DSP处理器

DSP的应用

针对8核DSP TMS320C6678与外部设备进行数据通信的需求,以片上集成千兆以太网交换子系统为核心,选取芯片88E1111作为PHY设备,设计了千兆以太网通信接口的硬件电路。在嵌入式操作系统SYS/BIOS和网络开发环境NDK上,完成了以太网底层驱动和TCP/IP协议的程序设计。通过DSP与上位机进行以太网通信测试,证明了以太网接口电路硬件及软件的正确性和实用性。

随着DSP处理器在现代工业的应用越来越广泛,DSP的功能不仅只有快速运算处理,还需要与其他处理器或者设备之间进行实时数据交换,以实现资源的共享。因此,针对不同设备的需求,选择稳定、快速和高效率的接口方式在当今数字信号处理系统设计中关键的组成部分。

TI公司的8核处理器TMS320C6678(以下简称C6678)提供丰富的片上接口资源用于处理器与外设之间的通信,这些接口都可以用于DSP与外设之间的通信,但是灵活性有差异,使用SGMII接口来实现千兆以太网通信,可使得通信接口一般化,能够适用于众多的设备连接。本文针对C6678的芯片特点以及含有的接口资源,设计实现了千兆以太网通信,主要设计了以太网接口电路、网络底层硬件驱动、TCP/IP协议的用户程序,并完成了与上位机以太网通信测试,实现了数字信号高速有效地网络传输。

1 C6678以太网交换子系统

C6678是基于KeyStone I构架的8核高性能、定点/浮点处理器,单核最高工作频率可达1.25 GHz。C6678的以太网交换子系统包括2个以太网媒体访问控制(Ethernet Media Access Controller,EMAC)、2个SGMII、1个管理数据输入输出(Management Data Input Output,MDIO)、3-Port以太网交换模块以及网络配置总线,其网络交换子系统如图1所示。

基于多核DSP的以太网通信接口设计

EMAC的作用是将交换子系统的内部信号转换为GMII信号传递给SGMII模块;MDIO控制物理层芯片执行对多数据流的控制输入输出。

2 PHY芯片88E1111

本文选择C6678作为主芯片,由于C6678的千兆网络交换子系统只支持SGMII接口,所以本文选择对SGMII接口的网络数据传输具有较好兼容性的物理芯片88E1111。88E1111芯片的内部结构如图2所示。

88E1111的介质接口有铜介质接口和光纤接口。铜介质接口为MDI[3:0],通过设置HWCFG_MODE[3:0]来选择运行模式。 88E1111集成的MDIO模块与EMAC的MDIO接口相连接,可将方便网络控制端读取物理芯片状态寄存器,达到实时监测的效果。

3 硬件接口设计

本文设计的任务是基于C6678片内以太网交换子系统和片外PHY芯片88E1111及其外围电路的接口设计。主要包括:C6678与88E1111芯片连接、88E1111芯片配置以及88E1111芯片与网络介质连接。

3.1 C6678与88E1111芯片连接

C6678和PHY芯片88E1111的接口电路如图3所示。88E1111工作在SGMII接口模式下,不需要TXCLK时钟输入,更有助于减少电路板上走线的数量,同时也可减少噪声的产生。

基于多核DSP的以太网通信接口设计

主要的接口信号包括时钟和数据信号如下:

MDIO_CLK:管理数据时钟。该时钟信号由C6678片上的MDIO模块提供,该时钟频率通过配置MDIO的控制寄存器CONTROL中的CLKDIV位来控制实现。

SGMII_TXP和SGMII_TXN:串行发送差分数据线。连接DSP内部SerDes和物理芯片的S_IN管脚,DSP的SerDes通过该管脚向物理层发送串行数据,数据中包含发送数据时钟信号。

SGMII_RXP和SGMII_RXN:串行接收差分数据线。连接DSP内部SerDes和物理芯片的S_OUT管脚,物理层芯片通过该接口将数据传送到DSP的SerDes,数据中包含数据接收时钟信号。

MDIO:管理数据I/O。可最多连接32个PHY设备到DSP的EMAC,并且可以枚举所有PHY设备,读取PHY设备状态寄存器来监测PHY的连接状态。数据帧结构符合802.3标准,包含读写指令、PHY地址、寄存器地址和数据等。

因为88E1111上集成的MDIO与C6678集成MDIO模块进行连接时,电压有所差别,前者电压为2.5 V,后者电压为1.8 V,所以在二者之间应该添加电压转换器。本文采用一片PCA9306,实现2.5 V和1.8 V之间的电平转换,其连接电路如图4所示。

基于多核DSP的以太网通信接口设计

3.2 88E1111芯片配置

88E1111与C6678的MDIO模块相连接,MDIO最多可识别32个物理芯片,在使用物理芯片之前需要对其进行配置,配置内容主要包括芯片的地址、模式等。配置CONFTG[6:0]管脚定义可查询文献,本文配置的硬件电路如图5所示,图5中可以不使用电阻,本文为了测试方便,加一个0 Ω的电阻。

基于多核DSP的以太网通信接口设计

88E1111硬件配置完成后,系统将固定为一种接口方式,按照文献的定义,物理芯片的地址为:PHY_ADDRESS=0’b00001,芯片模式为:不带时钟,自动协商的SGMII模式。

3.3 88E1111芯片与RJ45连接

88E1111和网络介质之间无法直接连接,因传输速度在千兆级,所以更加需要设计合适的网络隔离变压器来降低传输损耗、回音和串扰。本文选择千兆网口插座HR911130C,该插座内部自带变压器电路,只需在外部连接滤波网络便可实现网络信号稳定地传输。88E1111和 HR9111130C采用差分连接,在PCB布线时需要严格等长,且一般还需使用阻抗匹配网络,如图6中的R1和C1。

4 软件程序设计

TI针对网络开发发布了网络开发套件(Network Development Kit,NDK),能将多个模块的配置操作交给NDK网络框架实现,同时数据分包和解析也无需程序员过多考虑,加速了网络开发进程。NDK构建在实时操作系统SYS/BIOS之上,NDK通过OS抽象层与BIOS进行交互,同时BIOS的cfg配置文件能对NDK各模块进行可视化查看。

来源: 21ic.com

围观 514

作者:张文江/甄兴仁/宋春霞

1.引言

随着红外成像技术的快速发展,红外测量电视成为光电跟踪系统的重要组成部分。红外相机的自动和连续调焦,是保证红外电视成像质量,实现光电跟踪系统高精度稳定跟踪的关键技术。一般来说,影响红外电视成像的因素有很多,而目标的距离和环境温度等参数对成像质量影响较大,如何根据目标距离和环境温度等影响目标成像质量的信息,实时调整相机的位置,从而获得清晰的目标图像,需要进行广泛深入的研究,对实现红外跟踪测量系统稳定高精度跟踪测量功能具有重要意义。

2.调焦控制器的硬件设计

2.1 总体结构及原理

光电跟踪测量系统调焦控制系统要实现的功能主要包括:接收综合控制器的控制命令,实现红外电视的变倍与调焦功能,兼具自检功能和故障诊断能力,故障诊断到线路板。

系统采用基于DSP+FPGA的调光调焦控制器。该控制器的硬件原理框图如图1所示。

基于DSP处理器的红外电视调焦控制器设计
图1 调光调焦控制器硬件框图

其中DSP(TMS320F2812)作为调光调焦控制器核心。TMS320F2812是TI公司针对数字控制领域而推出的,它是目前控制领域最高性能的处理器,具有控制精度高、速度快、使用灵活以及集成度高等优点,已广泛应用于工业自动化、光学网络以及自动化控制等领域。

系统选用Cyclone公司系列FPGA中的EP1C12Q240C8作为整个调光调焦控制器的时序和逻辑控制核心,EP1C12Q240C8提供12060个逻辑单元(LE)和173个I/O口,可以内嵌4K的RAM.

应用TMS320F2812全部外设接口的一部分,如GPIO接口和EVA/EVB接口。

采用可编程逻辑器件(FPGA),可以非常简单的设计DSP的硬件电路。将DSP的数据总线、地址总线、读写控制线以及中断信号线全部引入到FPGA中,根据特定的要求,在FPGA内完成时序和逻辑设计。其中为TL16C554,AD7864提供地址选通信号,为光栅尺计算提供四倍频鉴相和计数逻辑。

由于电机的信号线、限位开关线数量很多,需要本系统的I/O口的数量较多,可以在FPGA内完成扩展I/O口的功能。

2.2 FPGA的设计

FPGA内部采用模块化的设计思想,对FPGA设计进行模块分解。主要包括,实现FPGA扩展I/O口的功能,为TL16C554和AD7864提供片选和读写信号,提供四倍频鉴相和计数逻辑计算光栅尺位置量。FPGA内的功能模块如图2所示。

基于DSP处理器的红外电视调焦控制器设计

TL16C554地址译码模块:在FPGA内部,针对DSP的读写以及地址信号进行译码,为TL16C554提供读写信号以及片选等信号。

AD7864地址译码模块:对DSP的地址信号进行译码,为AD7864提供读写、片选以及通道选择等信号。

光栅尺逻辑计算模块:光栅尺输出两路正交的方波信号A、B和零位信号Z输入到FPGA中,在FPGA中实现对A、B信号的倍频及鉴相功能,然后通过16位计数器和锁存器与DSP相连,通过读取计数器的数值可得到光栅尺的位置数值,系统框图如图3所示。

基于DSP处理器的红外电视调焦控制器设计

3.实验验证与精度分析

3.1 实验验证

调焦系统由安装在望远物镜筒上的光学机械部分和电控部分组成。光学机械部分包括调焦组件、变倍组件等。电控系统以DSP2833为核心处理器,利用FPGA实现时序和逻辑控制,配以外围电路、执行电机及位置反馈部件。电控系统位置反馈采用精密线绕电位器和光栅尺,执行电机采用步进电机、超声电机和永磁直流电机。变倍系统两端靠电限位和机械限位来保证定位。

根据以上设计方案进行实践,调焦电控系统采用两块电路板进行工作,分别为控制电路板和功率驱动板。图4为控制电路板,图5为功率驱动板。通过试验,较好的完成了红外电视自动调焦及变倍功能。

基于DSP处理器的红外电视调焦控制器设计

基于DSP处理器的红外电视调焦控制器设计

3.2 精度分析

3.2.1 红外电视调焦控制

红外电视调焦范围为200m~∞,调焦执行电机选用海顿直线电机型号为21000系列Size 8直线步进电机,步长为0.0015mm,其工作电压为5V,每相电流为0.24A,在每秒钟1000步的速度下可产生60N的推力。满足使用要求。位置反馈采用增量式光栅尺。

调焦电控系统误差来源是直线步进电机的步长与光栅尺的精度。直线步进电机步长0.0015mm.由以上条件计算得出如下结论:

a)直线步进电机步长为0.0015mm,调焦机构的分辨力为直线步进电机的步长为0.0015mm;b)采用光栅尺作为位置测量传感器,其测量精度高,其测量精度可达5μm,满足±0.01mm的分辨力精度要求;c)每秒钟1000步的速度是电机的常用速度,也就是每秒钟行程为1.5mm,因此该速度满足调焦时间的要求。

3.2.2 红外电视变倍控制红外两档变倍电机选用江苏春生公司的超声电机,型号为TRUM-60.红外变倍系统为100mm/300mm两档变倍,采用半自动控制方式,由电控系统控制超声电机切换变倍镜组,从而切换红外电视的焦距。

超声电机的断电自锁特性保证了旋转变倍机构的稳定性。超声电机断电自锁力矩大于其驱动力矩30%左右。超声电机的旋转轴与变倍镜组的外壳直接连接,这种结构简单可靠,并且占用空间小。

由于超声电机的转速可以达到4~150r/min,对于这种只需要转动90度的变倍机构,如果要求切换时间小于2s,则只要转速n满足:

基于DSP处理器的红外电视调焦控制器设计

就可以满足使用要求。因此采用的超声电机完全满足技术要求。

4.结论

光电跟踪测量系统红外电视的调焦控制是该系统能够稳定高精度跟踪目标的关键技术,采用DSP为核心处理器、FPGA为时序和逻辑控制器设计的红外电视调焦控制器,通过实践检验和精度分析,满足了光电跟踪系统根据目标距离、环境温度等参数实时进行焦距调整的技术指标要求。

转自: icbuy.com

围观 275

TMS320C6678是KeyStone架构的8核DSP处理器,每个CorePac核的频率最高为1.25 GHz,提供强大的定点和浮点运算能力,同时芯片内部集成了Multicore Navigator、RapidIO、千兆以太网和EDMA等外设,由于芯片处理能力强,外设功能丰富,而且片内集成了大量的硬件加速器,例如Packet Accelerator、Multicore Navigator等,可以广泛地应用在通信、雷达、声纳、火控、电子对抗等领域。从目前的情况看,由于C6678的以上优异的特性,基于TMS320C6678的硬件和软件平台,在未来的5~10年内,将是信号处理平台主流。

下图展示的是C6678内部构造图

 TI C6678多核DSP的架构简介

TMS320C6678有8个C66x核,典型速度是1GHz,每个核配置为:32KB Level 1 Data SRAM,它和DSP 核运行在相同的速度上,可以被用作普通的数据存储器或数据cache;

32KB Level 1 Program SRAM, 它和DSP 核运行在相同的速度上,可以被用作普通的程序存储器或程序cache;512KB LL2 SRAM, 它的运行速度是DSP 核的一半,可以被用作普通存储器或cache,既可以存放数据也可以存放程序;所有DSP核共享4MB SL2 SRAM, 它的运行速度是DSP 核的一半,既可以存放数据也可以存放程序。一个64-bit 1333MTS DDR3 SDRAM接口可以支持8GB外部扩展存储器。C6678 集成一个64-bit 1333MTS DDR3 SDRAM 接口,可以支持8GB 外部扩展存储器,既可以存放数据也可以存放程序。它的总线宽度也可以被配置成32 bits 或16 bits。

存储器访问性能对 DSP 上软件运行的效率是非常关键的。在 C6678 DSP 上,所有的主模块,包括多个DSP 核和多个DMA 都可以访问所有的存储器。

每个DSP 核每个时钟周期都可以执行最多128 bits 的load 或store 操作。在1GHz 的时钟频率下,DSP 核访问 L1D SRAM 的带宽可以达到 16GB/S。当访问二级(L2)存储器或外部存储器时,访问性能主要取决于访问的方式和cache。

每个 DSP 核有一个内部 DMA (IDMA),在 1GHz 的时钟频率下,它能支持高达 8GB/秒的传输。但IDMA 只能访问L1 和LL2 以及配置寄存器,它不能访问外部存储器。DSP 的内部总线交换网络,TeraNet,提供了C66x 核 (包括其本地存储器),外部存储器, EDMA 控制器,和片上外设之间的互联。总共有 10 个 EDMA 传输控制器可以被配置起来同时执行任意存储器之间的数据传输。芯片内部有两个主要的TeraNet模块,一个用 128 bit 总线连接每个端点,速度是DSP 核频率的1/3,理论上,在1GHz 的器件上每个端口支持 5.333GB/秒的带宽;另一个TeraNet内部总线交换网络用 256 bit 总线连接每个端点,速度是DSP 核频率的1/2,理论上,在1GHz 的器件上每个端口支持16GB/秒的带宽。

汇总如下图所示

 TI C6678多核DSP的架构简介

转自: Inspire的博客

围观 775
订阅 RSS - DSP处理器