编译器

好多人说编译器只是工具,重要的在于算法和思想。

这话说的本来没错,但要有一个条件在先:那就是你真正掌握了你所用的编译器。但,真正熟悉编译器的却并不多见。当你深入了解一个编译器后,你能像用汇编一样用C,可以像汇编那样随心所欲的操作MCU!

了解一个编译器,首先应该有汇编的基础,不要求能用汇编编写程序或做过项目,但至少看的懂!不熟悉汇编的嵌入式程序员是不合格的程序员!

了解一个编译器,最好的方法是看它自带的帮助文件,至少要看过Compiler User's Guide ,至少遇到问题会想到到帮助中查找方法,虽然帮助大多是E文。

工作以来一直使用keil MDK编译器,对于这个编译器的界面以及设置大家可以在网上搜一下就找到了,今天我们主要来看一看keil MDK编译器的一些细节,看看这些细节,你知道多少。

1. 在所有的内部和外部标识符中,大写和小写字符不同。

2. 默认情况下,char 类型的数据项是无符号的。它们可以显式地声明为signed char 或 unsigned char。

3.基本数据类型的大小和对齐:

注:

a. 通常局部变量保留在寄存器中,但当局部变量太多放到栈里的时候,它们总是字对齐的。例如局部char变量在栈里以4为边界对齐;

b. 压缩类型的自然对齐方式为1。使用关键字__packed来压缩特定结构,将所有有效类型的对齐边界设置为1.

4. 整数以二进制补码形式表示;浮点量按IEEE格式存储。

5. 有符号量的右移是算术移位,即移位时要保证符号位不改变。

6. 对于int类的值:超过31位的左移结果为零;无符号值或正的有符号值超过31位的右移结果为零。负的有符号值移位结果为-1。

7. 整数除法的余数的符号于被除数相同,由ISO C90标准得出;

8. 如果整型值被截断为短的有符号整型,则通过放弃适当数目的最高有效位来得到结果。如果原始数是太大的正或负数,对于新的类型 ,无法保证结果的符号将于原始数相同。所以强制类型转化的时候,对转换的结果一定要清晰。

9. 整型数超界不引发异常;像unsigned char test; test=1000;这类是不会报错的,赋值或计算时务必小心。

10. 默认情况下,整型数除以零返回零。

11. 对于两个指向相同类型和对齐属性的指针相减,计算结果如下表达式所示:
((int)a (int)b) / (int)sizeof(指向数据的类型)

12. 在严格C中,枚举值必须被表示为整型,例如,必须在2147483648 到+2147483647的范围内。但keil MDK自动使用对象包含enum范围的最小整型来实现(比如char类型),除非使用编译器命令enum_is_int 来强制将enum的基础类型设为至少和整型一样宽。超出范围的枚举值默认仅产生警告:#66: enumeration value is out of "int" range

13. 结构体:
struct {
char c;
short s;
int x;
} //这个结构体占8个字节

但是,结构体:
struct {
char c;
int x;
short s;
} //这个结构体占12个字节

这是为什么?

对于结构体填充,据定义结构的方式,keil MDK编译器用以下方式的一种来填充结构:
定义为static或者extern的结构用零填充;

栈或堆上的结构,例如,用 malloc() 或者 auto定义的结构,使用先前存储在那些存储器位置的任何内容进行填充。不能使用memcmp()来比较以这种方式定义的填充结构!

14. 编译器不对声明为volatile 类型的数据进行优化。 我发现还有不少刚入门的嵌入式程序员从没见过这个关键字.

15. __nop():延时一个指令周期,编译器绝不会优化它。如果硬件支持NOP指令,则该句被替换为NOP指令,如果硬件不支持NOP指令,编译器将它替换为一个等效于NOP的指令,具体指令由编译器自己决定。

围观 577

作者:阮一峰

源码要运行,必须先转成二进制的机器码。这是编译器的任务。

比如,下面这段源码(假定文件名叫做test.c)。

#include int main(void){
fputs("Hello, world!\n", stdout);
return 0;}

要先用编译器处理一下,才能运行。

$ gcc test.c
$ ./a.out
Hello, world!

对于复杂的项目,编译过程还必须分成三步。

$ ./configure
$ make
$ make install

这些命令到底在干什么?大多数的书籍和资料,都语焉不详,只说这样就可以编译了,没有进一步的解释。

本文将介绍编译器的工作过程,也就是上面这三个命令各自的任务。我主要参考了Alex Smith的文章《Building C Projects》。需要声明的是,本文主要针对gcc编译器,也就是针对C和C++,不一定适用于其他语言的编译。

第一步 配置(configure)

编译器在开始工作之前,需要知道当前的系统环境,比如标准库在哪里、软件的安装位置在哪里、需要安装哪些组件等等。这是因为不同计算机的系统环境不一样,通过指定编译参数,编译器就可以灵活适应环境,编译出各种环境都能运行的机器码。这个确定编译参数的步骤,就叫做"配置"(configure)。

这些配置信息保存在一个配置文件之中,约定俗成是一个叫做configure的脚本文件。通常它是由autoconf工具生成的。编译器通过运行这个脚本,获知编译参数。

configure脚本已经尽量考虑到不同系统的差异,并且对各种编译参数给出了默认值。如果用户的系统环境比较特别,或者有一些特定的需求,就需要手动向configure脚本提供编译参数。

$ ./configure --prefix=/www --with-mysql

上面代码是php源码的一种编译配置,用户指定安装后的文件保存在www目录,并且编译时加入mysql模块的支持。

第二步 确定标准库和头文件的位置

源码肯定会用到标准库函数(standard library)和头文件(header)。它们可以存放在系统的任意目录中,编译器实际上没办法自动检测它们的位置,只有通过配置文件才能知道。

编译的第二步,就是从配置文件中知道标准库和头文件的位置。一般来说,配置文件会给出一个清单,列出几个具体的目录。等到编译时,编译器就按顺序到这几个目录中,寻找目标。

第三步 确定依赖关系

对于大型项目来说,源码文件之间往往存在依赖关系,编译器需要确定编译的先后顺序。假定A文件依赖于B文件,编译器应该保证做到下面两点。

(1)只有在B文件编译完成后,才开始编译A文件。

(2)当B文件发生变化时,A文件会被重新编译。

编译顺序保存在一个叫做makefile的文件中,里面列出哪个文件先编译,哪个文件后编译。而makefile文件由configure脚本运行生成,这就是为什么编译时configure必须首先运行的原因。

在确定依赖关系的同时,编译器也确定了,编译时会用到哪些头文件。

第四步 头文件的预编译(precompilation)

不同的源码文件,可能引用同一个头文件(比如stdio.h)。编译的时候,头文件也必须一起编译。为了节省时间,编译器会在编译源码之前,先编译头文件。这保证了头文件只需编译一次,不必每次用到的时候,都重新编译了。

不过,并不是头文件的所有内容,都会被预编译。用来声明宏的#define命令,就不会被预编译。

第五步 预处理(Preprocessing)

预编译完成后,编译器就开始替换掉源码中bash的头文件和宏。以本文开头的那段源码为例,它包含头文件stdio.h,替换后的样子如下。

extern int fputs(const char *, FILE *);extern FILE *stdout;int main(void){
fputs("Hello, world!\n", stdout);
return 0;}

为了便于阅读,上面代码只截取了头文件中与源码相关的那部分,即fputs和FILE的声明,省略了stdio.h的其他部分(因为它们非常长)。另外,上面代码的头文件没有经过预编译,而实际上,插入源码的是预编译后的结果。编译器在这一步还会移除注释。

这一步称为"预处理"(Preprocessing),因为完成之后,就要开始真正的处理了。

第六步 编译(Compilation)

预处理之后,编译器就开始生成机器码。对于某些编译器来说,还存在一个中间步骤,会先把源码转为汇编码(assembly),然后再把汇编码转为机器码。

下面是本文开头的那段源码转成的汇编码。

.file "test.c"
.section .rodata.LC0:
.string "Hello, world!\n"
.text .globl main .type main, @functionmain:.LFB0:
.cfi_startproc
pushq %rbp .cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp .cfi_def_cfa_register 6
movq stdout(%rip), %rax
movq %rax, %rcx
movl $14, %edx
movl $1, %esi
movl $.LC0, %edi
call fwrite
movl $0, %eax
popq %rbp .cfi_def_cfa 7, 8
ret .cfi_endproc.LFE0:
.size main, .-main .ident "GCC: (Debian 4.9.1-19) 4.9.1"
.section .note.GNU-stack,"",@progbits

这种转码后的文件称为对象文件(object file)。

第七步 连接(Linking)

对象文件还不能运行,必须进一步转成可执行文件。如果你仔细看上一步的转码结果,会发现其中引用了stdout函数和fwrite函数。也就是说,程序要正常运行,除了上面的代码以外,还必须有stdout和fwrite这两个函数的代码,它们是由C语言的标准库提供的。

编译器的下一步工作,就是把外部函数的代码(通常是后缀名为.lib和.a的文件),添加到可执行文件中。这就叫做连接(linking)。这种通过拷贝,将外部函数库添加到可执行文件的方式,叫做静态连接(static linking),后文会提到还有动态连接(dynamic linking)。

make命令的作用,就是从第四步头文件预编译开始,一直到做完这一步。

第八步 安装(Installation)

上一步的连接是在内存中进行的,即编译器在内存中生成了可执行文件。下一步,必须将可执行文件保存到用户事先指定的安装目录。

表面上,这一步很简单,就是将可执行文件(连带相关的数据文件)拷贝过去就行了。但是实际上,这一步还必须完成创建目录、保存文件、设置权限等步骤。这整个的保存过程就称为"安装"(Installation)。

第九步 操作系统连接

可执行文件安装后,必须以某种方式通知操作系统,让其知道可以使用这个程序了。比如,我们安装了一个文本阅读程序,往往希望双击txt文件,该程序就会自动运行。

这就要求在操作系统中,登记这个程序的元数据:文件名、文件描述、关联后缀名等等。Linux系统中,这些信息通常保存在/usr/share/applications目录下的.desktop文件中。另外,在Windows操作系统中,还需要在Start启动菜单中,建立一个快捷方式。

这些事情就叫做"操作系统连接"。make install命令,就用来完成"安装"和"操作系统连接"这两步。

第十步 生成安装包

写到这里,源码编译的整个过程就基本完成了。但是只有很少一部分用户,愿意耐着性子,从头到尾做一遍这个过程。事实上,如果你只有源码可以交给用户,他们会认定你是一个不友好的家伙。大部分用户要的是一个二进制的可执行程序,立刻就能运行。这就要求开发者,将上一步生成的可执行文件,做成可以分发的安装包。

所以,编译器还必须有生成安装包的功能。通常是将可执行文件(连带相关的数据文件),以某种目录结构,保存成压缩文件包,交给用户。

第十一步 动态连接(Dynamic linking)

正常情况下,到这一步,程序已经可以运行了。至于运行期间(runtime)发生的事情,与编译器一概无关。但是,开发者可以在编译阶段选择可执行文件连接外部函数库的方式,到底是静态连接(编译时连接),还是动态连接(运行时连接)。所以,最后还要提一下,什么叫做动态连接。

前面已经说过,静态连接就是把外部函数库,拷贝到可执行文件中。这样做的好处是,适用范围比较广,不用担心用户机器缺少某个库文件;缺点是安装包会比较大,而且多个应用程序之间,无法共享库文件。动态连接的做法正好相反,外部函数库不进入安装包,只在运行时动态引用。好处是安装包会比较小,多个应用程序可以共享库文件;缺点是用户必须事先安装好库文件,而且版本和安装位置都必须符合要求,否则就不能正常运行。

现实中,大部分软件采用动态连接,共享库文件。这种动态共享的库文件,Linux平台是后缀名为.so的文件,Windows平台是.dll文件,Mac平台是.dylib文件。

文章来源:阮一峰的网络日志

围观 315
订阅 RSS - 编译器