DC-DC

大家好,您的产品是36V/48V/72V或者96V系统吗?如果是的话,大概率是要使用到DC-DC芯片。

因应电机驱动类芯片越来越高集成化的明朗趋势,我们灵动微电子最新推出的MM32SPIN080G专门集成了HV-Buck控制电路,同时预驱耐压高达200V,特别适合应用到36V到100V电压区段的产品中去。当然这颗料也同样可以用在36V以下的系统。

具体来说:

在5.5V~15V应用中,系统输入电压直接给VCC12供电,HV-Buck模块可以不使用,这种情况下建议将CSR引脚(PIN5)接地;

在15V~100V系统应用中,系统输入电压给HV-Buck模块的VIN供电(PIN1),VCC12为HV-Buck模块的输出。VCC12默认给芯片内部5.0V LDO供电,同时给外部预驱芯片供电。

1.png

使用MM32SPIN080G进行设计可以省掉原本的DC-DC芯片,无需再进行DC-DC芯片的选型,既降低了BOM成本,又节省了板上空间,为您的产品带来更高的性价比,在激烈竞争中助力您的产品拿到更多市场份额,何乐而不为。

接下来和小编一起来了解它的整体规格吧。

MM32SPIN080G是灵动MindSPIN旗下高性能的单电机控制SOC产品,采用Cortex-M0内核,集成200V三相N沟道栅极驱动器。

1、存储及运算资源:32KB Flash,4KB SRAM,最高主频60MHz

2、7个定时器资源:1个16位高级定时器、1个32位通用定时器、3个基本定时器、1个12位IWDG、1个24位Systick

3、支持2通道DMA

4、硬件除法器HW-Div

5、1路12位模数转换器ADC,支持11通道,采样速率1Msps

6、2路模拟比较器COMP、2路轨对轨运算放大器OPAMP

7、三相N沟道栅极驱动器

8、支持UART/SPI通信

9、LDO工作电压支持5.5-18V

10、内置DC/DC支持电压至100V

11、工作环境温度 -40℃~105℃

12、提供QFN48和QFN32 4x4封装

适用于多种应用场合:

园林工具、高压服务器风机、电机控制

快快打开链接下载套件吧:

https://www.mindmotion.com.cn/support/development_tools/evaluation_boards/motor_dk/mm32spin080g/ 

来源:灵动MM32MCU

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。


围观 3

本文旨在解决DC-DC开关稳压器的功率级设计中面临的复杂难题,重点分析 电感问题。设计人员为了获得各种优势,例如减少输出纹波和尽量缩减解决方案尺寸,往往会选择超出推荐范围的电感值。然而,选择电感值过大或过小的元件都会导致意想不到 的后果,可能会造成芯片严重损坏并降低效率。本文还将分析探讨:如果不采取适当的措施,确保负载电流不会超过电感的最大饱和额定值,会出现什么情况。

01、什么是开关模式电源

SMPS是一种高效稳压器,可降低输入电压(降压转换器)、升高输入电压(升压转换器),或同时执行这两种操作(降压-升压转换器)。图1所示为基本开关转换器拓扑。

1.png

图1. 常见的SMPS拓扑及其输出公式。

每个SMPS都以同样的方式工作:将能量存储在电感器中,并利用脉宽调制(PWM)技术来获得所需的输出。这些转换器都应遵循伏秒平衡定律,即在稳态下工作时,电感在一个周期内的平均 电流必须为零。因此,电感器必须在另一个周期开始之前,将充电阶段存储的所有电流放电。

02、降压转换器操作

本文仅使用降压转换器来演示常见的设计错误。降压转换器的功率级由以下四个元件组成:电感器、输出电容器、顶部FET(由开关表示)和底部FET(由二极管表示),见图2。

2.png

图2. 简化的降压转换器功率级。

电感器两端的电压通过以下公式计算:VL = L diL/dt。该电压是开 关节点与输出电压之间的差值。当顶部FET导通时,VL 是输入电压和输出电压之间的差值。当顶部FET关断时,由于开关节点接地,因此差值为0 V减去输出。diL/dt (或 ΔiL) 是电感电流随时间的变化量,通常称为电感电流纹波。当顶部FET闭合(底部FET断开)时,随着流经电感器的电流增加,电感器以磁通量的形式存储能量。当顶部FET断开,磁场消失时,底部FET会形成接地路径,从而使电流在减小时仍能够流向负载。图3所示的电感电流波形中可以看出这一点。输出电容用于获得平稳的输出纹波,并协助保持所需的输出电压。降压转换器的输出电压由VOUT = DVIN得出,其中D是占空比,定义为顶部FET导通并对电感器充电的时间占总周期时间的百分比。

3.png

图3. 电感电流波形。当顶部FET导通时,流经电感器的电流充电;当顶部FET关断时,流经电感器的电流放电。

03、推荐的电感器尺寸

在设计SMPS时,必须选择正确的电感值,以确保电感电流纹波(ΔiL))在可接受范围内。建议降压转换器的电感纹波应介于所施加负载电流的30%至40%之间。通常认为此范围比较理想,既足以捕获准确的信号并将其传送到电流模式控制反馈系统,又不会过大,导致电源进入断续导通模式(DCM)。DCM是一种状态,在该状态下,因电流纹波太大而迫使电流低于0 A,以便将负载电流维持在所需值。然而,一旦达到0 A,FET内部的二极管就不再导 通,从而防止电流降至0 A以下。一般基于以下公式来正确选择电感:

4.png

此公式表明,开关频率与电感成反比,这意味着频率越高,充电时间就越短,从而可以使用更小的电感实现正常操作(节省占用空间和成本)。

04、电感器饱和

在SMPS设计中,常见的一种灾难性错误就是在选择功率电感时忽略了电流饱和额定值。当流经电感的电流超过饱和电流额定值时,电感器铁芯饱和,这意味着产生的磁场将不再与消耗的 电流成比例地增加。这会破坏伏秒平衡定律,导致电感电流纹波和输出电压纹波失去线性特性。当铁芯饱和时,电感值会迅速降低,其行为更像电阻而不是电感。由于电感器的有效串 联电阻(ESR)增加,而实际电感减小,因此,为了满足伏特秒平衡,电流变化量将被迫增加。在饱和电流波形中观测到尖峰是电流斜率呈指数增加造成的,如图4所示。该电流尖峰会影响输 出电压,从而导致更多噪声和电压尖峰,如图5所示。如果电压尖峰过大,超过下游元件的最大电压额定值,噪声和电压尖峰可能会损坏下游元件,并降低EMI性能。

5.png

图4. 饱和电感电流波形。波形在电流超过饱和额定值之前表现正常。

6.png

图5. 饱和电感输出纹波。尖峰会延续到输出,其中包含噪声和电压尖峰。

此外,在电流波动较大的情况下,电感器会经历快速磁滞损耗,从而导致电感器散热过多(如图6所示)并产生可闻噪声。过多的热量可能会损坏附近的其他元件(尤其是稳压器芯片本身)。

7.png

图6. 电感器饱和散热温度为226°F (107.78°C)。

为避免出现此问题,设计人员应选择额定电流至少比预期最大电流高两倍的电感器。在计算最大电流时,一定要考虑电感电流纹波以及输出端消耗的负载电流。此外,设计人员还可以参 考所选电感器的数据手册,了解在多大电流下电感值会降低10%到30%,这就是饱和的定义。选择具有适当饱和电流额定值的电感器将会使系统正常运行,如图7中流经电感器的线性电流所 示。输出电压尖峰将会消失,如图8所示。最后,系统将在更低的温度下运行(如图9所示),从而减少对设备的影响并延长设备的使用寿命。

8.png

图7. 标称电感电流波形。

9.png

图8. 标称电感输出纹波。

10.png

图9. 标称电感散热温度为99.7°F ( 37.61°C)。


05、超小电感器面临的难题

设计人员通常为了节省占用空间更倾向选择电感值较小的电感,这样的电感器线圈数量较少,因此外形尺寸较小。然而,如果电感器太小,纹波电流就会很大,并会迫使转换器进入DCM模式,这对于SMPS来说是不可取的,因为器件的效率会降低,电磁干扰(EMI)性能也会变差。当开关节点出现振铃时,可能会观测到这种EMI性能下降现象,这是由寄生效应和LC谐振电路(产生谐振电路)引起的,如图10所示。这种振铃会影响输出电压,从而导致更大的纹波和更多的电压尖峰,如图11所示。此外,电源不再处于连续导通模式(CCM),并且推导出的SMPS输出公式不再适用。

11.png

图10. 超小电感输出波形。如果无法获得电感电流,也会在开关节点处观测到振铃现象。

12.png

图11. 超小电感电流波形。电流和RSENSE中出现振铃表明电源处于DCM模式。

为了解决此问题,设计人员应选择能够提供约30%至40%电流纹波的电感。这样就会降低电感电流纹波的幅度,使器件从DCM返回CCM模式,如图12所示。这也会改善输出电压纹波,消除电压尖峰,如图8所示。如果设计人员在计算所需电感值和选择适用元件时遇到困难,可以使用LTPowerCAD 来协助设计和选择功率级元件。

13.png

图12. 标称电感电流波形。

06、超大电感器面临的难题

连接到SMPS的下游电子元件通常具有指定的电源电压和相关容差。如果电压轨上的纹波过大,将严重影响系统的运行。例如,如果微控制器的电源规格为3.3 V ±50 mV,则纹波大于±50 mV可能会导致微控制器关闭。设计人员一般通过增加电感器的尺寸来减少 这种纹波。然而,如果电感器尺寸过大,电流纹波以及输出电压纹波会显著减少。尽管这听起来可取,但它会导致反馈系统出现问题,而且还会导致瞬态响应变慢。小纹波将使串联检测电阻很难检测到变化,从而使传递到反馈环路的常见三角波形失真。当电感电流纹波较小时,信噪比(SNR)会降低。这会导致反馈环路将噪声记录为电感器信号,从而导致输出信号不稳定(表现为抖动),如图13所示。

14.png

图13. 输出不稳定造成抖动。超大电感输出波形表现出持续特性。突出显示的波形采用标称电感捕获。

此外,电感值越大,饱和电流额定值通常越小。这可能会导致电感饱和,对于器件而言非常危险,如"电感器饱和"部分所述。超大电感饱和带来的影响如图14所示。

15.png

图14. 电感值为标称值22倍的电感器的饱和电感输出波形。额定电流不会随电感成比例增加。

为了缓解此问题,设计人员切记,输出电压纹波可通过改变输出电容选择来控制。通过增加输出电容器的值或降低其ESR,可以减少输出电压纹波,而无需增加电感器的值。这样电感电流纹波值保持在30%到40%之间,从而使检测架构能够正确获取信号。这一点可以从图15中看出。

16.png

图15. 标称检测电阻波形。

07、结论

本文可作为分析降压转换器中电感器设计问题的指南。此外,本文旨在为设计人员提供实用解决方案,避免出现文中所述的任何干扰行为。通过适当调整电感大小,将电感纹波保持在输出的30%至40%范围内,对于确保器件保持在CCM状态,并且不会引起干扰抖动或饱和至关重要,这种抖动或饱和可能会对负载或稳压器芯片本身造成致命影响

来源:亚德诺半导体

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 24

一、 概念及特点

1.概念:

DC-DC指直流转直流电源(Direct Current)。是一种在直流电路中将一个电压值的电能变为另一个电压值的电能的装置。如,通过一个转换器能将一个直流电压(5.0V)转换成其他的直流电压(1.5V或12.0V),我们称这个转换器为DC-DC转换器,或称之为开关电源或开关调整器。

DC-DC转换器一般由控制芯片,电感线圈,二极管,三极管,电容器构成。在讨论DC-DC转换器的性能时,如果单针对控制芯片,是不能判断其优劣的。其外围电路的元器件特性,和基板的布线方式等,能改变电源电路的性能,因此,应进行综合判断。

DC-DC转换器的使用有利于简化电源电路设计,缩短研制周期,实现最佳指标等,被广泛用于电力电子、军工、科研、工控设备、通讯设备、仪器仪表、交换设备、接入设备、移动通讯、路由器等通信领域和工业控制、汽车电子、航空航天等领域。具有可靠性高、系统升级容易等特点,电源模块的应用越来越广泛。此外,DC-DC转换器还广泛应用于手机、MP3、数码相机、便携式媒体播放器等产品中。在电路类型分类上属于斩波电路。

2.特点:

其主要特点是效率高:与线性稳压器的LDO相比较,效率高是DCDC的显著优势。 通常效率在70%以上,重载下高的可达到95%以上。其次是适应电压范围宽。

A: 调制方式

1: PFM(脉冲频率调制方式)

开关脉冲宽度一定,通过改变脉冲输出的频率,使输出电压达到稳定。PFM控制型即使长时间使用,尤其小负载时具有耗电小的优点。

2: PWM(脉冲宽度调制方式)

开关脉冲的频率一定,通过改变脉冲输出宽度,使输出电压达到稳定。PWM控制型效率高并具有良好的输出电压纹波和噪声。

B: 通常情况下,采用PFM和PWM这两种不同调制方式的DC-DC转换器的性能不同点如下。

PWM的频率,PFM的占空比的选择方法。PWM/PFM转换型小负载时实行PFM控制,且在重负载时自动转换到PWM控制。

二、架构分类

1)常见的三种原理架构:

A、 Buck(降压型DC/DC转换器)

图1

B、Boost(升压型DC/DC转换器)

图2

C、Buck-Boost(升降压型DC/DC转换器)

图3

2)Buck电路工作原理详解

图4

伏秒平衡原则:处于稳定状态的电感,电感两端的正伏秒积等于负伏秒积,即:电感两端的伏秒积在一个开关周期内必须平衡。

图5

当开关导通时:输入电压Vin加到LC滤波器的输入端,电感上的电流以固定斜率线性上升。如下图

图6

当开关关断时:由于电感上的电流不能突变,电感中存储的能量向负载释放,电感电流通过二极管续流 ,在这个阶段,电流波形是一条斜率为负的斜线。如下图

图7


图8

三、 设计技巧及主要技术参数选用要求

DC-DC电路设计至少要考虑以下条件:

A.外部输入电源电压的范围,输出电流的大小。

B. DC-DC输出的电压,电流,系统的功率最大值。

1.输入/输出电压(Input &Output Voltage):Vin/Vout

要按照器件的推荐工作电压范围选用,并且要考虑实际电压的波动范围,确保不能超出器件规格。

2.输出电流(Output Current):Iout

器件持续的输出电流能力是一个重要的参数,选用时要参考此参数,并要保留一定的余量。

此参数的选取还要评估电路的瞬间峰值电流和发热的情况,综合来确定,并满足降额要求。

3.纹波(Output ripple):Vpk-pk

纹波是衡量电路的输出电压波动的重要参数。要关注轻载和重载纹波,一般轻载纹波要大。注意核电等场合下轻载纹波是否会超出要求。实际测试下各种场景负载下的情况。通常选用示波器20M带宽来测试。

4.效率(Efficiency):

要同时关注轻载和重载两种情况。轻载会影响待机功率,重载影响温升。通常看12V输入,5V输出下10mA的效率,一般要80%以上。

5.瞬态响应 (Transient response):

瞬态响应特性反应负载剧烈变化时系统是否能及时调整以保证输出电压的稳定。要求输出电压波动越小越好,一般按峰峰值10%以下要求。

实际要注意按推荐值选用反馈电容。常见取值在22p到120pF。

图9

6.开关频率(Switching Frequency) :fsw

常用的开关频率多数在500kHz以上。较高的开关频率1.2M到2M的也有,由于频率高开关损耗增加IC散热设计要好,故主要集中在5V低压输入小电流的产品。开关频率关系到电感电容的选用,其它如EMC,轻载下噪音等问题也与之有关。

7.反馈参考电压及精度(Feedback Voltage &output accuracy) :Vref

反馈电压要与内部的参考电压相比较,配合外部的反馈分压电阻,输出不同电压。不同产品的参考电压会有不同,如0.6~0.8V,替换时注意调整反馈电阻。

反馈电阻要选用1%精度,值要根据厂家推荐来选,一般不要选的过大,以免影响稳定性。

参考电压精度影响输出准确度,常见精度在2%以下,如1%~1.5%,精度高的产品成本会有差别。根据需要选择。

8.线性稳定度和负载稳定度(line/load regulation):

线性稳定度反应输入电压变化输出电压稳定性。负载稳定度反应输出负载变化输出电压稳定性。一般要求1%,最大不要超3%。

9. EN电平:

EN高低电平要满足器件规格要求,有些IC不能超出特定电压范围;电阻分压时注意满足及时关断,并且考虑电压波动最大范围内要满足。

由于时序控制的需要,该引脚会增加电容,为了电平调节和关断放电,同时要有对地电阻。

10.保护性能:

要有过流保护OCP,过热保护OTP等,并且保护后条件消失能自恢复。

11.其它:

要求有软启动;热阻和封装;使用温度范围要能覆盖高低温等。

四、器件选型一般原则:

✔ 普遍性
✔ 高性价比
✔ 易采购生命周期长
✔ 兼容和可替代
✔ 资源节约
✔ 降额
✔ 易生产和归一化

五、外围器件选择的要求

1.输入电容:要满足耐压和输入纹波的要求。一般耐压要求1.5~2倍以上输 入电压。注意瓷片电容的实际容量会随直流电压的偏置影响而减少。

2.输出电容:要满足耐压和输出纹波的要求。一般耐压要求1.5~2倍 。

纹波和电容的关系:


3.BST电容:按照规格书推荐值。一般0.1uF-1uF。耐压一般要高于输入电压。

4.电感:不同输出电压的要求感量不同;注意温升和饱和电流要满足余量要求,一般最大电流的1.2倍以上(或者电感的饱和电流必须大于最大输出电流+0.5*电感纹波电流)。通常选择合适的电感值L,使ΔIL占输出电流的30% to 50%。计算公式:


5. VCC电容:按规格书 要求取值,不能减小,也不要太大,注意耐压。

6.反馈电容:按规格书 要求取值,不同厂家芯片取值不同,输出电压不同也会有不同的要求。

7.反馈电阻和EN分压电阻:要求按规格书取值,精度1%。

六、 PCB设计要求

1.输入电容就近放在芯片的输入Vin和功率地PGND,减少寄生电感的存在,因为输入电流不连续,寄生电感引起的噪声对芯片的耐压以及逻辑单元造成不良影响 。电容地端增加过孔,减少阻抗。

2.功率回路尽可能的短粗,保持较小的环路面积,较少噪声辐射。SW是噪声源,保证电流的同时保持尽量小的面积,远离敏感的易受干扰的位置。如,电感靠近SW引脚,远离反馈线。输出电容靠近电感,地端增加地过孔。

3. VCC电容应就近放置在芯片的VCC管脚和芯片的信号地之间,尽量在一层,不要有过孔。

4.FB是芯片最敏感,最容易受干扰的部分,是引起系统不稳定的最常见原因 。

1)FB电阻连接到FB管脚竟可能短,靠近IC放置,减少噪声的耦合;FB下分压电阻通常接信号地AGND;

2)远离噪声源,SW点,电感,二极管(非同步buck);FB走线包地;

3)大电流负载的FB在负载远端取,反馈电容走线要就近取。

5.BST的电容走线尽量短,不要太细。

6.芯片散热要按设计要求,尽量在底下增加过孔散热。

七、 DC-DC型号和参数

Step-Up DC-DC Converter


来源:单片机与嵌入式 ,转载此文目的在于传递更多信息,版权归原作者所有。

围观 1042

DA913X-A产品系列具有完全集成的FET,提供高效率和小外形尺寸,仅需少量的外部元件

2020年9月1日 – 领先的电池管理、AC/DC电源转换、Wi-Fi、低功耗蓝牙(BLE)、工业IC供应商Dialog半导体公司宣布,推出最新高效大电流汽车级步降DC-DC(降压)转换器DA913X-A产品系列。

高度集成的DA913X-A系列器件所需的外部元件比竞争方案更少,实现更低的BOM成本和更小的解决方案尺寸。该系列器件的工作效率超过90%,可在许多汽车系统设计中降低大电流供电的散热挑战,包括车载信息娱乐系统、导航系统、遥测、高级驾驶辅助系统(ADAS)等。

DA913X-A系列包含三个器件,分别配置为单或双输出降压转换器。DA9130-A为单通道、双相降压转换器,提供最高10 A输出电流。DA9131-A集成了两个单相降压转换器,各提供最高5 A输出电流。DA9132-A也集成了两个单相降压转换器,各提供最高3 A输出电流。该系列所有器件的输入电压范围为2.5 V至5.5 V,输出电压范围为0.3 V至1.9 V,适合广泛的低电压系统。需要输出电压超过1.9V的,可以外接一颗电阻分压器。

Dialog半导体公司高级副总裁兼汽车业务部总经理Tom Sandoval表示:“Dialog持续推出新的PMIC解决方案以满足高性能舱内汽车电子系统不断提高的电源和热效率需求。汽车电子系统开发人员可以信赖Dialog具有成本效益、小尺寸的领先电源解决方案。”

DA913X-A产品系列具有满足今天复杂汽车电子系统需求的一系列关键特性:

  • 遥感可确保最高的准确性,并支持多种PCB布线场景,且不牺牲性能。
  • 完全可编程的软启动可限制输入端的浪涌电流,以提供斜率可控制的输出电压。
  • 动态电压控制(DVC)可根据负载自适应调整电源电压。当下游电路进入低功耗或待机模式时,这可以提高效率,从而节省功耗。
  • 可配置的GPIO支持包括I2C、DVC和电源正常指示器(Power Good indicator)等一系列特性。
  • 优化的BOM成本和尺寸:每个输出仅需一个非常小的电感和电容。

DA913X-A系列器件均通过AEC-Q100二级认证,采用3.3mm x 4.8mm 24引脚,可润湿侧翼(Wettable Flank)FC-QFN封装。该系列的工业级/商业级器件也可提供。

了解更多有关该新产品系列信息,敬请浏览网页:

DA9130-A:https://www.dialog-semiconductor.com/products/power-management/automotiv...

DA9131-A:https://www.dialog-semiconductor.com/products/power-management/automotiv...

DA9132-A:https://www.dialog-semiconductor.com/products/power-management/automotiv...

DA9130:https://www.dialog-semiconductor.com/products/power-management/pmics/da9130

DA9131:https://www.dialog-semiconductor.com/products/power-management/pmics/da9131

DA9132:https://www.dialog-semiconductor.com/products/power-management/pmics/da9132

敬请关注:

Dialog官方微信:Dialog_Semiconductor
Dialog官方微博:http://weibo.com/dialogsemi

关于Dialog半导体公司

Dialog半导体公司是推动物联网和工业4.0应用发展的领先标准和定制集成电路(IC)供应商。Dialog提供电池管理、低功耗蓝牙(BLE)、Wi-Fi、闪存和可配置混合信号IC等经市场验证的产品技术,帮助客户产品提升功率效率、缩短充电时间,并不断提高性能和生产效率。

Dialog采用无晶圆厂运营模式,作为雇主积极承担社会责任,开展各项活动造福员工、社区、其他相关利益方和自然环境。凭借数十年的技术经验和世界领先的创新实力,我们帮助设备制造商引领未来。我们对技术创新的热情和创业精神使我们始终在高能效半导体技术领域保持领先地位,助力物联网、移动、计算和存储、智慧医疗和汽车市场的发展。Dialog半导体公司总部位于英国伦敦附近,在全球设有销售、研发和市场营销办事处。2019年,Dialog实现了约14亿美元营业收入,并一直是发展最快的欧洲上市半导体公司之一。目前,公司在全球约有2300名员工。公司在德国法兰克福(FWB: DLG)证券交易所(Regulated Market, Prime Standard, ISIN GB0059822006)上市。

了解更多详情,敬请访问公司官网:www.dialog-semiconductor.com

围观 13

万用表是从事电工、电子技术工作者的必备工具,它的高阻挡通常使用一块9V、15A或22.5V的叠层电池。这种电池不但价格较高,而且寿命短,经常更换很不经济。这里介绍几款适合万用表使用的小型直流升压器电路,这些电路结构简单、元件少,改装后可将电路板直接置于万用表中叠层电池的位置替代使用。

直流升压电路

如图所示是一种输出电压可达22.5 V的直流升压器电路,可用来代替22.5 V的叠层电池。

它利用万用表中的一节1.5V电池供电,工作电流为25mA,输出电流约为0.5mA,用于万用表的高阻挡足够富裕。电路中VT1与VT2组成互补多谐振荡器,它的振荡频率约为2kHz。T是升压变压器,初级就是互补多谐振荡器的负载,次级为升压绕组,输出一个较高的脉冲电压。该电压经过二极管VD1和电容C2整流滤波后成为直流高压,再经过电阻R3与稳压管VD2稳压后可输出一个较稳定的高电压。

电路中变压器T可用晶体管收音机用的502型音频输出变压器,次级作为升压变压器的初级,初级中间的抽头不用,两端抽头作为升压变压器的次级。如果找不到合适的变压器,也可以用收音机输人输出变压器的硅钢片自制,初级用直径为0.25mm的高强度漆包线绕110匝,次级用直径0.21mm的高强度漆包线绕520匝。初次级间要加一层绝缘纸,并注意初次级线圈的同名端。


小型直流升压器

如图所示是一种构造很简单的小型直流升压器,可用来取代15V的叠层电池。电路的核心元件一变压器T使用的是袖珍验钞器的专用变压器。电路耗电约40mA,输出电压为15V。如果万用表15V电池的正极与1.5V电池的负极相接,只需将图7—70中VD1(C1、VDZ的极性调过来,这样将输出一个-15V电压)  


稳压型直流升压电路

如图所示是一种稳压型直流升压电路。该电路可将一节1.5V的电池升压至9V,用来取代9V叠层电池使用。电路空载输人电流低于1.2mA,转换效率高达60%。该电路由振荡电路和稳压电路构成,其中VT1、VT2、C2组成振荡器,色码电感L为储能电感,VD2为整流二极管,C3为输出滤波电容,VT3、VD1、VD3及R2为稳定输出电压的稳压电路。输出电压约等于VD3的稳压值。


逆变电源电路(一)

如图所示是一种利用1.2V、500mAh的镍镉电池做电源的逆变电源电路,输出直流电压为9V,可供数字式万用表使用。下图中变压器T利用15mm的磁环穿绕而成(元器件参数图中均已标注人名为数字万用表的电源开关。


逆变电源电路(二)

如图所示是自控式数字表逆变电源电路。它不需要单独设立电源开关或对表内开关进行改造。该电路具有耗电省、稳定可靠、不影响仪表精度等特点。电路中的变压器T是用E3型铁氧体磁芯、各折去一角后加工成口字形,L2在内,L1在外。整个逆变电源工作时,电池工作电流约为70mA。


简易仿制电路

下图为仿制电路:输入可低至0.8V,输出电流可达10mA

输出开路,输入电流为零。

T:E3日字型磁芯L1=18匝=125μH L2=180匝=12mH


来源:电子工程师笔记

围观 220
订阅 RSS - DC-DC