HPM5300

Buck-Boost简介

Buck-boost是一种非隔离变换器,可以将电源的电压转换为较高或较低的电压输出。它采用开关控制原理,通过周期性地切换电感和电容的连接方式,改变电感储能和释放能量的时间比例来实现电压升降。

1.png

Buck-boost优点:

 ● 可逆性好,控制简单。

 ● 转换效率高。

 ● 控制精度高,输出稳定性好。

 ● 电路驱动成本低。

Buck-boost应用

 ● 非隔离式的电池充放电,例如储能型微逆、分布式光伏(如下图)。

 ● 低压的高效非隔离升压或降压电路。

 ● 为降低电源纹波,多选用多路交错式结构。

2.png

Buck工作模式

当直流母线侧给电池充电时降压输出,工作在buck模式。

根据流过电感L的电流情况(连续或断续),Buck变换器常规三种工作模式:

 ● CCM(Continuous Coduction Mode)

 ● DCM(Discontinuous Conducton Mode)

 ● BCM(Boundary Conducton Mode)

数字电源中主要以CCM为主,本应用重点讲述CCM控制实现。输出电压:

3.png

这里D为PWM占空比。

4.png

( Buck变换器CCM工作波形 )

5.png

6.png

当电池向直流母线放电时升压输出,工作在boost模式。

数字电源中主要以CCM为主,本应用重点讲述CCM控制实现。输出电压:

7.png

这里D为PWM占空比。

8.png

( Boost变换器CCM工作波形 )

9.png

10.png

交错式Buck-Boost工作特点

交错式buck-boost电路是一种多路并联的升降压转换器,利用多个相同的电路模块,通过交错控制方式实现高效率、低纹波、大功率输出的升降压转换。本应用选用了两相交错模式,相位角为180°。

Buck-Boost应用要求

● buck和boost工作模式的主功率管可以通过软件切换,对应死区控制也根据工作模式切换。

● 为了提高效率,buck-boost电路中续流功率管在续流状态时,需要打开功率管;同时在续流电路减小至零点前需要关闭功率管,防止电流反向。

● 由硬件完成监控续流电流并实现续流功率管快速关闭。

● PWM中有效输出状态有跨越PWM周期的情况,针对该应用,PWM输出应不受计数器重载影响。

● 选用PWM中心对齐模式,优化EMC和电路采样精度。

11.png

PWM输出波形

12.png

Buck-boost配置框图

整个驱动中用到了PWM、TRGM、ACMP、PLB等功能模块。

13.png

外设配置

PWM配置

● 两路PWM选择中心对齐模式,其中通道0的中心点为周期/2,通道1的中心点为周期结束点。

● 通道0的主功率管和续流功率管由两个PWM输出分别控制。

● buck和boost模式不同,通道0中的主功率开关对应PWM直接输出通道根据模式可以在PWM0和PWM1直接切换,PWM工作模式为中心对齐模式。

● 通道0中的续流功率管通过PWM8输出互联管理器,在PLB中与ACMP组合产生最终PWM信号。

● 通道1的PWM输出有跨越周期问题,PWM工作模式为边沿输出,由PWM9-PWM12输出至PLB后,根据信号重构PWM。

14.png

模拟比较器ACMP

● HPM5300包含2个模拟比较器。ACMP可以对两个模拟电压输入 (同相端INP) 和反相端 (INN) 进行比较,并输出比较结果。

● ACMP支持内部8位数字模拟转换器DAC,支持外部模拟信号与内部 DAC 生成的参考信号进行比较。

ACMP配置

● ACMP是用于侦测两通道buck-boost输出电流大小。

● 反馈电流信号输入作为反相端输入,内置DAC作为同相端输入。当反馈电流信号过小时,ACMP输出高电平,关闭续流功率管的PWM信号。

● 考虑到开关时干扰,ACMP的回差都设置为最高。

15.png

互联管理器TRGM

● 互联管理器TRGM支持电机控制单元内外各个设备的信号间互通互联,可以把片上各个外设整合起来,实现外设间相互同步,相互配合。

● 互联管理器支持多个输入,输入来自于IO,电机控制单元内外的各个外设。

● 互联管理器支持管理电机控制单元内外设的DMA请求、位置输入切换等。

TRGM配置

● PWM8输入信号的为电平信号。

● ACMP0、ACMP1输入信号为电平信号。

● PWM9、PWM10、PWM11、PWM12为重构PWM信号,输入信号是上升沿有效。

● PLB的OUT0输出是与ACMP0组合后的PWM输出信号,同时配置给TRGM_IO0和TRGM_IO1,由具体应用确定pimmux中配置。

16.png

PLB的主要特性:

● 包含两种可编程类型:TYPE_A为4输入、4输出的查找表,TYPE_B包含4输入、逻辑处理单元用于时序控制。

● HPM5300中包含4个TYPE_A和4个TYPE_B。

● 本应用使用了4个TYPE_A。

17.png

18.png

TYPE_A0、TYPE_A1综合PWM和ACMP

● 包含3个输入、2个输出,其中,3个输入为ACMP输出、自锁信号、PWM电平信号,2个输出为自锁信号、续流功率管驱动信号。

● 输出自锁信号为ACMP输出的锁存信号,即一旦ACMP在PWM有效时间内出现有效信号将一直锁定,直至PWM信号无效时解除。

● 续流功率管输出信号由PWM与输出自锁组合实现。

● TYPE_A由查找表实现,需通过真值表完成逻辑配置见下图。

19.png

TYPE_A2、TYPE_A3逻辑说明

● PWM中心对齐的模式下要求:STA<cmp0<cmp1<rld,当pwm有效状态跨越周期时无法满足该要求。plb通过type_a2、type_a3实现了pwm重构,完成跨周期输出。

● TYPE_A2包含4个输入、1个输出,4个输入为PWM前沿输出、PWM后沿输出、PWM互补前沿输出、自锁信号,1个输出为自锁信号。

● 输出自锁信号在PWM前沿输入后自锁,在PWM后沿输入解锁。其中,PWM互补前沿输入的用于一个通道的两个功率管驱动信号之间的互锁。

20.png

TYPE_A特点

● 每个TYPE A通道有四个trig_in, 四个trig_out

● 每个trig_out对应一个查找表LUT

● 可通过sw_inject将输出注入到trig_out

● 注入保持一个时钟周期

TYPE_A配置

● SDK中plb_type_a_inject_by_sw()函数完成软件注入,实现初始化输出。

● LUT查找表逻辑赋值函数为plb_type_a_set_lut(),可以配置不同通道和不同查找表,达到逻辑输出功能。

21.png

占空比更新

● 为了减少CPU的占用,程序将PWM中比较器CMP0-CMP7的数据存储于高速RAM中,PWM_DMA_struct.PWM_cmp_mirror[0]-PWM_DMA_struct.PWM_cmp_mirror[7]。通过DMA更新PWM寄存器,限于篇幅限制,本文不再赘述。

● 由于PWM没有配置成互补输出模式,需要软件实现死区配置,其中前后沿的死区为单独参数,可以配置不同的数值,PWM_DMA_struct.Front_Dead、PWM_DMA_struct.Post_Dead。此外,例程中包含了占空比限幅,如果在前期计算时占空比时已经对占空比限幅,可以忽略相应限幅处理。

● 浮点运算中需在浮点常数后面加f,否则会增加定点转浮点运算。

● 例程选用的是硬交错方案,即两路输出的中心点强制相差180°。但外设配置同样支持软交错方案,需修改占空比函数。

22.png

输出波形

23.png

buck模式下波形输出

24.png

buck模式下ACMP动作后波形输出

25.png

boost模式下波形输出

26.png

boost模式下ACMP动作后波形输出

小结

● 该操作方法实现了硬件快速续流控制功能,集成度高且阈值数字可控,优化成本和面积。

● 结合PLB功能,令buck-boost模式切合更加自由。

● PWM模块与PLB结合,可以轻松克服单时基PWM模块实现跨周期输出问题,该功能同样适用于单PWM模块的移相控制。

● 两相交错输出,减少纹波,增加EMC能力。

● 强大的DMA功能,减少了读取外设寄存器的时间,并通过硬件触发省去了CPU对寄存器赋值时间。

● HPM5300系列高性价比MCU,运算速度快,在数字电源控制中更加自如。

来源:先楫半导体HPMicro

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 33

本文导读

先楫HPM5300高性能MCU与ZDP1440显示驱动芯片,打造高性能工业控制与显示应用平台。

国产高性能微控制器厂商上海先楫半导体的高性能MCU处理器HPM5300是面向工业自动化、新能源以及汽车电子三大应用领域推出的一款高性能运动控制微控制器产品,具有如下特点:

1.gif

强劲性能

  • 主频480MHz,288K RAM , 1M Flash;

  • 16bADC,DAC,ACMP,OPAMP;

  • 支持各类位置传感器,包括光电式、磁感应和旋转变压器;

  • 灵活的编码器输入输出,硬解码,兼容总线型、模拟类和脉冲型;

  • 运动控制协处理器;

  • PLB可编程逻辑单元。

丰富接口

  • 4路CAN-FD;

  • 4路LIN;

  • 多路UART/SPI/I2C;

  • USB OTG内置HSPHY。

卓越品质

  • -40-105℃ Ta;

  • 满足车规和工业级产品需求;

  • AEC-Q100。

封装

  • 14*14 LQFP100;

  • 10*10 LQFP64;

  • 6*6 QFN48。

ZDP1440P128D是一款基于开源 GUI引擎的图像显示专用驱动芯片。内部集成16MB显示内存,2D图形加速器,H.264/MJPEG编解码,音频解码器等丰富多媒体功能。具有RGB/MIPI两种显示接口,最大屏幕分辨率支持1920*1080 ,支持电容电阻屏触摸,支持SPI/UART与外部控制器通信。

2.png

在该应用平台中,HPM5300作为用户MCU,用做高性能控制功能,ZDP1440可独立运行开源GUI线程,其支持差分OTA的特性,与HPM5300采用串行总线通信,负责屏幕显示相关。
该方案实现了高性能与低成本的强强联合,广泛应用于各种工业高性能控制与显示应用。

资料分享

HMI-ZDP1440串口屏开发套件资料持续更新中,需要获取最新资料,可关注如下链接:

https://www.zlgmcu.com/intelligentchip/intelligentchip/product/id/231.htm 

来源:立功科技

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 80

01.串行编码器接口SEI 的应用场景

SEI 串行编码器接口

  • 是HPM单片机独创的通信接口外设,可以在同一个硬件接口上实现不同类型的串行通信协议的数据收发。

  • 是5300精确位置系统的一部分,可以与系统中的其它外设协同工作。

主要应用场景:

  • 作为主机,从外部的串行编码器读取电机运动信息(绝对位置、速度、圈数、故障…等),交由 MMC单元 或 主控软件 进行电机驱动控制。

  • 作为从机,QEIv2或RDC模块将从传感器(光、霍尔、旋变)获取的位置数据,经SEI转换成不同的协议后发送给外部的电机驱动器(PLC、运动控制卡、伺服驱动……)。

  • 定制通讯,可以在多种不同的串行协议间进行转换;也可以根据自己的需要定制协议,并可实现硬件自主通讯。

1.png

(图示:5300精确位置系统)

02.串行编码器接口SEI 的主要特性

● 2 个 SEI 控制器

● 9 个数据寄存器组

● 最高支持 64 条指令

● 支持同步通信 和 异步通信

● 支持主机模式和从机模式(作为编码器)

● 支持 RS-485 及 RS-422 接口

● 每个 SEI 控制器支持共 3 种触发方式

  • 外部触发,包括触发输入及触发输出各 8 路   

  • 周期性触发 

  • 软件触发

● 支持精确控制 SAMPLE 或 UPDATE 位置信息与时间戳的时机

● 支持命令匹配及指令跳转

● 支持自动 CRC 校验

● 支持自动奇偶校验

● 支持 WatchDog

● 支持超时 TIMEOUT 及收发 CDM/CDS 

● 灵活实现多种编码器协议:Tamagawa、HIPERFACE、Nikon 、SSI、BiSS-C、EnDat2.1/2.2

2.png

03.HPM5300 串行编码器接口SEI 的组成结构

SEI模块的寄存器组成

● 引擎寄存器

负责模块使能控制、超时处理、看门狗配置,和反馈执行状态、指令指针等

● 收发控制

负责收发配置,数据传输长度、波特率、空闲状态、同步或异步控制模式等收发控制

● 触发 

负责外部输入触发、周期触发、软件触发模式配置

负责输出触发,可以配置外部触发命令

● 命令

包含8个命令表及其相关的比较位和最大、最小值范围

负责命令数据的长度、校验、大小端格式等

● 锁存器

负责4个锁存器的跳转配置、输出延迟和输出选择

● 位置寄存器

包含sample和update对应的位置寄存器组

负责触发sample和update的配置

● 中断寄存器

负责中断使能配置、状态记录、中断指令和中断指令匹配的配置

● 指令内存

存放64条可配置的指令,SEI0 与 SEI1共用

● 数据寄存器组

存放9组数据寄存器, SEI0 与 SEI1共用

3.png

04.串行编码器接口SEI的工作原理:通讯指令

Tamagawa、BiSS-C和SSI,这三种不同协议的编码器为例,通信协议之前存在较大的差异:异步vs同步、校验方式、大小端、数据长度、返回信息延迟、通讯结束标志、触发采样和更新位置时刻等。

SEI 的大致方法是把通讯协议分解成多个典型节点,每个节点对应一条指令,通过不同指令组合实现通讯完成。

4.png

Tamagawa

5.png

BiSS-C

6.png

SSI

05.SEI示例

多摩川编码器主查询协议为例,调用指令设置函数sei_set_instr():

  • 0阶段: 发送控制字,sei_set_instr(BOARD_SEI, instr_idx++, SEI_INSTR_OP_SEND, 0, SEI_DAT_0, SEI_DAT_2, 8);

  • 参数设置:指定SEI0/1;指定指令指针,OP:3无时限内发送 ;CK:异步传输统一为0;CRC:CRC放入无效数据寄存器DAT_0表示当前数据不计算CRC;传输数据:放入DAT2;数据长度:8bit。


  • 1阶段: 接收控制字,sei_set_instr(BOARD_SEI, instr_idx++, SEI_INSTR_OP_RECV_WDG, 0, SEI_DAT_9, SEI_DAT_3, 8);

  • 参数定义:指定SEI0/1,指定指令指针,OP:6时限内接收 ,CK:异步传输统一为0, CRC:校验值放入数据寄存器DAT_9,传输数据放入DAT_3,数据长度为8bit。


  • 2阶段: 接收传感器状态信息,sei_set_instr(BOARD_SEI, instr_idx++, SEI_INSTR_OP_RECV_WDG, 0, SEI_DAT_9, SEI_DAT_4, 8);

  • 参数定义:其他信息同上,传输数据放入DAT_4。


  • 3阶段: 接收位置信息,sei_set_instr(BOARD_SEI, instr_idx++, SEI_INSTR_OP_RECV_WDG, 0, SEI_DAT_9, SEI_DAT_5, 24);

  • 参数定义:其他信息同上,传输数据放入DAT_5,数据长度为24bit。


  • 4阶段: 接收ENID,sei_set_instr(BOARD_SEI, instr_idx++, SEI_INSTR_OP_RECV_WDG, 0, SEI_DAT_9, SEI_DAT_6, 8);

  • 参数定义:其他信息同上,传输数据放入DAT_6,数据长度为8bit。


  • 5阶段: 接收圈数信息,sei_set_instr(BOARD_SEI, instr_idx++, SEI_INSTR_OP_RECV_WDG, 0, SEI_DAT_9, SEI_DAT_7, 24);

  • 参数定义:其他信息同上,传输数据放入DAT_7,数据长度为24bit。


  • 6阶段: 接收报警信息,sei_set_instr(BOARD_SEI, instr_idx++, SEI_INSTR_OP_RECV_WDG, 0, SEI_DAT_9, SEI_DAT_8, 8);

  • 参数定义:其他信息同上,传输数据放入DAT_8,数据长度为8bit。


  • 7阶段: 接收CRC,sei_set_instr(BOARD_SEI, instr_idx++, SEI_INSTR_OP_RECV_WDG, 0, SEI_DAT_0, SEI_DAT_9, 8);

  • 参数定义:其他参数同上, CRC:数据放入无效数据寄存器DAT_0表示该指令中接收到的数据不计算CRC;如果DAT_9配置为CRC模式,前期接收数据计算后的CRC校验值会与DAT_9接收值做对比,数据长度为8bit。


  • 8阶段: 停止指令sei_set_instr(BOARD_SEI, instr_idx++, SEI_INSTR_OP_HALT, 0, SEI_DAT_0, SEI_DAT_0, 0)

  • 参数定义:OP:0 停顿,其他参数均设为0。

通讯结束。

7.png8.png

06.SEI 引擎寄存器

寄存器组成

● 引擎控制

负责模块使能控制、状态回倒、状态异常处理、触发使能控制、看门狗使能

● 指针地址配置

配置异常和初始执行指令地址指针,当执行不同数据通讯时可以修改初始执行指令地址指针实现调用不同的收发指令

● 看门狗配置、程序执行指针、当前指令、看门狗状态 

负责监控当前工作状态

● SEI中有两组,分别应用于SEI0和SEI1

9.png

来源:先楫半导体HPMicro

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 140

2023年8月16日,高性能嵌入式解决方案厂商“上海先楫半导体(HPMicro)”正式发布全新产品系列——高性能运动控制微控制器 HPM5300。独具匠“芯”的HPM5300系列以强劲的性能、灵活的编码器优势、丰富的通讯接口和更小的封装等产品特点直击工业自动化、新能源和汽车电子三大热门领域应用痛点,助力行业实现高水平运控。

众所周知MCU行业是一个高端品牌集中度高,低端百花齐放的供应市场格局。高端MCU市场主要被国外龙头厂商所占据,在多年的市场和技术积累下,建立起了很深的护城河。工业自动化、新能源和汽车电子这三大热门领域是MCU行业非常具有代表性的高端应用场景,这些场景要求MCU有着更强的计算能力,更精准的控制能力以及更卓越的通讯能力。先楫半导体自创立之初就聚焦于高性能应用的市场需求,先后推出了HPM6700/6400、HPM6300和HPM6200三款高性能MCU,在算力和控制力等方面充分满足了高端市场的应用需求。

市场需求是多样化的,随着复杂运算、多媒体技术等创新应用的不断发展,市场对高性能运动控制MCU的需求也在快速增长。因此,先楫半导体本次推出的新品——HPM5300系列正是聚焦于高性能运动控制这一功能。这款产品相比先楫之前的产品系列更简单易用,上手开发的难度较低,具备更高的性价比优势,产品性能潜力大,市场前景广阔。

HPM5300系列是一款高性能RISC-V内核通用微控制器,支持双精度浮点运算及强大的DSP扩展,主频480MHz,达到甚至超越国际主流高性能MCU产品,满足大多数应用场景下的开发需求。主控芯片主频不够不再是限制运控能力的瓶颈,HPM5300系列能够做到高速运算,同时提升带宽,高带宽带来更快的指令响应时间,配合HPM5300独有的自主知识产品“高精度位置传感器系统”,支持主流多种类位置传感器,为运动控制带来独特的体验。

1.jpg

HPM5300是先楫半导体第一款全系列内置1 MB Flash的产品,同时内置288KB SRAM,极大避免了低速外部存储器引发的性能损失。模拟部分集成16bit ADC、12bit DAC以及运放,增强整个系统精度。HPM5300配置两个八通道的PWM模块,同时引入了PLB可编程逻辑单元,实现丰富、多逻辑的保护,提高了产品的稳定性。卓越的通讯能力在丰富的通讯接口上体现得淋漓尽致,HPM5300系列提供多种可灵活配置的接口,包含4路CAN-FD、4路LIN、多路UART/SPI/I2C以及USB OTG内置HS PHY,轻松实现各种接口类应用。

为了提高运控准确性,HPM5300系列支持各类位置传感器,包括光电式、磁感应和旋转变压器,同时提供灵活的编码器输入输出,兼容总线型、模拟类和脉冲型,匹配增量和绝对编码器各种输入输出信号形式,信号转化灵活、效率高。HPM5300系列可支持市面上主流的各类型编码器通讯协议,如多摩川、BISS-C、ENDAT、HIPERFACE等。

在灵活全面的位置反馈支持下,HPM5300系列在运控能力上得以进一步提升。同时HPM5300系列专门配置了运动处理单元,可提供位置预测和运动轨迹规划功能,为主处理器分担更多的工作量,提升效能。

目前,HPM5300系列目前可提供100 LQFP,64 LQFP,48 QFN等封装,更小的封装可缩小板级PCB尺寸,更小外观创造更多可能性。

2.jpg

本次发布的HPM5300系列产品主要面向工业自动化、新能源及汽车电子三大应用领域。目前,在工业自动化中的编码器和伺服驱动器,新能源中的微型逆变器,汽车电子中的IMU、ECU 和汽车座椅门控模块等应用中,HPM5300系列已显示出其独特的产品优势。同时,该产品系列提供 -40—105℃ Ta满足工业级和车规级的环境温度选项。我们希望携手众多合作伙伴,与终端客户一起发掘HPM5300系列产品应用层面的更多可能性。

独具匠“芯”的高性能运动控制MCU HPM5300系列,将以强劲的性能、丰富的接口、更小的封装、卓越的品质为工业自动化、新能源及汽车电子等领域应用带来丰富的算力和高效的控制能力。

3.jpg

供货情况:

HPM5300现已提供完整的样片、开发板和软件开发包支持。在硬件配套方面,HPM5300的开发板购买链接已在先楫半导体官网上线。

HPM5300系列已全面量产并可接受大批量订单。有关样片申请与芯片购买事宜,请联系先楫半导体的销售、官方代理商和方案设计公司。

来源: 先楫半导体HPMicro

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 142
订阅 RSS - HPM5300