ESD

人们对驾驶旅行和人车交互的预期发生了显著变化。因此,连接增加、自动驾驶、电气化等大趋势推动了汽车线束的革新,也增加了对高速数据传输和带宽的需求,旨在实现高级驾驶员辅助系统。所有这些线束必须受到保护,防止受到ESD尖峰和电涌损坏。

传统的集线器和车载网络经历了一场重大革新。经典的平坦架构线束正在转变为领域和区域架构,以汽车以太网作为骨干网。但是,外设总线仍然需要传输更多数据,因而新版本的现有协议被应用到车载网络中。CAN 总线与车载网络密不可分,但在 CAN-FD(灵活数据)发布之前,CAN 仅能达到 1 MB/s 的数据传输速率,而 CAN-FD 的数据传输速率则达到 12 MB/s,提供未来 ADAS 应用必需的关键优势。

“△
△ 车载网络的区域架构

2 Mbit/s 是典型的数据传输速率限制,适用于不需要更高数据速率的许多应用。CAN FD 使用的差分信号电平与高速 CAN 相同。通过缩短发送消息中的显性和隐性状态,可以提高数据速率。此技术增加了对物理层的要求,随着系统在 EMC 和 ESD 方面变得更加敏感,它需要更多的分立式 ESD 保护器件,将系统 ESD 稳健性提高到可靠的水平。

“干货分享

除了达到汽车 OEM 的要求之外,ESD 保护器件还必须符合 IEC61000-4-2 或 ISO10605 等针对汽车的行业标准。对于 CAN (FD) 总线,ESD 保护器件必须能够耐受电池短路和跳线,符合 ISO16750-2标准(26 V)或内部规范(28 V)。CAN 收发器也必须符合 IEC62228-3 标准(辐射、抗扰:DPI、脉冲、ESD)。此外,CAN 还要符合一些常见要求,例如二极管电容为 17 pF 至 30pF(最大值),CAN-FD 二极管电容为 6 pF 至 10 pF,因为数据速率更高,信号完整性更高,另外还有电容匹配。因此,Nexperia(安世半导体)对 IVN 产品系列进行了改进,开发了专门针对 CAN-FD 要求量身定制的新一代产品。新的 PESD2CANFDx 系列提供不同的电压、电容和封装配置,达到 AEC-Q101 标准的 2 倍。

无引脚的优势

“△
△ 车载网络的区域架构

与经典 SOT 封装相比,采用 DFN 封装的无引脚 CAN-FD 的优势不仅只是节省大量 PCB 空间,还在于改进信号完整性,这一点对于 SSD 保护至关重要。对于信号完整性而言,布线是一个关键点。虽然寄生电容会降低信号质量,但在电容非常小的情况下,用于连接封装的布线将起到重要作用。根据符合信号完整性设计的最佳实践得到的最重要的结论是:避免开关层,避免使用短截线。

S 参数是衡量信号完整性的常见方式。所示参数为差分插入损耗(S21dd)、回波损耗(S11dd)和差模共模转换(S21dc)。以下测量是使用 VNA 进行的,系统已对探头尖进行了校准,因此未对引脚封装前后的走线去嵌。图3显示了相同的布线方案,其中 PESD2CANFD24V-T 采用 SOT23 封装,PESD2CANFD24V-QB 采用 DFN1110D-3 封装,二者的最大二极管电容均为 6 pF,虚线表示未封装时的直接走线用例。可以看到,封装为空时非常相似的性能,在安装了器件之后开始出现偏差。此处的 SOT23 封装的引脚为短截线,封装内部的结构更大,从而增加了寄生效应。因此,与有引脚封装相比,DFN 解决方案展示了更好的信号完整性,特别是在插入损耗(IL)和差模共模转换(MC)方面。

“△
△ 无引脚 PESD2CANFD24V-T 和 PESD2CANFD24V-QB 的 S 参数比较。

关于作者

“Lukas
Lukas Droemer

Lukas 于 2014 年作为公司资助的工业工程专业学生加盟 Nexperia(安世半导体)。自 2018 年 4 月起担任 Nexperia 汽车 ESD 保护和滤波产品组合的产品经理,负责最新的车载网络解决方案,如开放技术联盟以太网。

Nexperia (安世半导体)

Nexperia(安世半导体),作为半导体基础元器件生产领域的高产能生产专家,其产品广泛应用于全球各类电子设计。公司丰富的产品组合包括二极管、双极性晶体管、ESD 保护器件、MOSFET 器件、氮化镓场效应晶体管 (GaN FET) 以及模拟 IC 和逻辑 IC。Nexperia总部位于荷兰奈梅亨,每年可交付 900 多亿件产品,产品符合汽车行业的严苛标准。其产品在效率(如工艺、尺寸、功率及性能)方面获得行业广泛认可,拥有先进的小尺寸封装技术,可有效节省功耗及空间。

凭借几十年来的专业经验,Nexperia(安世半导体)持续不断地为全球各地的优质企业提供高效的产品及服务,并在亚洲、欧洲和美国拥有超过12,000名员工。Nexperia(安世半导体)是闻泰科技股份有限公司 (600745.SS) 的子公司,拥有庞大的知识产权组合,并获得了 IATF 16949、ISO 9001、ISO 14001 和 OHSAS 18001 认证。

来源:安世半导体
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 268

用于汽车多媒体和视频链路应用的高性能4通道ESD保护,提供出色的信号完整性

近日,基础半导体器件领域的专家Nexperia(安世半导体)宣布推出一系列ESD保护器件,专门用于保护汽车应用中越来越多的高速接口,特别是与信息娱乐和车辆通讯相关的车载网络(IVN)。

“"

随着数据传输速率的提高和车载电子含量的增加,EMC 保护的需求变得越来越重要,提供正确的保护类型已成为设计工程师的巨大挑战。Nexperia(安世半导体)的TrEOS技术优化了 ESD 保护的三大关键参数(信号完整性、系统保护和鲁棒性),以提供具有低电容、低钳位电压和高ESD鲁棒性的理想组合的器件。

全新的 PESD4USBx 系列总共包括十二款采用 TrEOS 技术的高性能 4 通道 ESD 保护器件。极低的每通道线路电容(低至 0.25 pF)和低于 0.05 pF 的线路匹配电容保障了信号完整性。所有器件均提供深度回弹以及 0.4 Ohm 的低电阻。PESD4USBx 系列配备高达 ±15 kV 的 ESD 保护,符合 IEC61000-4-2 4级和 ISO10605。这是该封装尺寸中目前提供的最高 ESD 保护级别,使该器件非常适用于现代、密集封装的汽车设计。

器件支持广泛的接口标准,包括 USB 2.0、超高速USB (10 Gbps)、HDMI 2.0、HDBaseT 以及车辆中越来越多的汽车 A/V 监视器、显示器和摄像头。PESD4USBx 器件还支持视频链路(SerDes):GMSL、FPD-Link 和 LVDS。

这些器件专为汽车应用而设计,比 AEC-Q101 的要求高出两倍。此外,在 Nexperia(安世半导体)最先进的DFN2510D 封装(SOT1165D 和 SOT1176D)中,标配可湿锡焊接侧焊盘(SWF),支持使用自动光学检查(AOI),提高客户的装配质量。

Nexperia(安世半导体)产品经理 Lukas Droemer 在产品发布时表示:“电子含量在整个车辆中的应用正在迅速增长,加上对高数据速率的需求,高端 A/V 应用中常见的接口正变得越来越普遍。由于电气化程度的提高,车辆正处于电气噪声环境中,这些敏感的接口需要高性能 ESD 的保护。我们全新的 PESD4USBx 系列兼具强大的 TrEOS 性能与车规级质量,专为要求苛刻的汽车多媒体应用而打造。 ”

新器件现可提供样品,并已于今日量产。

围观 21

静电放电(ESD)理论研究的已经相当成熟,为了模拟分析静电事件,前人设计了很多静电放电模型。常见的静电模型有:人体模型(HBM),带电器件模型,场感应模型,场增强模型,机器模型和电容耦合模型等。芯片级一般用HBM做测试,而电子产品则用IEC 6 1000-4-2的放电模型做测试。为对 ESD 的测试进行统一规范,在工业标准方面,欧共体的 IEC 61000-4-2 已建立起严格的瞬变冲击抑制标准;电子产品必须符合这一标准之后方能销往欧共体的各个成员国。

因此,大多数生产厂家都把 IEC 61000-4-2看作是 ESD 测试的事实标准。我国的国家标准(GB/T 17626.2-1998)等同于I EC 6 1000-4-2。大多是实验室用的静电发生器就是按 IEC 6 1000-4-2的标准,分为接触放电和空气放电。静电发生器的模型如图 1。放电头按接触放电和空气放电分尖头和圆头两种。



IEC 61000-4-2的 静电放电的波形如图2,可以看到静电放电主要电流是一个上升沿在1nS左右的一个上升沿,要消除这个上升沿要求ESD保护器件响应时间要小于这个时间。静电放电的能量主要集中在几十MHz到500MHz,很多时候我们能从频谱上考虑,如滤波器滤除相应频带的能量来实现静电防护。


IEC 61000-4-2规定了几个试验等级,目前手机CTA测试执行得是3级,即接触放电6KV,空气放电8KV。很多手机厂家内部执行更高的静电防护等级。


当集成电路( IC )经受静电放电( ESD)时,放电回路的电阻通常都很小,无法限制放电电流。例如将带静电的电缆插到电路接口上时,放电回路的电阻几乎为零,造成高达数十安培的瞬间放电尖峰电流,流入相应的 IC 管脚。瞬间大电流会严重损伤 IC ,局部发热的热量甚至会融化硅片管芯。ESD 对 IC的损伤还包括内部金属连接被烧断,钝化层受到破坏,晶体管单元被烧坏。

ESD 还会引起 IC 的死锁( LATCHUP)。这种效应和 CMOS 器件内部的类似可控硅的结构单元被激活有关。高电压可激活这些结构,形成大电流信道,一般是从 VCC 到地。串行接口器件的死锁电流可高达 1A 。死锁电流会一直保持,直到器件被断电。不过到那时, IC 通常早已因过热而烧毁了。

电路级ESD防护方法

1、并联放电器件

常用的放电器件有TVS,齐纳二极管,压敏电阻,气体放电管等。如图


1.1、齐纳二极管( Zener Diodes ,也称稳压二极管 ) :利用齐纳二极管的反向击穿特性可以保护 ESD敏感器件。但是齐纳二极管通常有几十 pF 的电容,这对于高速信号(例如 500MHz)而言,会引起信号畸变。齐纳二极管对电源上的浪涌也有很好的吸收作用。

1.2、瞬变电压消除器 TVS(Transient Voltage Suppressor):TVS 是一种固态二极管,专门用于防止 ESD 瞬态电压破坏敏感的半导体器件。与传统的齐纳二极管相比, TVS 二极管 P/N 结面积更大,这一结构上的改进使 TVS 具有更强的高压承受能力,同时也降低了电压截止率,因而对于保护手持设备低工作电压回路的安全具有更好效果。

TVS二极管的瞬态功率和瞬态电流性能与结的面积成正比。该二极管的结具有较大的截面积,可以处理闪电和 ESD所引起的高瞬态电流。TVS也会有结电容,通常0.3个pF到几十个pF。TVS有单极性的和双极性的,使用时要注意。手机上用的TVS大约0.01$,低容值的约2-3分$。

1.3、多层金属氧化物结构器件 (MLV):大陆一般称为压敏电阻。MLV也可以进行有效的瞬时高压冲击抑制,此类器件具有非线性电压 - 电流 ( 阻抗表现 ) 关系,截止电压可达最初中止电压的 2 ~ 3倍。这种特性适合用于对电压不太敏感的线路和器件的静电或浪涌保护,如电源回路,按键输入端等。手机用压敏电阻约0.0015$,大约是TVS价格的1/6,但是防护效果没有TVS好,且压敏电阻有寿命老化。

2、串联阻抗

一般可以通过串联电阻或者磁珠来限制ESD放电电流,达到防静电的目的。如图。如手机的高输入阻抗的端口可以串1K欧电阻来防护,如ADC,输入的GPIO,按键等。不要担心0402的电阻会被打坏,实践证明是打不坏的。这里不详细分析。用电阻做ESD防护几乎不增加成本。如果用磁珠,磁珠的价格大 约0.002$,和压敏电阻差不多。


3、增加滤波网络

前面提到了静电的能量频谱,如果用滤波器滤掉主要的能量也能达到静电防护的目的。

对于低频信号,如GPIO输入,ADC,音频输入可以用1k+1000PF的电容来做静电防护,成本可以忽略,性能不比压敏电阻差,如果用1K+50PF的压敏电阻(下面讲的复合防护措施),效果更好,经验证明这样防护效果有时超过TVS。


对于射频天线的微波信号,如果用TVS管,压敏等容性器件来做静电防护,射频信号会被衰减,因此要求TVS的电容很低,这样增加ESD措施的成本。对于微波信号可以对地并联一个几十nH的电感来为静电提供一个放电通道,对微波信号几乎没有影响,对于900MHZ和1800MHz的手机经常用22nH的电感。这样能把静电主要能量频谱上的能量吸收掉很多。


4、复合防护

有一种器件叫EMI filter,他有很好的ESD防护效果,如图。EMI filter也有基于TVS管的和基于压敏电阻的,前者效果好,但很贵,后者廉价,一般4路基于压敏电阻的EMI价格在0.02$。


实际应用中可以用下面的一个电阻+一个压敏电阻的方式。他既有低通滤波器的功能,又有压敏电阻的功能,还有电阻串联限流的功能。是性价比最好的防护方式,对于高阻信号可以采用1K电阻+50PF压敏;对于耳机等音频输出信号可以采用100欧电阻+压敏电阻;对于TP信号串联电阻不能太大否则影响TP的线性,可以采用10欧电阻。虽然电阻小了,低通滤波器效果已经没有了,但限流作用还是很重要的。


5、增加吸收回路

可以在敏感信号附件增加地的漏铜,来吸收静电。道理和避雷针原理一样。在信号线上放置尖端放电点(火花隙)在山寨手机设计中也经常应用。

来源:中质盟QAC

围观 1039

TrEOS二极管完全支持USB4TM标准;具有低钳位、低电容、低泄露特性,极高的鲁棒性

奈梅亨,三月 10, 2020:Nexperia,分立器件、MOSFET器件及模拟和逻辑器件领域的生产专家,今日宣布推出PESD2V8R1BSF,这是业内首款专门针对USB4TM标准开发的ESD保护器件,具有行业领先的RF性能。新款器件采用Nexperia的TrEOS ESD技术与有源可控硅(SCR)技术,USB4TM和Thunderbolt接口设计工程师将会特别感兴趣。该器件可实现极低电容(低至0.1 pF);极低钳位电压 动态电阻低至0.1 Ω)以及非常稳健的防浪涌与ESD性能(,最高可达20A 8/20 µs)。PESD2V8R1BSF采用超低电感SOD962封装。

Nexperia产品经理Stefan Seider评论道:“为避免信号完整性问题,PESD2V8R1BSF ESD保护二极管提供极低的插入损耗和相应的低回波损耗,在10 GHz时分别为-0.21 dB和-17.4 dB。该ESD保护器件可满足USB 3.2的较高电压要求。这意味着,该器件可放置在USB Type-C®连接器后面,用于保护耦合电容,同时仍与USB3.2向后兼容。”

TrEOS保护二极管采用非常紧凑、非常可靠的DSN0603-2 (SOD962)封装。这种广泛使用的0603外形尺寸能够带来诸多优势,包括电感极低,可提供快速保护,并且可集成到单片电路中,无需焊线,从而减少了机械应力和热应力。

如需了解新款ESD保护器件PESD2V8R1BSF的更多信息(包括产品规格和数据手册),请访问www.nexperia.com/USB4protection

围观 9

来自人体、环境甚至电子设备内部的静电对于精密的半导体芯片会造成各种损伤,例如穿透元器件内部薄的绝缘层;损毁MOSFET和CMOS元器件的栅极;CMOS器件中的触发器锁死;短路反偏的PN结;短路正向偏置的PN结;熔化有源器件内部的焊接线或铝线。为了消除静电释放(ESD)对电子设备的干扰和破坏,需要采取多种技术手段进行防范。

在PCB板设计时,可以通过分层、恰当的布局布线和安装实现PCB的抗ESD设计。在设计过程中,通过预测可以将绝大多数设计修改仅限于增减元器件。通过调整PCB布局布线,能够很好地防范ESD。

以下一些常见的防范措施。

1、尽可能使用多层PCB,相对于双面PCB而言,地平面和电源平面,以及排列紧密的信号线-地线间距能够减小共模阻抗和感性耦合,使之达到双面PCB的1/10到1/100。尽量地将每一个信号层都紧靠一个电源层或地线层。对于顶层和底层表面都有元器件、具有很短连接线以及许多填充地的高密度PCB,可以考虑使用内层线。

2、对于双面PCB来说,要采用紧密交织的电源和地栅格。电源线紧靠地线,在垂直和水平线或填充区之间,要尽可能多地连接。一面的栅格尺寸小于等于60mm,如果可能,栅格尺寸应小于13mm。

3、确保每一个电路尽可能紧凑。

4、尽可能将所有连接器都放在一边。

5、如果可能,将电源线从卡的中央引入,并远离容易直接遭受ESD影响的区域。

6、在引向机箱外的连接器(容易直接被ESD击中)下方的所有PCB层上,要放置宽的机箱地或者多边形填充地,并每隔大约13mm的距离用过孔将它们连接在一起。

7、在卡的边缘上放置安装孔,安装孔周围用无阻焊剂的顶层和底层焊盘连接到机箱地上。

8、PCB装配时,不要在顶层或者底层的焊盘上涂覆任何焊料。使用具有内嵌垫圈的螺钉来实现PCB与金属机箱/屏蔽层或接地面上支架的紧密接触。

9、在每一层的机箱地和电路地之间,要设置相同的“隔离区”;如果可能,保持间隔距离为0.64mm。

10、在卡的顶层和底层靠近安装孔的位置,每隔100mm沿机箱地线将机箱地和电路地用1.27mm宽的线连接在一起。与这些连接点的相邻处,在机箱地和电路地之间放置用于安装的焊盘或安装孔。这些地线连接可以用刀片划开,以保持开路,或用磁珠/高频电容的跳接。

11、如果电路板不会放入金属机箱或者屏蔽装置中,在电路板的顶层和底层机箱地线上不能涂阻焊剂,这样它们可以作为ESD电弧的放电极。

12、要以下列方式在电路周围设置一个环形地:

(1)除边缘连接器以及机箱地以外,在整个外围四周放上环形地通路。

(2)确保所有层的环形地宽度大于2.5mm。

(3)每隔13mm用过孔将环形地连接起来。

(4)将环形地与多层电路的公共地连接到一起。

(5)对安装在金属机箱或者屏蔽装置里的双面板来说,应该将环形地与电路公共地连接起来。不屏蔽的双面电路则应该将环形地连接到机箱地,环形地上不能涂阻焊剂,以便该环形地可以充当ESD的放电棒,在环形地(所有层)上的某个位置处至少放置一个0.5mm宽的间隙,这样可以避免形成一个大的环路。信号布线离环形地的距离不能小于0.5mm。

13、在能被ESD直接击中的区域,每一个信号线附近都要布一条地线。

14、I/O电路要尽可能靠近对应的连接器。

15、对易受ESD影响的电路,应该放在靠近电路中心的区域,这样其他电路可以为它们提供一定的屏蔽作用。

16、通常在接收端放置串联的电阻和磁珠,而对那些易被ESD击中的电缆驱动器,也可以考虑在驱动端放置串联的电阻或磁珠。

17、通常在接收端放置瞬态保护器。用短而粗的线(长度小于5倍宽度,最好小于3倍宽度)连接到机箱地。从连接器出来的信号线和地线要直接接到瞬态保护器,然后才能接电路的其他部分。

18、在连接器处或者离接收电路25mm的范围内,要放置滤波电容。

(1)用短而粗的线连接到机箱地或者接收电路地(长度小于5倍宽度,最好小于3倍宽度)。

(2)信号线和地线先连接到电容再连接到接收电路。

19、要确保信号线尽可能短。

20、信号线的长度大于300mm时,一定要平行布一条地线。

21、确保信号线和相应回路之间的环路面积尽可能小。对于长信号线每隔几厘米便要调换信号线和地线的位置来减小环路面积。

22、从网络的中心位置驱动信号进入多个接收电路。

23、确保电源和地之间的环路面积尽可能小,在靠近集成电路芯片每一个电源管脚的地方放置一个高频电容。

24、在距离每一个连接器80mm范围以内放置一个高频旁路电容。

25、在可能的情况下,要用地填充未使用的区域,每隔60mm距离将所有层的填充地连接起来。

26、确保在任意大的地填充区(大约大于25mm*6mm)的两个相反端点位置处要与地连接。

27、电源或地平面上开口长度超过8mm时,要用窄的线将开口的两侧连接起来。

28、复位线、中断信号线或者边沿触发信号线不能布置在靠近PCB边沿的地方。

29、将安装孔同电路公地连接在一起,或者将它们隔离开来。

(1)金属支架必须和金属屏蔽装置或者机箱一起使用时,要采用一个零欧姆电阻实现连接。

(2)确定安装孔大小来实现金属或者塑料支架的可靠安装,在安装孔顶层和底层上要采用大焊盘,底层焊盘上不能采用阻焊剂,并确保底层焊盘不采用波峰焊工艺进行焊接。

30、不能将受保护的信号线和不受保护的信号线并行排列。

31、要特别注意复位、中断和控制信号线的布线。

(1)要采用高频滤波。

(2)远离输入和输出电路。

(3)远离电路板边缘。

32、PCB要插入机箱内,不要安装在开口位置或者内部接缝处。

33、要注意磁珠下、焊盘之间和可能接触到磁珠的信号线的布线。有些磁珠导电性能相当好,可能会产生意想不到的导电路径。

34、如果一个机箱或者主板要内装几个电路板,应该将对静电最敏感的电路板放在最中间。

来源:我爱方案网、网络

围观 382

针对新型系统保护配置而优化了 USB3.2 SuperSpeed 的全新解决方案

Nexperia 是分立元件、逻辑元件与 MOSFET 元件方面的全球领先供应商。Nexperia 今日宣布:已优化其用于 C 型 USB 接口的 TrEOS ESD 保护二极管系列。新的 USB3.2 标准在 Rx 输入端引用了一个可选电容器,因此 Nexperia 现在推出了两组元件:一组元件在连接器和电容器之间提供极高的浪涌抗扰度,另一组元件则具有极低的触发电压,用于放置在电容器和系统芯片之间。

Nexperia 的 TrEOS ESD 保护技术采用有源硅控整流器,可实现极低电容(低至 0.1pF)、极低的钳位(动态电阻低至 0.1Ω)以及非常高的浪涌和 ESD 脉冲抗扰度(对于非常快速的数据线,最高可达 20A 8/20µs)的最佳组合。接通时间也非常快,约为 0.5ns,器件可承受高达 30kV 的接触放电,超过 IEC 61000-4-2 标准 4 级水平。在 8/20 IEC61000-4-5 标准下,保护装置放置于电容器之前的 TrEOS 应用器件目前可用于业界领先的峰值脉冲电流额定值 9.5、15 和 20A。在电容器之后使用的 TrEOS 器件同样具有业界领先的性能,具有低至 4.3V 的最低触发电压 (Vt1)。这些特性也适用于 A 型 USB 和 MicroUSB 接口。

Nexperia 产品经理 Stefan Seider 表示:“C 型 USB 和 USB Power Delivery 提供的选项非常具有吸引力:为确保最终用户可以享受高达 20Gbps 的数据速度和高达 100W 的充电速度,Nexperia 提供了两种 TrEOS 保护系列,可支持围绕新型 USB3.2 Rx 电容的每一种保护策略,用于防止敏感收发器遭受可能的故障条件影响。”

TrEOS 保护二极管采用广泛使用的 0603 规格进行封装。DSN0603-2 (SOD962-2) 封装非常紧凑且稳健,其优点是没有封装接线,可消除另一种故障模式,并产生最低的电感,以实现最快的保护。该封装非常适合移动和计算应用项目。还提供了其他节省空间的封装。Nexperia 提供了全面的参数化 USB 保护搜索指南(单击此处),以帮助设计人员为其系统配置选择最佳组件。

如需更多信息,请访问:
https://assets.nexperia.com/documents/leaflet/Nexperia_document_leaflet_...

围观 415

先来谈静电放电(ESD: Electrostatic Discharge)是什么?这应该是造成所有电子元器件或集成电路系统造成过度电应力破坏的主要元凶。因为静电通常瞬间电压非常高(>几千伏),所以这种损伤是毁灭性和永久性的,会造成电路直接烧毁。所以预防静电损伤是所有IC设计和制造的头号难题。

静电,通常都是人为产生的,如生产、组装、测试、存放、搬运等过程中都有可能使得静电累积在人体、仪器或设备中,甚至元器件本身也会累积静电,当人们在不知情的情况下使这些带电的物体接触就会形成放电路径,瞬间使得电子元件或系统遭到静电放电的损坏(这就是为什么以前修电脑都必须要配戴静电环托在工作桌上,防止人体的静电损伤芯片),如同云层中储存的电荷瞬间击穿云层产生剧烈的闪电,会把大地劈开一样,而且通常都是在雨天来临之际,因为空气湿度大易形成导电通到。

那么,如何防止静电放电损伤呢?首先当然改变坏境从源头减少静电(比如减少摩擦、少穿羊毛类毛衣、控制空气温湿度等),当然这不是我们今天讨论的重点。

我们今天要讨论的时候如何在电路里面涉及保护电路,当外界有静电的时候我们的电子元器件或系统能够自我保护避免被静电损坏(其实就是安装一个避雷针)。这也是很多IC设计和制造业者的头号难题,很多公司有专门设计ESD的团队,今天我就和大家从最基本的理论讲起逐步讲解ESD保护的原理及注意点。

静电放电保护可以从FAB端的Process解决,也可以从IC设计端的Layout来设计,所以你会看到Prcess有一个ESD的option layer,或者Design rule里面有ESD的设计规则可供客户选择等等。当然有些客户也会自己根据SPICE model的电性通过layout来设计ESD,

(一)制程上的ESD:要么改变PN结,要么改变PN结的负载电阻,而改变PN结只能靠ESD_IMP了,而改变与PN结的负载电阻,就是用non-silicide或者串联电阻的方法了。

1、Source/Drain的ESD implant:因为我们的LDD结构在gate poly两边很容易形成两个浅结,而这个浅结的尖角电场比较集中,而且因为是浅结,所以它与Gate比较近,所以受Gate的末端电场影响比较大,所以这样的LDD尖角在耐ESD放电的能力是比较差的(<1kV),所以如果这样的Device用在I/O端口,很容造成ESD损伤。所以根据这个理论,我们需要一个单独的器件没有LDD,但是需要另外一道ESD implant,打一个比较深的N+_S/D,这样就可以让那个尖角变圆而且离表面很远,所以可以明显提高ESD击穿能力(>4kV)。但是这样的话这个额外的MOS的Gate就必须很长防止穿通(punchthrough),而且因为器件不一样了,所以需要单独提取器件的SPICE Model。

2、接触孔(contact)的ESD implant:在LDD器件的N+漏极的孔下面打一个P+的硼,而且深度要超过N+漏极(drain)的深度,这样就可以让原来Drain的击穿电压降低(8V-->6V),所以可以在LDD尖角发生击穿之前先从Drain击穿导走从而保护Drain和Gate的击穿。所以这样的设计能够保持器件尺寸不变,且MOS结构没有改变,故不需要重新提取SPICE model。当然这种智能用于non-silicide制程,否则contact你也打不进去implant。

3、SAB (SAlicide Block):一般我们为了降低MOS的互连电容,我们会使用silicide/SAlicide制程,但是这样器件如果工作在输出端,我们的器件负载电阻变低,外界ESD电压将会全部加载在LDD和Gate结构之间很容易击穿损伤,所以在输出级的MOS的Silicide/Salicide我们通常会用SAB(SAlicide Block)光罩挡住RPO,不要形成silicide,增加一个photo layer成本增加,但是ESD电压可以从1kV提高到4kV。

4、串联电阻法:这种方法不用增加光罩,应该是最省钱的了,原理有点类似第三种(SAB)增加电阻法,我就故意给他串联一个电阻(比如Rs_NW,或者HiR,等),这样也达到了SAB的方法。

(二)设计上的ESD:这就完全靠设计者的功夫了,有些公司在设计规则就已经提供给客户solution了,客户只要照着画就行了,有些没有的则只能靠客户自己的designer了,很多设计规则都是写着这个只是guideline/reference,不是guarantee的。一般都是把Gate/Source/Bulk短接在一起,把Drain结在I/O端承受ESD的浪涌(surge)电压,NMOS称之为GGNMOS (Gate-Grounded NMOS),PMOS称之为GDPMOS (Gate-to-Drain PMOS)。

以NMOS为例,原理都是Gate关闭状态,Source/Bulk的PN结本来是短接0偏的,当I/O端有大电压时,则Drain/Bulk PN结雪崩击穿,瞬间bulk有大电流与衬底电阻形成压差导致Bulk/Source的PN正偏,所以这个MOS的寄生横向NPN管进入放大区(发射结正偏,集电结反偏),所以呈现Snap-Back特性,起到保护作用。PMOS同理推导。

最后,ESD的设计学问太深了,我这里只是抛砖引玉,专业的事交给专业的团队吧!

文章来源:周立功单片机

围观 418

(MCU测试部分)

一.MCU测试

1.mcu工作电压及电流,
测试MCU工作电压是否在工作电压范围,电压过高会影响MCU的正常工作甚至烧坏,工作电压过低会影响MCU的外围电路驱动能力,甚至导致外围电路不能正常工作。

2. mcu静态电流
静态电流是衡量MCU性能的主要参数之一,静态电流越小越好,根据MCU规格书测试静态电流是否符合要求,一旦MCU有损坏的话,静态电流就会变大,会增加产品的静耗,致使产品整体功耗增加。

3.mcu的振荡频率
如MCU为外接晶振型的,需要检测其正常工作时MCU的晶振输入脚的振荡频率是否正确,如果晶振振荡频率不符合要求则会影响产品的定时及延时,甚至不能正常工作。

二..产品的组合功能测试(MCU在线系统测试)

1.测试单片机软件功能的完善性。这是针对所有单片机系统功能的测试,测试软件是否写的正确完整。

2.上电、掉电测试。在使用中用户必然会遇到上电和掉电的情况,可以进行多次开关电源,测试单片机系统的可靠性。

3.老化测试。测试长时间工作情况下,单片机系统的可靠性。必要的话可以放置在高温,高压以及强电磁干扰的环境下测试。

4、ESD和EFT等测试。可以使用各种干扰模拟器来测试单片机系统的可靠性。例如使用静电模拟器测试单片机系统的抗静电ESD能力;使用突波杂讯模拟器进行快速脉冲抗干扰EFT测试等等。
还可以模拟人为使用中,可能发生的破坏情况。例如用人体或者衣服织物故意摩擦单片机系统的接触端口,由此测试抗静电的能力。用大功率电钻靠近单片机系统工作,由此测试抗电磁干扰能力等

来源:百度文库

围观 579
订阅 RSS - ESD