机器学习

机器学习(Machine Learning,简称ML)是一种人工智能(AI)的分支,致力于研究让计算机系统能够从数据中学习并自动改进性能的算法和技术。机器学习使计算机系统能够从经验中学习,而不需要明确地进行编程。

如何在低功耗MCU上实现人工智能和机器学习

人工智能(AI)和机器学习(ML)技术不仅正在快速发展,还逐渐被创新性地应用于低功耗的微控制器(MCU)中,从而实现边缘AI/ML解决方案。这些MCU是许多嵌入式系统不可或缺的一部分,凭借其成本效益、高能效以及可靠的性能,现在能够支持AI/ML应用。

在低功耗MCU上实现人工智能和机器学习

人工智能 (AI) 和机器学习 (ML) 的技术不仅正在快速发展,还逐渐被创新性地应用于低功耗的微控制器 (MCU) 中,从而实现边缘AI/ML的解决方案。

在MCU中实现机器学习需要考虑的几大指标

这些年随着AIOT(人工智能+物联网)的快速发展,以及MCU性能的提升(比如瑞萨推出的基于Cortex-M85内核的RA8系列MCU),在MCU上实现机器学习也变得越来越流行。

贸泽电子开售适用于智能电机控制和机器学习应用的NXP Semiconductors MCX微控制器

提供超丰富半导体和电子元器件™的业界知名新品引入 (NPI) 代理商贸泽电子 (Mouser Electronics) 即日起开售NXP SemiconductorsMCX工业和物联网微控制器 (MCU)。

基于恩智浦微控制器的嵌入式机器学习

随着微控制器技术的突破,人工智能和机器学习不仅可以在高计算能力的计算机和应用处理器上运行,还可以在微控制器平台上有效运行,大大促进了许多人工智能和机器学习应用在边缘节点上落地,推动了物联网节点快速走向智能化。

基于MCX微控制器的机器学习解决方案,为嵌入式开源社区积极赋能!

随着人工智能(AI)技术的发展,如何在MCU上实现机器学习,创造更多边缘AI的新用例,一直是嵌入式开发社区的热点话题。

想在STM32 MCU上部署机器学习模型?这份入门教程,让你一学就会~

本文探讨了嵌入式环境开发人员如何通过STMicroelectronics的STM32微控制器开始使用ML。为此,文中展示了如何通过X-CUBE-AI将TensorFlow Lite for Microcontrollers模型转换用于STM32CubeIDE,来创建“Hello World”应用。

你没看错:如今MCU上“跑”机器学习,也很给力!

机器学习(ML)是解决涉及模式识别问题的一个非常好的工具,ML算法能将杂乱的原始数据转化为可用信号。

意法半导体STM32Cube.AI生态系统加强对高效机器学习的支持

意法半导体STM32Cube.AI开发环境为用户提供各种机器学习技术,为他们尽可能高效地解决分类、聚类和新颖性检测三种算法挑战提供更多灵活性。

意法半导体推出具有机器学习功能的运动传感器,提高运动跟踪精度和电池续航能力

意法半导体(STMicroelectronics,简称ST;纽约证券交易所代码:STM)在其先进的惯性传感器内集成机器学习技术,提高手机和穿戴设备的运动跟踪性能和电池续航能力。