电池电压降至3.6V以下,LDO可能会进入掉电。图3提供了这类行为的一个示例。

图3:TPS706进入掉电模式

图3:TPS706进入掉电模式

如图所示,一旦VIN下降到3.6V左右,VOUT开始下降。由于MCU供电范围的下限为3V,这令人不安 —— 掉电可能导致VOUT非常快速地降至3V以下。

避免掉电

规避这个问题的一个方法是在它进行掉电之前或进入掉电时绕过LDO。图4说明了此解决方法。

图4:使用P-通道MOSFET来绕过LDO

图4:使用P-通道MOSFET来绕过LDO

在该电路中,TPS3780是双通道电压检测器,通过SENSE1监视电池电压。如果电池电压应低于3.4V,则OUT1将P-通道MOSFET的栅极驱动为低电平。这使得电流(蓝色箭头)流经MOSFET的漏极 - 源极端子,而不是流经LDO的输入 - 输出端子(红色箭头)。由于MOSFET具有比LDO更低的导通电阻,因此输出电压将更紧密地跟踪输入电压。

SENSE2监视输出电压。一旦输出电压低于3V(或MCU的电源范围底部),OUT2将置为低电平。该信号可将MCU置于复位模式。

图5所未为未借助绕过MOSFET的电路的行为。

图5:未绕过MOSFET的下降输入电压

图5:未绕过MOSFET的下降输入电压

为了模拟电池,输入电压以1V/ms的速率下降。您可以看到,一旦输入电压达到3.4V,输出下降到3V就需要大约100ms。

现在,我们来看一下使用绕过MOSFET的电路的行为,如图6所示。

图6:绕过MOSFET的下降输入电压

图6:绕过MOSFET的下降输入电压

一旦输入电压降至3.4V以下,MOSFET就会导通。输出电压现在等于输入电压减去穿过MOSFET的电压降。因此,现在,输出达到3V需要近320ms。通过增强PMOS器件,输出电压比LDO在压差中更接近跟踪输入电压。换言之,外部PMOS的低导通电阻有助于延长电池寿命。

实际上,电池电压将以较慢的转换速率下降。因此,使用旁路电路可显著延长工作时间。

电流消耗

当关闭电池时,您还必须考虑电路的电流消耗。见表1。

表1:各种电路元件的电流消耗

表1:各种电路元件的电流消耗

考虑这一消耗很重要,因为它有助于电池的整体放电。然而,幸运的是,其消耗极低,且额外的电路使电池的持续使用超过了增加的电流消耗。这对于需要更高负载电流的应用尤其如此。

结论

LDO是一种有效的低电流消耗方法,用于产生电池的导轨。然而,当电池电压开始下降时,掉电可能导致调压问题。MOSFET与LDO结合使用有助于避免此问题,以达到最长的电池寿命。

围观 484
订阅 RSS - LDO