电路

电流检测技术在现今的生活与工作中都有广泛的应用,许多的系统中都需要检测流入和流出的电流大小,检测电流大小能够避免器件出错。所以我们今天的主角就是“开关模式电源的电流检测技术”。

基本知识谈

电流模式控制由于其高可靠性、环路补偿设计简单、负载分配功能简单可靠的特点,被广泛用于开关模式电源。电流检测信号是电流模式开关模式电源设计的重要组成部分,它用于调节输出并提供过流保护。图1显示了 ADI LTC3855同步开关模式降压电源的电流检测电路。LTC3855是一款具有逐周期限流功能的电流模式控制器件。检测电阻RS监测电流。

1.png

图1. 开关模式电源电流检测电阻(RS)

图2显示了两种情况下电感电流的示波器图像:第一种情况使用电感电流能够驱动的负载(红线),而在第二种情况下,输出短路(紫线)。

2.png

图2. LTC3855限流与折返示例,在1.5 V/15 A供电轨上测量

最初,峰值电感电流由选定的电感值、电源开关导通时间、电路的输入和输出电压以及负载电流设置(图中用“1”表示)。当电路短路时,电感电流迅速上升,直至达到限流点,即 RS × IINDUCTOR (IL)等于最大电流检测电压,以保护器件和下游电路(图中用“2”表示)。然后,内置电流折返限制(图中数字“3”)进一步降低电感电流,以将热应力降至最低。

电流检测还有其他作用。在多相电源设计中,利用它能实现精确均流。对于轻负载电源设计,它可以防止电流反向流动,从而提高效率(反向电流指反向流过电感的电流,即从输出到输入的电流,这在某些应用中可能不合需要,甚至具破坏性)。另外,当多相应用的负载较小时,电流检测可用来减少所需的相数,从而提高电路效率。对于需要电流源的负载,电流检测可将电源转换为恒流源,以用于LED驱动、电池充电和驱动激光等应用。

检测电阻放哪最合适?

电流检测电阻的位置连同开关稳压器架构决定了要检测的电流。检测的电流包括峰值电感电流、谷值电感电流(连续导通模式下电感电流的最小值)和平均输出流。检测电阻的位置会影响功率损耗、噪声计算以及检测电阻监控电路看到的共模电压。

放置在降压调节器高端

对于降压调节器,电流检测电阻有多个位置可以放置。当放置在顶部MOSFET的高端时(如图3所示),它会在顶部MOSFET 导通时检测峰值电感电流,从而可用于峰值电流模式控制电源。但是,当顶部MOSFET关断且底部MOSFET导通时,它不测量电感电流。

3.png

图3. 带高端RSENSE的降压转换器

在这种配置中,电流检测可能有很高的噪声,原因是顶部 MOSFET的导通边沿具有很强的开关电压振荡。为使这种影响最小,需要一个较长的电流比较器消隐时间(比较器忽略输入的时间)。这会限制最小开关导通时间,并且可能限制最小占空比(占空比 = VOUT/VIN)和最大转换器降压比。注意在高端配置中,电流信号可能位于非常大的共模电压(VIN)之上。

放置在降压调节器低端

图4中,检测电阻位于底部MOSFET下方。在这种配置中,它检测谷值模式电流。为了进一步降低功率损耗并节省元件成本,底部FET RDS(ON)可用来检测电流,而不必使用外部电流检测电阻RSENSE。

4.png

图4. 带低端RSENSE的降压转换器

这种配置通常用于谷值模式控制的电源。它对噪声可能也很敏感,但在这种情况下,它在占空比较大时很敏感。谷值模式控制的降压转换器支持高降压比,但由于其开关导通时间是固定/ 受控的,故最大占空比有限。

降压调节器与电感串联

图5中,电流检测电阻RSENSE与电感串联,因此可以检测连续电感电流,此电流可用于监测平均电流以及峰值或谷值电流。所以,此配置支持峰值、谷值或平均电流模式控制。

5.png

图5. RSENSE与电感串联

这种检测方法可提供最佳的信噪比性能。外部RSENSE通常可提供非常准确的电流检测信号,以实现精确的限流和均流。但是,RSENSE也会引起额外的功率损耗和元件成本。为了减少功率损耗和成本,可以利用电感线圈直流电阻(DCR)检测电流,而不使用外部RSENSE。

放置在升压和反相调节器的高端

对于升压调节器,检测电阻可以与电感串联,以提供高端检测 (图6)。

6.png

图6. 带高端RSENSE的升压转换器

升压转换器具有连续输入电流,因此会产生三角波形并持续监测电流。

放置在升压和反相调节器的低端

检测电阻也可以放在底部MOSFET的低端,如图7所示。此处监测峰值开关电流(也是峰值电感电流),每半个周期产生一个电流波形。MOSFET开关切换导致电流信号具有很强的开关噪声。

7.png

图7. 带低端RSENSE的升压转换器

SENSE电阻放置在升降压转换器低端或与电感串联

图8显示了一个4开关升降压转换器,其检测电阻位于低端。当输入电压远高于输出电压时,转换器工作在降压模式;当输入电压远低于输出电压时,转换器工作在升压模式。在此电路中,检测电阻位于4开关H桥配置的底部。器件的模式(降压模式或升压模式)决定了监测的电流。

8.png

图8. 带低端RSENSE的升压转换器

在降压模式下(开关D一直导通,开关C一直关断),检测电阻监测底部开关B电流,电源用作谷值电流模式降压转换器。

在升压模式下(开关A一直导通,开关B一直关断),检测电阻与底部MOSFET (C)串联,并在电感电流上升时测量峰值电流。在这种模式下,由于不监测谷值电感电流,因此当电源处于轻负载状态时,很难检测负电感电流。负电感电流意味着电能从输出端传回输入端,但由于这种传输会有损耗,故效率会受损。对于电池供电系统等应用,轻负载效率很重要,这种电流检测方法不合需要。

图9电路解决了这个问题,其将检测电阻与电感串联,从而在降压和升压模式下均能连续测量电感电流信号。由于电流检测 RSENSE连接到具有高开关噪声的SW1节点,因此需要精心设计控制器IC,使内部电流比较器有足够长的消隐时间。

9.png

图9. LT8390升降压转换器,RSENSE与电感串联

输入端也可以添加额外的检测电阻,以实现输入限流;或者添加在输出端,用于电池充电或驱动LED等恒定输出电流应用。这种情况下需要平均输入或输出电流信号,因此可在电流检测路径中增加一个强RC滤波器,以减少电流检测噪声。 

电流检测方法使用说明书

开关模式电源有三种常用电流检测方法是:使用检测电阻,使用MOSFET RDS(ON),以及使用电感的直流电阻(DCR)。每种方法都有优点和缺点,选择检测方法时应予以考虑。

检测电阻电流传感

作为电流检测元件的检测电阻,产生的检测误差最低(通常在1%和5%之间),温度系数也非常低,约为100 ppm/°C (0.01%)。在性能方面,它提供精度最高的电源,有助于实现极为精确的电源限流功能,并且在多个电源并联时,还有利于实现精密均流。

10.png

图10. RSENSE电流检测

另一方面,因为电源设计中增加了电流检测电阻,所以电阻也会产生额外的功耗。因此,与其他检测技术相比,检测电阻电流监测技术可能有更高的功耗,导致解决方案整体效率有所下降。专用电流检测电阻也可能增加解决方案成本,虽然一个检测电阻的成本通常在0.05美元至0.20美元之间。

选择检测电阻时不应忽略的另一个参数是其寄生电感(也称为有效串联电感或ESL)。检测电阻可以用一个电阻与一个有限电感串联来正确模拟。

11.png

图12. RSENSE ESL模型

此电感取决于所选的特定检测电阻。某些类型的电流检测电阻,例如金属板电阻,具有较低的ESL,应优先使用。相比之下,绕线检测电阻由于其封装结构而具有较高的ESL,应避免使用。一般来说,ESL效应会随着电流的增加、检测信号幅度的减小以及布局不合理而变得更加明显。电路的总电感还包括由元件引线和其他电路元件引起的寄生电感。电路的总电感也受到布局的影响,因此必须妥善考虑元件的布局,不恰当的布局可能影响稳定性并加剧现有电路设计问题。

检测电阻ESL的影响可能很轻微,也可能很严重。ESL会导致开关栅极驱动器发生明显振荡,从而对开关导通产生不利影响。它还会增加电流检测信号的纹波,导致波形中出现电压阶跃,而不是预期的如图13所示的锯齿波形。这会降低电流检测精度。

12.png

图13. RSENSE ESL可能会对电流检测产生不利影响

为使电阻ESL最小,应避免使用具有长环路(如绕线电阻)或长引线(如厚电阻)的检测电阻。薄型表面贴装器件是首选,例子包括板结构SMD尺寸0805、1206、2010和2512,更好的选择包括倒几何SMD尺寸0612和1225。

基于功率MOSFET的电流检测

利用MOSFET RDS(ON)进行电流检测,可以实现简单且经济高效的电流检测。LTC3878是一款采用这种方法的器件。它使用恒定导通时间谷值模式电流检测架构。顶部开关导通固定的时间,此后底部开关导通,其RDS压降用于检测电流谷值或电流下限。

13.png

图14. MOSFET RDS(ON)电流检测

虽然价格低廉,但这种方法有一些缺点。首先,其精度不高, RDS(ON)值可能在很大的范围内变化(大约33%或更多)。其温度系数可能也非常大,在100°C以上时甚至会超过80%。另外,如果使用外部MOSFET,则必须考虑MOSFET寄生封装电感。这种类型的检测不建议用于电流非常高的情况,特别是不适合多相电路,此类电路需要良好的相位均流。

电感DCR电流检测

电感直流电阻电流检测采用电感绕组的寄生电阻来测量电流,从而无需检测电阻。这样可降低元件成本,提高电源效率。与MOSFET RDS(ON)相比,铜线绕组的电感DCR的器件间偏差通常较小,不过仍然会随温度而变化。它在低输出电压应用中受到青睐,因为检测电阻上的任何压降都代表输出电压的一个相当大部分。将一个RC网络与电感和寄生电阻的串联组合并联,检测电压在电容C1上测量(图15)。

14.png

图15. 电感DCR电流检测

通过选择适当的元件(R1 × C1 = L/DCR),电容C1两端的电压将与电感电流成正比。为了最大限度地减少测量误差和噪声,最好选择较低的R1值。

电路不直接测量电感电流,因此无法检测电感饱和。推荐使用软饱和的电感,如粉芯电感。与同等铁芯电感相比,此类电感的磁芯损耗通常较高。与RSENSE方法相比,电感DCR检测不存在检测电阻的功率损耗,但可能会增加电感的磁芯损耗。

使用RSENSE和DCR两种检测方法时,由于检测信号较小,故均需要开尔文检测。必须让开尔文检测痕迹(图5中的SENSE 和 SENSE-)远离高噪声覆铜区和其他信号痕迹,以将噪声提取降至最低,这点很重要。某些器件(如LTC3855)具有温度补偿DCR检测功能,可提高整个温度范围内的精度。

15.png

表1. 电流检测方法的优缺点

表1中提到的每种方法都为开关模式电源提供额外的保护。取决于设计要求,精度、效率、热应力、保护和瞬态性能方面的权衡都可能影响选择过程。电源设计人员需要审慎选择电流检测方法和功率电感,并正确设计电流检测网络。ADI LTpowerCAD设计工具和LTspice®电路仿真工具等计算机软件程序,对简化设计工作并获得最佳结果会大有帮助。

其他电流检测方法

还有其他电流检测方法可供使用。例如,电流检测互感器常常与隔离电源一起使用,以跨越隔离栅对电流信号信息提供保护。这种方法通常比上述三种技术更昂贵。此外,近年来集成栅极驱动器(DrMOS)和电流检测的新型功率MOSFET也已出现,但到目前为止,还没有足够的数据来推断DrMOS在检测信号的精度和质量方面表现如何。

软件推荐  

LTspice 

LTspice是一款强大、快速、免费的仿真工具、原理图采集和波形查看器,具有增强功能和模型,可改善开关稳压器的仿真。

LTpowerCAD

LTpowerCAD设计工具是一款完整的电源设计工具程序,可显著简化电源设计任务。它引导用户寻找解决方案,选择功率级元件,提供详细效率信息,显示快速环路波特图稳定性和负载瞬态分析,并可将最终设计导出至LTspice进行仿真。

来源:亚德诺半导体

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 12

作者:睿博士

运放的电压追随电路,如图1所示,利用虚短、虚断,一眼看上去简单明了,没有什么太多内容需要注意,那你可能就大错特错了。理解好运放的电压追随电路,对于理解运放同相、反相、差分、以及各种各样的运放的电路,都有很大的帮助。

图1 运放电压追随电路

电压追随电路分析

如果我们连接运放的输出到它的反相输入端,然后在同相输入端施加一个电压信号,我们会发现运放的输出电压会很好的追随着输入电压。

假设初始状态运放的输入、输出电压都为0V,然后当Vin从0V开始增加的时候,Vout也会增加,而且是往正电压的方向增加。这是因为假设Vin突然增大,Vout还没有响应依然是0V的时候,Ve=Vin-Vout是大于0的,所以乘上运放的开环增益,Vout=Ve*A,使得运放的输出Vout开始往正电压的方向增加。

当随着Vout增加的时候,输出电压被反馈回到反相输入端,然后会减小运放两个输入端之间的压差,也就是Ve会减小,在同样的开环增益的情况下,Vout自然会降低。最终的结果就是,无论输入是多大的输入电压(当然是在运放的输入电压范围内),运放始终会输出一个十分接近Vin的电压,但是这个输出电压Vout是刚好低于Vin的,以保证的运放两个输入端之间有足够的电压差Ve,来维持运放的输出,也就是Vout=Ve*A。

运放电路中的负反馈

然后,这个电路很快就会达到一个稳定状态,输出电压的幅值会很准确的维持运放两个输入端之间的压差,这个压差Ve反过来会产生准确的运放输出电压的幅值。将运放的输出与运放的反相输入端连接起来,这样的方式被称为负反馈,这是使系统达到自稳定的关键。这不仅仅适用于运放,同样适用于任何常见的动态系统。这种稳定使得运放具备工作在线性模式的能力,而不是仅仅处于饱和的状态,全“开”或者全“关”,就像它被用于没有任何负反馈的比较器一样。

由于运放的增益很高,在运放反相输入端维持的电压几乎与Vin相等。举例来说,一个运放的开环增益为200 000。如果Vin等于6V,这时输出电压会是5.999 970 000 149 999V。这在运放的输入端产生了足够的电压差Ve=6V-5.999 970 000 149 999V=29.999 85uV,这个电压会被放大然后在输出端产生幅值为5.999 970 000 149 999V的电压,从而这个系统会稳定在这里。正如你所见,29.999 85uV是一个很小的电压,因此对于实际计算来说,我们可以认为由负反馈维持的运放两个输入端之间的压差Ve=0V,整个过程如图2所示。这也就是我们熟悉的“虚短”,而由于运放的两个输入端之间的阻抗是很大的,自然也就有了“虚断”。下面的电路具有稳定的1倍的闭环增益,输出电压会简单的追随输入电压。

图2 负反馈的作用

使用负反馈的一个很大的优势是,我们不用去关心运放的实际电压增益,只要它足够大就可以。如果运放的电压增益不是200 0000而是250 000,这会使得运放的输出电压会更接近Vin一些,更小的输入端之间的电压差用来产生需要的输出电压。在图2示意的电路中,输出电压同样会等于运放反相输入端上的输入电压。因此,对于电路设计工程师来说,为了实现放大电路的稳定的闭环增益,运放的开环增益没有必要是一个精确的值,负反馈会使得系统自我调整。

使用负反馈会改善线性度、增益稳定、输出阻抗、增益的精度,但使用负反馈同样也会带来一个严重的问题,那就是降低系统的稳定性,而对于单位增益的电压追随电路来说,这是一种最坏的情况,尤其是在驱动容性负载的情况下,感兴趣的同学可以自己去查阅相关的资料。

关于运放电路,很多时候我们都被灌输反相端追随同相端,就像前面所说的那样,难道就不能同相端追随反相端吗?

对于今天讲的电压追随电路来说,只能是反相端追随同相端。这里因为如果在反相端施加一个正的输入电压,将输出连接到同相端,同样假设输出为0,那Ve会是一个负的电压,乘以运放的开环增益,那输出会是一个负的电压,返回到运放的同相输入端,会进一步得到一个绝对值更大的负电压差。很快运放的输出就会达到饱和,自然也就无法实现同相端追随反相端。

但对于运放来说,如果在反相端施加参考电压,配合其它电子元器件,如三极管、MOS等,使得运放的整体环路形成负反馈,同样也能使同相端追随反相端,而这也自然打破了我们熟悉的运放的反相端追随同相端的规律。

运放的电压追随电路,”虚短”、“虚断”是表面,而负反馈才是根。基于这个根,可以很好的帮助我们去理解千变万化的运放电路。

来源: 凝睿研发工程服务

围观 25

万用表是从事电工、电子技术工作者的必备工具,它的高阻挡通常使用一块9V、15A或22.5V的叠层电池。这种电池不但价格较高,而且寿命短,经常更换很不经济。这里介绍几款适合万用表使用的小型直流升压器电路,这些电路结构简单、元件少,改装后可将电路板直接置于万用表中叠层电池的位置替代使用。

直流升压电路

如图所示是一种输出电压可达22.5 V的直流升压器电路,可用来代替22.5 V的叠层电池。

它利用万用表中的一节1.5V电池供电,工作电流为25mA,输出电流约为0.5mA,用于万用表的高阻挡足够富裕。电路中VT1与VT2组成互补多谐振荡器,它的振荡频率约为2kHz。T是升压变压器,初级就是互补多谐振荡器的负载,次级为升压绕组,输出一个较高的脉冲电压。该电压经过二极管VD1和电容C2整流滤波后成为直流高压,再经过电阻R3与稳压管VD2稳压后可输出一个较稳定的高电压。

电路中变压器T可用晶体管收音机用的502型音频输出变压器,次级作为升压变压器的初级,初级中间的抽头不用,两端抽头作为升压变压器的次级。如果找不到合适的变压器,也可以用收音机输人输出变压器的硅钢片自制,初级用直径为0.25mm的高强度漆包线绕110匝,次级用直径0.21mm的高强度漆包线绕520匝。初次级间要加一层绝缘纸,并注意初次级线圈的同名端。


小型直流升压器

如图所示是一种构造很简单的小型直流升压器,可用来取代15V的叠层电池。电路的核心元件一变压器T使用的是袖珍验钞器的专用变压器。电路耗电约40mA,输出电压为15V。如果万用表15V电池的正极与1.5V电池的负极相接,只需将图7—70中VD1(C1、VDZ的极性调过来,这样将输出一个-15V电压)  


稳压型直流升压电路

如图所示是一种稳压型直流升压电路。该电路可将一节1.5V的电池升压至9V,用来取代9V叠层电池使用。电路空载输人电流低于1.2mA,转换效率高达60%。该电路由振荡电路和稳压电路构成,其中VT1、VT2、C2组成振荡器,色码电感L为储能电感,VD2为整流二极管,C3为输出滤波电容,VT3、VD1、VD3及R2为稳定输出电压的稳压电路。输出电压约等于VD3的稳压值。


逆变电源电路(一)

如图所示是一种利用1.2V、500mAh的镍镉电池做电源的逆变电源电路,输出直流电压为9V,可供数字式万用表使用。下图中变压器T利用15mm的磁环穿绕而成(元器件参数图中均已标注人名为数字万用表的电源开关。


逆变电源电路(二)

如图所示是自控式数字表逆变电源电路。它不需要单独设立电源开关或对表内开关进行改造。该电路具有耗电省、稳定可靠、不影响仪表精度等特点。电路中的变压器T是用E3型铁氧体磁芯、各折去一角后加工成口字形,L2在内,L1在外。整个逆变电源工作时,电池工作电流约为70mA。


简易仿制电路

下图为仿制电路:输入可低至0.8V,输出电流可达10mA

输出开路,输入电流为零。

T:E3日字型磁芯L1=18匝=125μH L2=180匝=12mH


来源:电子工程师笔记

围观 176

1 引言

开关电源是各种系统的核心部分。开关电源的需求越来越大,同时对可靠性提出了越来越高的要求。涉及系统可靠性的因素很多。目前,人们认识上的主要误区是把可靠性完全(或基本上)归结于元器件的可靠性和制造装配的工艺,忽略了系统设计和环境温度对可靠性的决定性的作用。据美国海军电子实验室的统计,整机出现故障的原因和各自所占的百分比如表1所示。


在民用电子产品领域,日本的统计资料表明,可靠性问题80%源于设计方面(日本把元器件的选型、质量级别的确定、元器件的负荷率等部分也归入设计上的原因)。以上两方面的数据表明,设计及元器件(元器件的选型,质量级别的确定,元器件的负荷率)的原因造成的故障,在开关电源故障原因中占80%左右。减少这两方面造成的开关电源故障,具有重要的意义。总之,对系统的设计者而言,需要明确建立“可靠性”这个重要概念,把系统的可靠性作为重要的技术指标,认真对待开关电源可靠性的设计工作,并采取足够的措施提高开关电源的可靠性,才能使系统和产品达到稳定、可靠的目标。本文就从这两个方面来研究与阐述。

2、系统可靠性的定义及指标

国际上,通用的可靠性定义为:在规定条件下和规定的时间内,完成规定功能的能力。此定义适用于一个系统,也适用于一台设备或一个单元。描述这种随机事件的概率可用来作为表征开关电源可靠性的特征量和特征函数。从而,引出可靠度[R(t)]的定义:系统在规定条件下和规定时间内,完成规定功能的概率。

如系统在开始 (t=0)时有n0个元件在工作,而在时间为t时仍有n个元件在正常工作,

  则

  可靠性   R(t)=n/n0  0≤R(t) ≤1

  失效率   λ(t)= - dinR(t)/dt

  λ定义为该种产品在单位时间内的故障数,即λ=dn/dt。

  如失效率λ为常数,则

dn/dt=-λt

  n=n0e-λt

  R(t)=e-λt0     

  MTBF(平均无故障时间)=1/λ

平均无故障时间(MTBF)是开关电源的一个重要指标,用来衡量开关电源的可靠性。

3、影响开关电源可靠性的因素
  
从各研究机构研究成果可以看出,环境温度和负荷率对可靠性影响很大,这两个方面对开关电源的影响很大,下面将从这两方面分析,如何设计出高可靠的开关电源。其中:PD为使用功率;PR为额定功率主。UD为使用电压;UR为额定电压。

3.1 环境温度对元器件的影响

3.1.1 环境温度对半导体IC的影响

硅三极管以PD/PR=0.5使用负荷设计,则环温度对可靠性的影响,如表2所示。


由表2可知,当环境温度Ta从20℃增加到80℃时,失效率增加了30倍。

3.1.2 环境温度对电容器的影响
 
以UD/UR=0.65使用负荷设计 则环境温度对可靠性的影响如表3所示。


从表3可知,当环境温度Ta从20℃增加到80℃时,失效率增加了14倍。

3.1.3 环境温度对电阻器的影响

以PD/PR=0.5使用负荷设计,则环境温度对可靠性的影响如表4所示。


从表4可知,当环境温度Ta从20℃增加到80℃时,失效率增加了4倍。

3.2 负荷率对元器件的影响

3.2.1 负荷率对半导体IC的影响   

当环境温度为50℃时,PD/PR对失效率的影响如表5所示。


由表5可知,当PD/PR=0.8时,失效率比0.2时增加了1000倍。

3.2.2 负荷率对电阻的影响

负荷率对电阻的影响如表6所示。


从表6可以看出,当PD/PR=0.8时,失效率比PD/PR=0.2时增加了8倍。

4、可靠性设计的原则

  我们可以从上面的分析中得出开关电源的可靠性设计原则。

  4.1可靠性设计指标应包含定量的可靠性要求。

  4.2可靠性设计与器件的功能设计相结合,在满足器件性能指标的基础上,尽量提高器件的可靠性水平。

  4.3应针对器件的性能水平、可靠性水平、制造成本、研制周期等相应制约因素进行综合平衡设计。

  4.4在可靠性设计中尽可能采用国、内外成熟的新技术、新结构、新工艺和新原理。

  4.5对于关键性元器件,采用并联方式,保证此单元有足够的冗佘度。

  4.6 原则上要尽一切可能减少元器件使用数目。

  4.7在同等体积下尽量采用高额度的元器件。

  4.8 选用高质量等级的元器件。

  4.9 原则上不选用电解电容。

  4.10 对电源进行合理的热设计,控制环境温度,不致温度过高,导致元器件失效率增加。

  4.11 尽量选用硅半导体器件,少用或不用锗半导体器件。

  4.12 应选择金属封装、陶瓷封装、玻璃封装的器件,禁止选用塑料封装的器件。

5、可靠性设计

5.1 负荷率的设计

由于负荷率对可靠性有重大影响,故可靠性设计重要的一个方面是负荷率的设计,跟据元器件的特性及实践经验,元器件的负荷率在下列数值时,电源系统的可靠性及成本是较优的。

5.1.1半导体元器件   

半导体元器件的电压降额应在0.6以下,电流降额系数应在0.5以下。半导体元器件除负荷率外还有容差设计,设计开关电源时,应适当放宽半导体元器件的参数允许变化范围,包括制造容差、温度漂移、时间漂移、辐射导致的漂移等。以保证半导体元器件的参数在一定范围内变化时,开关电源仍能正常工作。

5.1.2电容器   

电容器的负荷率(工作电压和额定电压之比)最好在0.5左右,一般不要超过0.8,并且尽量使用无极性电容器。而且,在高频应用的情况下,电压降额幅度应进一步加大,对电解电容器更应如此。应特别注意,电容器有低压失效的问题,对于普通铝电解电容器和无极性电容的电压降额不低于0.3,但钽电容的电压降额应在0.3以下。电压降额不能太多,否则电容器的失效率将上升。

5.1.3电阻器、电位器

电阻器、电位器的负荷率要小于0.5,此为电阻器设计的上限值;但是大量试验证明,当电阻器降额数低于0.1时,将得不到预期的效果,失效率有所增加,电阻降额系数以0.1为可靠性降额设计的下限值。

总之,对各种元器件的负荷率只要有可能,一般应保持在0.3左右。最好不要超过0.5。这样的负荷率,对电源系统造成不可靠的机率是非常小的。

5.2 电源的热设计
  
开关电源内部过高的温升将会导致温度敏感的半导体器件、电解电容等元器件的失效。当温度超过一定值时,失效率呈指数规律增加。有统计资料表明,电子元器件温度每升高2℃,可靠性下降10%;温升50℃时的寿命只有温升25℃时的1/6。除了电应力之外,温度是影响开关电源可靠性的最重要的因素。高频开关电源有大功率发热器件,温度更是影响其可靠性的最重要的因素之一,完整的热设计包括两个方面:一 如何控制发热源的发热量;二 如何将热源产生的热量散出去。使开关电源的温升控制在允许的范围之内,以保证开关电源的可靠性。下面将从这两个方面论述。

5.2.1 控制发热量的设计

开关电源中主要的发热元器件为半导体开关管、功率二极管、高频变压器、滤波电感等。不同器件有不同的控制发热量的方法。功率管是高频开关电源中发热量较大的器件之一,减小它的发热量,不仅可以提高功率管的可靠性,而且可以提高开关电源的可靠性,提高平均无故障时间(MTBF)。开关管的发热量是由损耗引起的,开关管的损耗由开关过程损耗和通态损耗两部分组成,减小通态损耗可以通过选用低通态电阻的开关管来减小通态损耗;开关过程损耗是由于栅电荷大小及开关时间引起的,减小开关过程损耗可以选择开关速度更快、恢复时间更短的器件来减少。但更为重要的是通过设计更优的控制方式和缓冲技术来减小损耗,如采用软开关技术,可以大大减小这种损耗。减小功率二极管的发热量,对交流整流及缓冲二极管,一般情况下不会有更好的控制技术来减小损耗,可以通过选择高质量的二极管来减小损耗。对于变压器二次侧的整流可以选择效率更高的同步整流技术来减小损耗。对于高频磁性材料引起的损耗,要尽量避免趋肤效应,对于趋肤效应造成的影响,可采用多股细漆包线并绕的办法来解决。

5.2.2 开关电源的散热设计

MOS管导通时有一定的压降,也即器件有一定的损耗,它将引起芯片的温升,但是器件的发热情况与其耐热能力和散热条件有关。由此,器件功耗有一定的容限。其值按热欧姆定律可表示为:

PD="Tj-Tc/RT"
  
式中,Tj 是额定结温(Tj=150℃),Tc是壳温,RT是结到管壳间的稳态热阻,Tj代表器件的耐热能力,Tc和 RT代表器件的散热条件,而PD就是器件的发热情况。它必须在器件的耐热能力和散热条件之间取得平衡。
   
散热有三种基本方式:热传导、热辐射、热对流。根据散热的方式,可以选自然散热:加装散热器;或选择强制风冷:加装风扇。加装散热器主要利用热传导和热对流,即所有发热元器件均先固定在散热器上,热量通过传导方式传递给散热器,散热器上的热量再通过能流换热的方式由空气传递热量,进行散热。

5.2.3 电源的散热仿真

散热仿真是开发电源产品以及提供产品材料指南一个重要的组成部分。优化模块外形尺寸是终端设备设计的发展趋势,这就带来了从金属散热片向 PCB 覆铜层散热管理转换的问题。当今的一些模块均使用较低的开关频率,用于开关模式电源和大型无源组件。对于驱动内部电路的电压转换和静态电流而言,线性稳压器的效率较低。

随着功能越来越丰富,性能越来越高,设备设计也变得日益紧凑,这时 IC 级和系统级的散热仿真就显得非常重要了。

一些应用的工作环境温度为 70 到 125℃,并且一些裸片尺寸车载应用的温度甚至高达 140℃,就这些应用而言,系统的不间断运行非常重要。进行电子设计优化时,上述两类应用的瞬态和静态最坏情况下的精确散热分析正变得日益重要。

散热管理

散热管理的难点在于要在获得更高散热性能、更高工作环境温度以及更低覆铜散热层预算的同时,缩小封装尺寸。高封装效率将导致产生热量组件较高的集中度,从而带来在 IC 级和封装级极高的热通量。

系统中需要考虑的因素包括可能会影响分析器件温度、系统空间和气流设计/限制条件等其他一些印刷电路板功率器件。散热管理要考虑的三个层面分别为:封装、电路板和系统(请参见图 1)。

图 1 IC 封装中典型的热传递路径

低成本、小外形尺寸、模块集成和封装可靠性是选择封装时需要考虑的几个方面。由于成本成为关键的考虑因素,因此基于引线框架的散热增强封装正日益受到人们的青睐。这种封装包括内嵌散热片或裸露焊盘和均热片型封装,设计旨在提高散热性能。在一些表面贴装封装中,一些专用引线框架在封装的每一面均熔接几条引线,以起到均热器的作用。这种方法为裸片焊盘的热传递提供了较好的散热路径。

IC 与封装散热仿真

散热分析要求详细、准确的硅芯片产品模型和外壳散热属性。半导体供应商提供硅芯片 IC 散热机械属性和封装,而设备制造商则提供模块材料的相关信息。产品用户提供使用环境资料。

这种分析有助于 IC 设计人员对电源 FET 尺寸进行优化,以适用于瞬态和静态运行模式中的最坏情况下的功耗。在许多电源电子 IC 中,电源 FET 都占用了裸片面积相当大的一部分。散热分析有助于设计人员优化其设计。

选用的封装一般会让部分金属外露,以此来提供硅芯片到散热器的低散热阻抗路径。模型要求的关键参数如下:
• 硅芯片尺寸纵横比和芯片厚度。
• 功率器件面积和位置,以及任何发热的辅助驱动电路。
• 电源结构厚度(硅芯片内分散情况)。
• 硅芯片连接至外露金属焊盘或金属突起连接处的裸片连接面积与厚度。可能包括裸片连接材料气隙百分比。
• 外露金属焊盘或金属突起连接处的面积和厚度。
• 使用铸模材料和连接引线的封装尺寸。

需提供模型所用每一种材料的热传导属性。这种数据输入还包括所有热传导属性的温度依赖性变化,这些传导属性具体包括:
• 硅芯片热传导性
• 裸片连接、铸模材料的热传导性
• 金属焊盘或金属突起连接处的热传导性。
• 封装类型 (packageproduct) 和 PCB 相互作用

散热仿真的一个至关重要的参数是确定焊盘到散热片材料的热阻,其确定方法主要有以下几种:
• 多层 FR4 电路板(常见的为四层和六层电路板)
• 单端电路板
• 顶层及底层电路板

散热和热阻路径根据不同的实施方法而各异:
• 连接至内部散热片面板的散热焊盘或突起连接处的散热孔。使用焊料将外露散热焊盘或突起连接处连接至 PCB 顶层。
• 位于外露散热焊盘或突起连接处下方PCB 上的一个开口,可以和连接至模块金属外壳的伸出散热片基座相连。
• 利用金属螺钉将散热层连接至金属外壳的 PCB 顶部或底部覆铜层上的散热片。使用焊料将外露散热焊盘或突起连接处连接至 PCB 的顶层。

另外,每层 PCB 上所用镀铜的重量或厚度非常关键。就热阻分析而言,连接至外露焊盘或突起连接处的各层直接受这一参数的影响。一般而言,这就是多层印刷电路板中的顶部、散热片和底部层。

大多数应用中,其可以是两盎司重的覆铜(2 盎司铜=2.8 mils或 71 µm)外部层,以及1盎司重的覆铜(1盎司铜= 1.4 mils 或 35µm)内部层,或者所有均为 1 盎司重的覆铜层。在消费类电子应用中,一些应用甚至会使用 0.5 盎司重的覆铜(0.5 盎司铜= 0.7 mils 或 18 µm)层。

模型资料

仿真裸片温度需要一张 IC 平面布置图,其中包括裸片上所有的电源FET 以及符合封装焊接原则的实际位置。

每一个 FET 的尺寸和纵横比,对热分布都非常重要。需要考虑的另一个重要因素是 FET 是否同时或顺序上电。模型精度取决于所使用的物理数据和材料属性。

模型的静态或平均功耗分析只需很短的计算时间,并且一旦记录到最高温度时便出现收敛。

瞬态分析要求功耗-时间对比数据。我们使用了比开关电源情况更好的解析步骤来记录数据,以精确地对快速功率脉冲期间的峰值温度上升进行捕获。这种分析一般费时较长,且要求比静态功率模拟更多的数据输入。

该模型可仿真裸片连接区域的环氧树脂气孔,或 PCB 散热板的镀层气孔。在这两种情况下,环氧树脂/镀层气孔都会影响封装的热阻(请参见图 2)。

图 2 热传递的热阻路径

散热定义

Θja—表示周围热阻的裸片结点,通常用于散热封装性能对比。

· Θjc—表示外壳顶部热阻的裸片结点。

· Θjp—表示外露散热焊盘热阻的芯片结点,通常用于预测裸片结点温度的较好参考。

Θjb—表示一条引线热阻路径下电路板的裸片结点。

PCB 与模块外壳的实施

数据表明需要进行一些改动来降低顶部层附近裸片上的 FET 最高温度,以防止热点超出 150C 的 T 结点(请参见图 3)。系统用户可以选择控制该特定序列下的功率分布,以此来降低裸片上的功率温度。

图 3 由散热仿真得到的一个结果示例

散热仿真是开发电源产品的一个重要组成部分。此外,其还能够指导您对热阻参数进行设置,涵盖了从硅芯片 FET 结点到产品中各种材料实施的整个范围。一旦了解了不同的热阻路径之后,我们便可以对许多系统进行优化,以适用于所有应用。

该数据还可以被用于确定降额因子与环境运行温度升高之间相关性的准则。这些结果可用来帮助产品开发团队开发其设计。

来源:硬件十万个为什么,转载此文目的在于传递更多信息,版权归原作者所有。

围观 24

我们知道,在电路系统的各个子模块进行数据交换时可能会存在一些问题导致信号无法正常、高质量地“流通”,例如有时电路子模块各自的工作时序有偏差(如CPU与外设)或者各自的信号类型不一致(如传感器检测光信号)等,这时我们应该考虑通过相应的接口方式来很好地处理这个问题。

下面就电路设计中7个常用的接口类型的关键点进行说明一下:

1、TTL电平接口

这个接口类型基本是老生常谈的吧,从上大学学习模拟电路、数字电路开始,对于一般的电路设计,TTL电平接口基本就脱不了“干系”!它的速度一般限制在30MHz以内,这是由于BJT的输入端存在几个pF的输入电容的缘故(构成一个LPF),输入信号超过一定频率的话,信号就将“丢失”。它的驱动能力一般最大为几十个毫安。正常工作的信号电压一般较高,要是把它和信号电压较低的ECL电路接近时会产生比较明显的串扰问题。

2、CMOS电平接口

我们对它也不陌生,也是经常和它打交道了,一些关于CMOS的半导体特性在这里就不必啰嗦了。许多人都知道的是,正常情况下CMOS的功耗和抗干扰能力远优于TTL。但是!鲜为人知的是,在高转换频率时,CMOS系列实际上却比TTL消耗更多的功率,至于为什么是这样,请去问半导体物理理论吧。由于CMOS的工作电压目前已经可以很小了,有的FPGA内核工作电压甚至接近1.5V,这样就使得电平之间的噪声容限比TTL小了很多,因此更加加重了由于电压波动而引发的信号判断错误。众所周知,CMOS电路的输入阻抗是很高的,因此,它的耦合电容容量可以很小,而不需要使用大的电解电容器了。由于CMOS电路通常驱动能力较弱,所以必须先进行TTL转换后再驱动ECL电路。此外,设计CMOS接口电路时,要注意避免容性负载过重,否则的话会使得上升时间变慢,而且驱动器件的功耗也将增加(因为容性负载并不耗费功率)。

3、ECL电平接口

这可是计算机系统内部的老朋友啊!因为它的速度“跑”得够快,甚至可以跑到几百MHz!这是由于ECL内部的BJT在导通时并没有处于饱和状态,这样就可以减少BJT的导通和截止时间,工作速度自然也就可以提上去了。But,这是要付出代价的!它的致命伤:功耗较大!它引发的EMI问题也就值得考虑了,抗干扰能力也就好不到哪去了,要是谁能够折中好这两点因素的话,那么他(她)就该发大财了。还有要注意的是,一般ECL集成电路是需要负电源供电的,也就是说它的输出电压为负值,这时就需要专门的电平移动电路了。

4、RS-232电平接口

玩电子技术的基本没有谁不知道它的了(除非他或她只是电子技术专业的“门外汉”)。它是低速串行通信接口标准,要注意的是,它的电平标准有点“反常”:高电平为-12V,而低电平为+12V。So,当我们试图通过计算机与外设进行通信时,一个电平转换芯片MAX232自然是少不了的了。但是我们得清醒地意识到它的一些缺点,例如数据传输速度还是比较慢、传输距离也较短等。

5、差分平衡电平接口

它是用一对接线端A和B的相对输出电压(uA-uB)来表示信号的,一般情况下,这个差分信号会在信号传输时经过一个复杂的噪声环境,导致两根线上都产生基本上相同数量的噪声,而在接收端将会把噪声的能量给抵消掉,因此它能够实现较远距离、较高速率的传输。工业上常用的RS-485接口采用的就是差分传输方式,它具有很好的抗共模干扰能力。

6、光隔离接口

光电耦合是以光信号为媒介来实现电信号的耦合和传递的,它的“好处”就是能够实现电气隔离,因此它有出色的抗干扰能力。在电路工作频率很高的条件下,基本只有高速的光电隔离接口电路才能满足数据传输的需要。有时为了实现高电压和大电流的控制,我们必须设计和使用光隔离接口电路来连接如上所述的这些低电平、小电流的TTL或CMOS电路,因为光隔离接口的输入回路和输出回路之间可以承受几千伏特的高压,足以满足一般的应用了。此外,光隔离接口的输入部分和输出部分必须分别采用独立的电源,否则的话还是有电气联系,也就不叫隔离了。

7、线圈耦合接口

它的电气隔离特性好,但是允许的信号带宽有限。例如变压器耦合,它的功率传输效率是非常高的,输出功率基本接近其输入功率,因此,对于一个升压变压器来说,它可以有较高的输出电压,但是却只能给出较低的电流。此外,变压器的高频和低频特性并不让人乐观,但是它的最大特点就是可以实现阻抗变换,当匹配得当时,负载可以获得足够大的功率,因此,变压器耦合接口在功率放大电路设计中很“吃香”。

来源:网络

围观 14

电路保护是电路设计的基本功,其中涉及的元器件有很多种,熟悉并掌握每种不同电路保护元器件的特性十分重要。本文将对常见的电路保护元器件进行介绍和比较

气体放电管(GDT)—— 这是电压驱动型零件。在电路中的电压达到特定水平之前,GDT将处于断路状态。当电压达到特定水平时,GDT中的气体将电离并导电,从而使高压电平接地。高压降低后,气体去离子化,GDT将回到断路状态,直到下一次浪涌。与其他电路保护元件相比,GDT可以吸收超多的瞬增能量。

二极GDT —— 用于线对线或线对地电路。                                                        

三极GDT —— 可同时用于某一部分的线对线或线对地电路。                                 

保险丝 —— 保险丝是由安装在两个电端子之间的金属条或熔断丝元件组成。金属条在电流通过时会发热,当发热到一定程度时,金属条就会熔化并断裂,导致电路断开。此时,需要更换损坏的保险丝以使电路重新工作。保险丝是最便宜的电路保护装置,通常也最易于使用。

断路器 —— 与保险丝相似,断路器能够保护电路免受过电流的影响,但区别在于断路器在断开电路时不会毁坏自身,并且可以重置。

压敏电阻 —— 这是电压驱动型零件。在没有电压通过时,压敏电阻通常具有高电阻。随着电压水平的增加,其阻值会减小。当高压通过压敏电阻并超过其击穿电压时,该零件将迅速降低电阻并将电压钳位至安全水平。此时,该电阻将部分通电并吸收多余能量以保护电路。电压下降后,如果该零件未损坏,就会恢复为高电阻状态,并可正常使用。

来源: 得捷电子DigiKey

围观 18

主要由电源、复位、振荡电路以及扩展部分等部分组成。最小系统原理图如图所示。

电源模块

对于一个完整的电子设计来讲,首要问题就是为整个系统提供电源供电模块,电源模块的稳定可靠是系统平稳运行的前提和基础。51单片机虽然使用时间最早、应用范围最广,但是在实际使用过程中,一个和典型的问题就是相比其他系列的单片机,51单片机更容易受到干扰而出现程序跑飞的现象,克服这种现象出现的一个重要手段就是为单片机系统配置一个稳定可靠的电源供电模块。

电源模块电路图

此最小系统中的电源供电模块的电源可以通过计算机的USB口供给,也可使用外部稳定的5V电源供电模块供给。电源电路中接入了电源指示LED,图中R11为LED的限流电阻。S1 为电源开关。

复位电路

单片机的置位和复位,都是为了把电路初始化到一个确定的状态,一般来说,单片机复位电路作用是把一个例如状态机初始化到空状态,而在单片机内部,复位的时候单片机是把一些寄存器以及存储设备装入厂商预设的一个值。

单片机复位电路原理是在单片机的复位引脚RST上外接电阻和电容,实现上电复位。当复位电平持续两个机器周期以上时复位有效。复位电平的持续时间必须大于单片机的两个机器周期。具体数值可以由RC电路计算出时间常数。

复位电路由按键复位和上电复位两部分组成。

(1)上电复位:STC89系列单片及为高电平复位,通常在复位引脚RST上连接一个电容到VCC,再连接一个电阻到GND,由此形成一个RC充放电回路保证单片机在上电时RST脚上有足够时间的高电平进行复位,随后回归到低电平进入正常工作状态,这个电阻和电容的典型值为10K和10uF。

(2)按键复位:按键复位就是在复位电容上并联一个开关,当开关按下时电容被放电、RST也被拉到高电平,而且由于电容的充电,会保持一段时间的高电平来使单片机复位。

振荡电路

单片机系统里都有晶振,在单片机系统里晶振作用非常大,全程叫晶体振荡器,他结合单片机内部电路产生单片机所需的时钟频率,单片机晶振提供的时钟频率越高,那么单片机运行速度就越快,单片接的一切指令的执行都是建立在单片机晶振提供的时钟频率。

在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。高级的精度更高。有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。晶振用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。

单片机晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。

晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。

STC89C51使用11.0592MHz的晶体振荡器作为振荡源,由于单片机内部带有振荡电路,所以外部只要连接一个晶振和两个电容即可,电容容量一般在15pF至50pF之间。

来源:畅学单片机

围观 112

一、开关电源的电路组成

开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:

二、输入电路的原理及常见电路

1、AC输入整流滤波电路原理

①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

2、DC输入滤波电路原理

①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。

②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

三、功率变换电路

1、MOS管的工作原理

目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。

2、推挽式功率变换电路

Q1和Q2将轮流导通

3、有驱动变压器的功率变换电路

T2为驱动变压器,T1为开关变压器,TR1为电流环

四、输出整流滤波电路

1、正激式整流电路

T1为开关变压器,其初极和次极的相位同相。D1为整流二极管,D2为续流二极管,R1、C1、R2、C2为削尖峰电路。L1为续流电感,C4、L2、C5组成π型滤波器。

2、反激式整流电路

T1为开关变压器,其初极和次极的相位相反。D1为整流二极管,R1、C1为削尖峰电路。L1为续流电感,R2为假负载,C4、L2、C5组成π型滤波器。

3、同步整流电路

工作原理:当变压器次级上端为正时,电流经C2、R5、R6、R7使Q2导通,电路构成回路,Q2为整流管。Q1栅极由于处于反偏而截止。

当变压器次级下端为正时,电流经C3、R4、R2使Q1导通,Q1为续流管。Q2栅极由于处于反偏而截止。L2为续流电感,C6、L1、C7组成π型滤波器。R1、C1、R9、C4为削尖峰电路。

五、稳压环路原理

1、反馈电路原理图

2、工作原理

当输出U0升高,经取样电阻R7、R8、R10、VR1分压后,U1③脚电压升高,当其超过U1②脚基准电压后U1①脚输出高电平,使Q1导通,光耦OT1发光二极管发光,光电三极管导通,UC3842①脚电位相应变低,从而改变U1⑥脚输出占空比减小,U0降低。

当输出U0降低时,U1③脚电压降低,当其低过U1②脚基准电压后U1①脚输出低电平,Q1不导通,光耦OT1发光二极管不发光,光电三极管不导通,UC3842①脚电位升高,从而改变U1⑥脚输出占空比增大,U0降低。周而复始,从而使输出电压保持稳定。调节VR1可改变输出电压值。

反馈环路是影响开关电源稳定性的重要电路。如反馈电阻电容错、漏、虚焊等,会产生自激振荡,故障现象为:波形异常,空、满载振荡,输出电压不稳定等。

六、短路保护电路

1、在输出端短路的情况下,PWM控制电路能够把输出电流限制在一个安全范围内,它可以用多种方法来实现限流电路,当功率限流在短路时不起作用时,只有另增设一部分电路。

2、短路保护电路通常有两种,下图是小功率短路保护电路,其原理简述如下:

当输出电路短路,输出电压消失,光耦OT1不导通,UC3842①脚电压上升至5V左右,R1与R2的分压超过TL431基准,使之导通,UC3842⑦脚VCC电位被拉低,IC停止工作。UC3842停止工作后①脚电位消失,TL431不导通UC3842⑦脚电位上升,UC3842重新启动,周而复始。当短路现象消失后,电路可以自动恢复成正常工作状态。

3、下图是中功率短路保护电路,其原理简述如下:

当输出短路,UC3842①脚电压上升,U1③脚电位高于②脚时,比较器翻转①脚输出高电位,给C1充电,当C1两端电压超过⑤脚基准电压时U1⑦脚输出低电位,UC3842①脚低于1V,UCC3842停止工作,输出电压为0V,周而复始,当短路消失后电路正常工作。R2、C1是充放电时间常数,阻值不对时短路保护不起作用。

4、下图是常见的限流、短路保护电路。其工作原理简述如下:

当输出电路短路或过流,变压器原边电流增大,R3两端电压降增大,③脚电压升高,UC3842⑥脚输出占空比逐渐增大,③脚电压超过1V时,UC3842关闭无输出。

5、下图是用电流互感器取样电流的保护电路,有着功耗小,但成本高和电路较为复杂,其工作原理简述如下:

输出电路短路或电流过大,TR1次级线圈感应的电压就越高,当UC3842③脚超过1伏,UC3842停止工作,周而复始,当短路或过载消失,电路自行恢复。

七、输出端限流保护

上图是常见的输出端限流保护电路,其工作原理简述如上图:当输出电流过大时,RS(锰铜丝)两端电压上升,U1③脚电压高于②脚基准电压,U1①脚输出高电压,Q1导通,光耦发生光电效应,UC3842①脚电压降低,输出电压降低,从而达到输出过载限流的目的。

八、输出过压保护电路的原理

输出过压保护电路的作用是:当输出电压超过设计值时,把输出电压限定在一安全值的范围内。当开关电源内部稳压环路出现故障或者由于用户操作不当引起输出过压现象时,过压保护电路进行保护以防止损坏后级用电设备。应用最为普遍的过压保护电路有如下几种:

1、可控硅触发保护电路

如上图,当Uo1输出升高,稳压管(Z3)击穿导通,可控硅(SCR1)的控制端得到触发电压,因此可控硅导通。Uo2电压对地短路,过流保护电路或短路保护电路就会工作,停止整个电源电路的工作。当输出过压现象排除,可控硅的控制端触发电压通过R对地泄放,可控硅恢复断开状态。

2、光电耦合保护电路

如上图,当Uo有过压现象时,稳压管击穿导通,经光耦(OT2)R6到地产生电流流过,光电耦合器的发光二极管发光,从而使光电耦合器的光敏三极管导通。Q1基极得电导通,3842的③脚电降低,使IC关闭,停止整个电源的工作,Uo为零,周而复始。

3、输出限压保护电路

输出限压保护电路如下图,当输出电压升高,稳压管导通光耦导通,Q1基极有驱动电压而道通,UC3842③电压升高,输出降低,稳压管不导通,UC3842③电压降低,输出电压升高。周而复始,输出电压将稳定在一范围内(取决于稳压管的稳压值)。

4、输出过压锁死电路

图A的工作原理是,当输出电压Uo升高,稳压管导通,光耦导通,Q2基极得电导通,由于Q2的导通Q1基极电压降低也导通,Vcc电压经R1、Q1、R2使Q2始终导通,UC3842③脚始终是高电平而停止工作。

在图B中,UO升高U1③脚电压升高,①脚输出高电平,由于D1、R1的存在,U1①脚始终输出高电平Q1始终导通,UC3842①脚始终是低电平而停止工作。

九、功率因数校正电路(PFC)

1、原理示意图

2、工作原理

输入电压经L1、L2、L3等组成的EMI滤波器,BRG1整流一路送PFC电感,另一路经R1、R2分压后送入PFC控制器作为输入电压的取样,用以调整控制信号的占空比,即改变Q1的导通和关断时间,稳定PFC输出电压。

L4是PFC电感,它在Q1导通时储存能量,在Q1关断时施放能量。D1是启动二极管。D2是PFC整流二极管,C6、C7滤波。

PFC电压一路送后级电路,另一路经R3、R4分压后送入PFC控制器作为PFC输出电压的取样,用以调整控制信号的占空比,稳定PFC输出电压。

十、输入过欠压保护

1、原理图

2、工作原理

AC输入和DC输入的开关电源的输入过欠压保护原理大致相同。保护电路的取样电压均来自输入滤波后的电压。

取样电压分为两路,一路经R1、R2、R3、R4分压后输入比较器3脚,如取样电压高于2脚基准电压,比较器1脚输出高电平去控制主控制器使其关断,电源无输出。

另一路经R7、R8、R9、R10分压后输入比较器6脚,如取样电压低于5脚基准电压,比较器7脚输出高电平去控制主控制器使其关断,电源无输出。

来源:电源Fan

围观 35

页面

订阅 RSS - 电路