肖特基二极管

肖特基二极管因为几乎没有反向恢复trr。因此,可以在很高开关频率下运行,而VF又非常小,受到电源工程师的广泛青睐。不过,因为反向漏电流IR大,如下图1 所示,所以不适合用作高耐压元件,通常最高耐压可达200V。

“图1:不同二极管的静态输出特性"
图1:不同二极管的静态输出特性

瑞能半导体新推出第三代G3 肖特基二极管,电压范围覆盖45V/65V/100V/150V,产品组合丰富,多种封装 TO220/TO220F/ DPAK 可供客户选用。

G3 肖特基二极管,采用新一代的 TMBS 结构设计,实现超低VF和较小IR的完美组合,可以广泛应用于高频 SMPS 电源,PC适配器,照明,车载 DC/DC 转换器。

G3 肖特基二极管的市场应用

  • 高频 SMPS 电源
  • 适配器
  • 照明
  • 车载 DC/DC 转换器

G3 肖特基二极管的性能和优势

1、TMBS 结构设计,实现超低VF和较小漏电流的完美组合

2、低IR,最高结温可达150℃

3、低VF,带来更低的功率损耗,提高系统的效率

4、较强的正向浪涌冲击能力

5、覆盖 45V/65V/100V/150V 的工作电压范围

6、丰富的产品组合,提供有多种封装可供选择:TO220/TO220F/DPAK

静态特性对比

“图2:G3
图2:G3 SBD 在125℃的IF-VF特性

图2 给出了G3 SBD 在125℃的IF-VF特性。我们选择了一款市面上通用的45V 30A 肖特基二极管竞品A,作为瑞能 WN3S3045C 的对比对象。

在125℃,15A的电流条件下,竞品A的导通压降为0.53V,而瑞能第三代肖特基 WN3S3045C导通压降仅为0.47V。

和竞品A相比,WN3S3045C 降低了11.1%的导通压降,带来更低的功率损耗,提升系统的效率。

效率测试

“图3:DC/DC电源在不同负载条件下效率对比"
图3:DC/DC电源在不同负载条件下效率对比

我们在一款 DC/DC 电源上进行了对比测试。在效率对比测试中,除了更换测试用的肖特基二极管,其他的条件均不变。测试环境采用DC/DC 电源,输入电压为310VDC ,输出电压 (VOUT) 为3.3VDC,最大输出功率: 65W,拓扑结构:反激式电路,载波频率:100kHz。测试环境温度为25 ℃。

图3 给出了 DC/DC 电源在不同负载条件下效率对比。分别测试了25%负载到100%负载的系统效率以及系统损耗。从图3 可以看出,和竞品A相比,瑞能半导体的 G3 SBD WN3S3045C 在100%负载条件下,效率达到73.3%,效率显著提升。

“图4:满载条件下WN3S3045C的温升
图4:满载条件下WN3S3045C的温升

“图5:满载条件下竞品A的温升"
图5:满载条件下竞品A的温升

图4 和图5 给出了满载条件下, WN3S3045C 和竞品A 的温升的情况,对比可以看出,在满载情况下,WN3S3045C 的温升比竞品A 降低了7℃,这主要得益于瑞能 G3 SBD 优异的超低导通压降VF的特性。

结论

瑞能G3 SBD 肖特基二极管,采用最新的 TMBS 技术,实现超低VF和较小漏电流的完美组合,更低的正向导通压降VF,意味着更低的功率损耗,提升系统的效率,更低的漏电流,最高的结温可达150℃,并具有较强的正向浪涌冲击能力。

多种封装结构如采用行业标准TO220 封装,TO220F,DPAK 可以满足众多工程师不同设计的需求,并且所有封装类型均按照瑞能半导体高品质高标准要求进行测试,广泛满足工业应用要求,特别适合高频SMPS,电源适配器,照明电源,车载 DC/DC 转换器等应用。

瑞能G3 SBD 涵盖了 45V/65V/100V/150V 等电压等级范围,下方显示了瑞能第三代G3 SBD 肖特基二极管的器件列表。

后续还有 D2PAK 的封装即将面市。

“表1:瑞能第三代G3
表1:瑞能第三代G3 SBD 肖特基二极管 TO220 产品系列

“表2:瑞能第三代G3
表2:瑞能第三代G3 SBD 肖特基二极管TO220F 产品系列

“表3:瑞能第三代G3
表3:瑞能第三代G3 SBD 肖特基二极管DPAK 产品系列

来源:瑞能半导体
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 31

器件额定电流4 A~40 A,采用MPS结构设计,降低开关损耗和温变影响

2日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,推出十款新型650 V 碳化硅(SiC)肖特基二极管。Vishay Semiconductors器件采用混合PIN Schottky(MPS)结构设计,通过降低开关损耗提升高频应用能效,不受温度变化的影响—从而使二极管能够在更高的温度下工作。

日前发布的MPS二极管可屏蔽肖特基势垒产生的电场,减少漏电流,同时通过空穴注入提高浪涌电流能力。与硅肖特基器件相比,新型二极管处理电流相同的情况下,正向压降仅略有上升,坚固程度明显提高。

器件适用于服务器、电信设备、UPS和太阳能逆变器等应用领域的功率因数校正(PFC)续流、升降压续流和LLC转换器输出整流,为设计人员实现系统优化提供高灵活性。二极管采用2L TO-220AC和TO-247AD 3L封装,额定电流为4 A~40 A,可在+175 °C高温下工作。

器件规格表:

产品编号 IF(AV) (A) VRRM(V) 25 °C,
10 ms下IFSM(A)
IF和TJ下VF (典型值) TJ最大值 (°C) 封装
VF (V) IF (A) TJ (°C)
VS-C04ET07T-M3 4 650 26 1.75 4 150 175 2L TO-220AC
VS-C06ET07T-M3 6 650 39 1.7 6 150 175 2L TO-220AC
VS-C08ET07T-M3 8 650 57 1.7 8 150 175 2L TO-220AC
VS-C10ET07T-M3 10 650 68 1.75 10 150 175 2L TO-220AC
VS-C12ET07T-M3 12 650 80 1.65 12 150 175 2L TO-220AC
VS-C16ET07T-M3 16 650 120 1.65 16 150 175 2L TO-220AC
VS-C20ET07T-M3 20 650 160 1.6 20 150 175 2L TO-220AC
VS-C16CP07L-M3 16 650 53 1.7 8 150 175 TO-247AD 3L
VS-C20CP07L-M3 20 650 64 1.75 10 150 175 TO-247AD 3L
VS-C40CP07L-M3 40 650 160 1.55 20 150 175 TO-247AD 3L

新型SiC二极管现可提供样品并已实现量产,供货周期为10周。

VISHAY简介

Vishay 是全球最大的分立半导体和无源电子元件系列产品制造商之一,这些产品对于汽车、工业、计算、消费、通信、国防、航空航天和医疗市场的创新设计至关重要。服务于全球客户,Vishay承载着科技基因——The DNA of techÔ。Vishay Intertechnology, Inc. 是在纽约证券交易所上市(VSH)的“财富1,000 强企业”。有关Vishay的详细信息,敬请浏览网站 www.vishay.com

围观 19

可用于增强电力电子系统的效率、可靠性与热管理

3月27日,Littelfuse, Inc.宣布推出两款二极管,进一步扩大了其二代650V、符合AEC-Q101标准的碳化硅肖特基二极管系列。 相比传统的硅基器件,两个系列均为电力电子系统设计人员提供多种优势,包括可忽略不计的反向恢复电流、高浪涌保护能力以及175°C最高运行结温,因此是需要增强效率、可靠性与热管理的应用的理想选择。 这些产品将在加州安海姆举办的应用电力电子会议(APEC 2019)上亮相。Littelfuse展位号:253。

LSIC2SD065DxxA系列碳化硅肖特基二极管可提供6A、10A或16A额定电流,采用TO‑263-2L封装;LSIC2SD065ExxCCA系列碳化硅肖特基二极管可提供12A、16A、20A或40A额定电流,采用TO-247-3L封装。

这些碳化硅肖特基二极管相比标准的硅双极功率二极管耗散的能量更少,并可在更高的结温下工作。 相比这些解决方案,其需要的散热片和系统占用的空间均较小。 这些优势可为最终用户带来更加紧凑、能效更高的系统以及可能更低的总体拥有成本等优势。

新款650V碳化硅肖特基二极管的典型应用包括:

  • 电动汽车(EV)充电站
  • 直流-直流转换器的降压/升压阶段
  • 逆变器级的续流二极管
  • 高频输出整流
  • 功率因数校正(PFC)

“快速发展的650V碳化硅肖特基二极管系列新推出的这些产品可提供更广泛的电流额定值和封装设计选择,适合更广泛的应用。”Littelfuse碳化硅产品营销经理Christophe Warin表示。 “这些新款碳化硅肖特基二极管带来了各种设计优化机会,包括提高功率密度、提高效率并降低材料成本。”

新款650V碳化硅肖特基二极管具有以下关键优势:

  • 可提供TO‑263-2L和TO-247-3L封装以提高设计灵活性。
  • 符合AEC-Q101标准的二极管在要求严苛的应用中展现出卓越的性能。
  • 适合高频电源切换。
  • 操作安全、易于并联,可降低对相反开关的应力。
  • 175°C的最高工作结温可实现更大的设计余量以及更为宽松的热管理要求。

供货情况

LSIC2SD065DxxA系列碳化硅肖特基二极管可提供TO-263-2L封装,LSIC2SD065ExxCCA系列碳化硅肖特基二极管可提供TO-247-3L封装。 两者均提供卷带封装,最小起订量为800。 您可通过全球各地的Littelfuse授权经销商索取样品。 如需了解Littelfuse授权经销商名录,请访问littelfuse.com 。

更多信息

可通过以下方式查看更多信息:LSIC2SD065DxxA系列碳化硅肖特基二极管产品页面LSIC2SD065ExxCCA系列碳化硅肖特基二极管产品页面。如有技术问题,请联系Littelfuse碳化硅产品营销经理Christophe Warin,cwarin@littelfuse.com

围观 167

肖特基二极管是以其发明人肖特基博士(Schottky)命名的,是肖特基势垒二极管(Schottky Barrier Diode,缩写成SBD)的简称。

肖特基二极管原理及结构

和其他的二极管比起来,肖特基二极管有什么特别的呢?

SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。

一文读懂肖特基二极管的原理、优势缺点及应用

典型的肖特基整流管的内部电路结构是以N型半导体为基片,在上面形成用砷作掺杂剂的N-外延层。阳极使用钼或铝等材料制成阻档层。用二氧化硅(SiO2)来消除边缘区域的电场,提高管子的耐压值。N型基片具有很小的通态电阻,其掺杂浓度较H-层要高100%倍。在基片下边形成N+阴极层,其作用是减小阴极的接触电阻。通过调整结构参数,N型基片和阳极金属之间便形成肖特基势垒,如图所示。当在肖特基势垒两端加上正向偏压(阳极金属接电源正极,N型基片接电源负极)时,肖特基势垒层变窄,其内阻变小;反之,若在肖特基势垒两端加上反向偏压时,肖特基势垒层则变宽,其内阻变大。

肖特基整流管仅用一种载流子(电子)输送电荷,在势垒外侧无过剩少数载流子的积累,因此,不存在电荷储存问题(Qrr→0),使开关特性获得时显改善。其反向恢复时间已能缩短到10ns以内。但它的反向耐压值较低,一般不超过去时100V。因此适宜在低压、大电流情况下工作。利用其低压降这特点,能提高低压、大电流整流(或续流)电路的效率。

肖特基二极管的封装

肖特基二极管分为有引线和表面安装(贴片式)两种封装形式。 采用有引线式封装的肖特基二极管通常作为高频大电流整流二极管、续流二极管或保护二极管使用。它有单管式和对管(双二极管)式两种封装形式。肖特基对管又有共阴(两管的负极相连)、共阳(两管的正极相连)和串联(一只二极管的正极接另一只二极管的负极)三种管脚引出方式。

采用表面封装的肖特基二极管有单管型、双管型和三管型等多种封装形式,有A~19种管脚引出方式。

肖特基二极管的优势

SBD的主要优点包括两个方面:

1)由于肖特基势垒高度低于PN结势垒高度,故其正向导通和正向压降都比PN结二极管低(约低0.2V)。

2)由于SBD是一种多数载流子导电器件,不存在少数载流子寿命和反向恢复问题。SBD的反向恢复时间只是肖特基势垒电容的充、放电时间,完全不同于PN结二极管的反向恢复时间。由于SBD的反向恢复电荷非常少,故开关速度非常快,开关损耗也特别小,尤其适合于高频应用。

肖特基二极管的缺点

肖特基二极体最大的缺点是其反向偏压较低及反向漏电流偏大,像使用硅及金属为材料的肖特基二极管,其反向偏压额定耐压最高只到 50V,而反向漏电流值为正温度特性,容易随着温度升高而急遽变大,实务设计上需注意其热失控的隐忧。为了避免上述的问题,肖特基二极体实际使用时的反向偏压都会比其额定值小很多。当然,随着工艺技术和肖特基二极管技术的进步,其反向偏压的额定值也再提高。

肖特基二极管的重要参数

肖特基二极管应用广泛,特别是在开关电源当中。在不同的应用中,需要考虑不同的因素,而且,不同的器件在性能上也有差别,因此,在选用肖特基二极管时,下面这些参数需要综合考虑。

1、导通压降VF

VF为二极管正向导通时二极管两端的压降,当通过二极管的电流越大,VF越大;当二极管温度越高时,VF越小。

2、反向饱和漏电流IR

IR指在二极管两端加入反向电压时,流过二极管的电流,肖特基二极管反向漏电流较大,选择肖特基二极管是尽量选择IR较小的二极管。

3、额定电流IF

指二极管长期运行时,根据允许温升折算出来的平均电流值。

4. 最大浪涌电流IFSM

允许流过的过量的正向电流。它不是正常电流,而是瞬间电流,这个值相当大。

5.最大反向峰值电压VRM

即使没有反向电流,只要不断地提高反向电压,迟早会使二极管损坏。这种能加上的反向电压,不是瞬时电压,而是反复加上的正反向电压。因给整流器加的是交流电压,它的最大值是规定的重要因子。最大反向峰值电压VRM指为避免击穿所能加的最大反向电压。目前肖特基最高的VRM值为150V。

6. 最大直流反向电压VR

上述最大反向峰值电压是反复加上的峰值电压,VR是连续加直流电压时的值。用于直流电路,最大直流反向电压对于确定允许值和上限值是很重要的。

7.最高工作频率fM

由于PN结的结电容存在,当工作频率超过某一值时,它的单向导电性将变差。肖特基二极管的fM值较高,最大可达100GHz。

8.反向恢复时间Trr

当工作电压从正向电压变成反向电压时,二极管工作的理想情况是电流能瞬时截止。实际上,一般要延迟一点点时间。决定电流截止延时的量,就是反向恢复时间。虽然它直接影响二极管的开关速度,但不一定说这个值小就好。也即当二极管由导通突然反向时,反向电流由很大衰减到接近IR时所需要的时间。大功率开关管工作在高频开关状态时,此项指标至为重要。

9. 最大耗散功率P

二极管中有电流流过,就会吸热,而使自身温度升高。在实际中外部散热状况对P也是影响很大。具体讲就是加在二极管两端的电压乘以流过的电流加上反向恢复损耗。

肖特基二极管在开关电源中的应用

开关电源有高频变压器、高频电容、高反压大功率晶体管、功率整流二极管、控制IC等主要部件组成。次级整流二极管作为耗能部件,损耗大,(约占电源功耗的30%),发热高,它的选用对电源的整机效率和可靠性指标是非常关键的因素,这就要求整流二极管在高速大电流工作状态下应具有正向压降VF小、反向反向漏电IR小、恢复时间Trr短的特性。

对于低压大电流的高频整流,肖特基二极管是最佳的选择(这时由于其反向耐压较低),最常用的是作为±5V、±12V、±15V的整流输出管。(如计算机电源的+5V输出大多采用SR3040,+12V输出采用SR1660)再加上肖特基二极管的正向压降VF与结温TJ呈现负温度系数,所以用其制造的开关电源效率高,温升低,噪声小,可靠性高。

下面是在具体应用中应注意的问题:

1.肖特基二极管的选型

要根据开关电源所要输出的电压VO、电流IO、散热情况、负载情况、安装要求、所要求的温升等确定所要选用的肖特基二极管种类。

在一般的设计中,我们要留出一定的余量。比如,VR只用到其额定值的80%以下(特殊情况下可控制到50%以下),IF用到其额定值的40%以下。

在单端反激(FLY-BACK)开关电源中,假定一产品:输入电压VIMAX=350VDC,输出电压VO=5V,电流IO=1A。如图所示。

根据计算公式,要求整流二极管的反向电压 VR、正向电流IF满足下面的条件:

VR≥2VI&TImes;NS/NP

IF≥2IO/(1-θMAX)

其中:

NS/NP为变压器次、初级匝比

θMAX为最大占空比

假设,NS/NP=1/20,θMAX=0.35

则VR≥2&TImes;350/20=35(V)

IF≥2&TImes;1/(1-0.35)=3(A)

这样,我们可以参考选用SR340或1N5822。若产品为风扇冷却,则管子可以把余量留小一些。TO220、TO3P封装的管子有全包封、半包封之分这要根据具体情况选用。

半包封管子的散热优于全包封的管子,但需注意其散热器和中间管脚相通。

负载若为容性负载,建议IF再留出20%的余量。

注意功率肖特基二极管的散热和安装形式,要搞清楚产品为自然冷却还是风扇冷却,管子要安装在易通风散热的地方,以提高产品的可靠性。TO-220、TO-3P型的管子与散热器之间要加导热硅脂,使管子与散热器之间接触良好。DO-41、DO-201AD封装的管子可采取立式、卧式、架空等方式安装,这要根据实际情况确定。

2.正确选择肖特基二极管的RC补偿网络-RC缓冲器

由于高频变压器的漏电感和管子的结电容在截止时形成一个谐振电路,它可导致瞬时过压振荡。因此,有必要在电源输出中设置RC缓冲器以保护管子的安全。另外,RC网络还可减少输出噪声,减少管子的热耗,提高产品的效率和可靠性。如上图所示。

缓冲器的选择原则是,既使缓冲器有效,又能尽量减少损耗。下面是参考公式。

R=√(Li/Cj)/n

式中:Li为变压器漏电感(μH)

CJ为管子的结电容(PF)

N为原副边匝比(NP/NS)

电容C可任意地从0.01到0.1μF之间取,具体值有实验确定。

如对VO=5V,可选R=5.1Ω,0.5W,C=0.01μF

尽量选择IR小的肖特基二极管

IR小的管子,热耗小,所以同样情况下,要选择IR小的管子。

设计PCB时,要使管子及散热器尽量远离电解电容器等对热敏感的器件。以增加产品的寿命。

焊接管子的焊盘要足够大,焊接牢靠,避免由于热应力造成脱焊。

肖特基二极管一旦选用后,要经模拟实验,在产品输入、输出最坏的情况下测量其温升及工作波形,确认各项指标不要超过其极限参数。

围观 1815
订阅 RSS - 肖特基二极管