DDR

我们都知道源同步方式的典型代表是DDRx信号,下面就来介绍源同步方式是怎样改善系统同步的先天不足的。

源同步要解决的第一个问题是减少在芯片之间传输数据所需的I/O引脚数量。这通过将芯片#1的输出处的n位数据复用到k位互连(k

并行通信源同步方式介绍

当然,虽然引脚数量要求已经通过k:n的比率降低,但是参考时钟的所需频率已经增加了这个比率的倒数。由于噪声,电磁干扰(EMI)和功耗问题,系统设计人员通常不喜欢在系统内分配高速参考时钟。通常,分配较低频率的时钟,并且使用芯片中的PLL将该参考时钟乘以可用频率,但所产生的时钟相位的变化以及数据传输的频率越高,往往会加剧并行数据总线的时序问题。

源同步的第二个法宝就是在两个芯片之间的数据通路中增加了一个高速时钟,如下图所示。假设该时钟源提供的时钟频率略低于在芯片互连上对数据进行触发的时钟频率,每个芯片都使用PLL来产生这个频率倍数的时钟,所得到的时钟用于启动和捕获相应芯片中的数据。芯片#1中用于从该芯片启动数据的PLL的输出时钟也是该芯片的输出,芯片#2使用该时钟来捕获数据,这种方法称为时钟转发。

并行通信源同步方式介绍

时钟转发的优点是用于在芯片#1上启动数据的高速时钟可用于芯片#2作为捕获数据的参考。这样之前通过时钟分配网络驱动两个芯片的延迟的变化在时序分析中就不需要考虑了,只有时钟路径和数据位之间的延迟变化是相关的。 虽然制程,电压和温度导致的这些路径之间的变化在一定程度上相互影响,但接口的时序分析需要的余量较少,因此建立和保持时间更容易满足。

我们还是来看看典型的例子吧,图中所示的时钟可以是单数据速率(SDR)或双倍数据速率(DDR)的时钟,如下图所示。SDR就是接收芯片在SDR时钟的每个上升沿(或每个下降沿)捕获数据; 而DDR则是接收芯片捕获DDR时钟的每个边沿(上升沿和下降沿)的数据。

并行通信源同步方式介绍

无论时钟是SDR还是DDR时钟,接收芯片都使用该时钟直接捕获数据。 该芯片还使用参考时钟以相同的频率生成内部系统时钟,这些时钟是中间同步的。 虽然频率相同(鉴于它们共享共同的频率参考),但是时钟之间的相位关系是未知的,并且可能由于PVT变化而变化。 因此,接收芯片通常将接收到的数据从接口时钟域重新定时到内部芯片时钟的时钟域。 FIFO用于执行此重定时功能, 期望最小化由接口时钟计时的触发器的数量,以便最小化时钟分配网络中的延迟,否则时钟问题将会加剧。

来源: 一博科技

围观 343

DDR布线在PCB设计中占有举足轻重的地位,设计成功的关键就是要保证系统有充足的时序裕量。要保证系统的时序,线长匹配又是一个重要的环节。我们来回顾一下,DDR布线,线长匹配的基本原则是:地址,控制/命令信号与时钟做等长。数据信号与DQS做等长。为啥要做等长?大家会说是要让同组信号同时到达接收端,好让接收芯片能够同时处理这些信号。那么,时钟信号和地址同时到达接收端,波形的对应关系是什么样的呢?我们通过仿真来看一下具体波形。

建立如下通道,分别模拟DDR3的地址信号与时钟信号。

DDR布线举足轻重,一文看懂背后的大学问
图1 地址/时钟仿真示意图

为方便计算,我们假设DDR的时钟频率为500MHz,这样对应的地址信号的速率就应该是500Mbps,这里大家应该明白,虽然DDR是双倍速率,但对于地址/控制信号来说,依然是单倍速率的。下面来看看波形,在地址与时钟完全等长的情况下,地址与数据端的接收波形如下图2,红色代表地址信号,绿色代表时钟信号。

DDR布线举足轻重,一文看懂背后的大学问
图2 时钟信号与地址信号波形

上面的波形我们似乎看不出时钟与地址之间的时序关系是什么样的,我们把它放在一个眼图中,时序关系就很明确了。这里粗略的计算下建立时间与保持时间。如下图

DDR布线举足轻重,一文看懂背后的大学问
图3 时钟信号与地址信号波形

由上图3.我们可以知道,该地址信号的建立时间大约为891ps,保持时间为881ps。这是在时钟与地址信号完全等长情况下的波形。如果地址与时钟不等长,信号又是什么样的呢?仿真中,我们让地址线比时钟线慢200ps,得到的与眼图如下:

DDR布线举足轻重,一文看懂背后的大学问
图4 时钟信号与地址信号波形

由上图可知,在地址信号比时钟信号长的情况下,保持时间为684ps,建立越为1.1ns。可见,相对于地址线与时钟线等长来说,地址线比时钟线长会使地址信号的建立时间更短。同理,如果时钟线比地址线长,则建立时间会变长,而保持时间会变短。那么双倍速率的数据信号又是怎样的?下面通过具体的仿真实例来看一下。

DDR布线举足轻重,一文看懂背后的大学问
图5 DQ 与 DQS仿真示意

仿真通道如上图所示,驱动端和接收端为某芯片公司的IBIS模型,仿真波形如下:

DDR布线举足轻重,一文看懂背后的大学问
图6 DQ与DQS仿真波形

我们将DQS和DQ信号同时生成眼图,在一个窗口下观测,结果如下:

DDR布线举足轻重,一文看懂背后的大学问
图7 DQ与DQS眼图

如上图所示,大家可能发现了,如果按照原始对应关系,数据信号的边沿和时钟信号的边沿是对齐的,如果是这样,时钟信号怎样完成对数据信号的采样呢?实际上并不是这样的。以上仿真只是简单的将两波形放在了一起,因为DQ和DQS的传输通道长度是一样的,所以他们的边沿是对齐的。实际工作的时候,主控芯片会有一个调节机制。一般数据信号会比DQS提前四分之一周期被释放出来,实际上,在颗粒端接收到的波形对应关系应该是这样的:

DDR布线举足轻重,一文看懂背后的大学问
图8 平移后的眼图

通过主控芯片的调节之后,DQS的边沿就和DQ信号位的中心对齐了,这样就能保证数据在传输到接收端有足够的建立时间与保持时间。和上面分析时钟与地址信号一样,如果DQ与DQS之间等长做的不好,DQS的时钟边沿就不会保持在DQ的中间位置,这样建立时间或者保持时间的裕量就会变小。先简单的来看一张图

DDR布线举足轻重,一文看懂背后的大学问
图9 延时偏差对时序的影响

上图中,T_vb与T_va表示的是主控芯片在输出数据时时钟与数据之间的时序参数。在理想情况下,时钟边沿和数据电平的中心是对齐的,由于时钟和数据传输通道不等长,使得时钟边沿没有和数据脉冲的中间位置对其,使得建立时间的裕量变小。在理解了这些基础问题之后,我们需要做的就是将这些时间参数转化为线长。

下面我们通过具体实例来看看时序的计算,下图是Freescale MPC8572 DDR主控芯片手册,这张图片定义了从芯片出来的时候,DQS与DQ之间的相位关系。

DDR布线举足轻重,一文看懂背后的大学问
图10 MPC8572时序图

DDR布线举足轻重,一文看懂背后的大学问
图11 MPC8572时序参数

颗粒端为美光DDR,该芯片的时序图以及时序参数如下图所示,这张图片则定义了颗粒端芯片识别信号所需要的建立时间与保持时间。

DDR布线举足轻重,一文看懂背后的大学问
图12 DDR颗粒时序图以及时序参数

我们用T_pcbskew来表示DQ与DQS之间的延时偏差,如果想要得到足够的时序裕量,则延时偏差要满足以下关系:

  T_pcbskew《T_vb-T_setup
  T_pcbskew》T_hold-T_va
  代入数据,有:
  T_vb-T_setup=375-215=160ps
  T_hold-T_va=-160ps

这样,如果传输线的速度按照6mil/ps来计算,T_pcbskew为+/-960mil。大家会发现裕量很大,当然这只是最理想情况,没有考虑时钟抖动以及数据信号的抖动,以及串扰、码间干扰带来的影响,如果把这些因素都考虑进来,留给我们布线偏差的裕量就比较小了。

综上所述,时序控制的目的就是要保证数据在接收端有充足的建立时间与保持时间,明白了这一点,我们在线长匹配这个问题上就能做到胸有成竹,游刃有余了。

来源: EEPW

围观 441
订阅 RSS - DDR