电池

处理电源电压反转有几种众所周知的方法。最明显的方法是在电源和负载之间连接一个二极管,但是由于二极管正向电压的原因,这种做法会产生额外的功耗。虽然该方法很简洁,但是二极管在便携式或备份应用中是不起作用的,因为电池在充电时必须吸收电流,而在不充电时则须供应电流。另一种方法是使用图 1 所示的 MOSFET 电路之一。

1.jpg

图 1:传统的负载侧反向保护

对于负载侧电路而言,这种方法比使用二极管更好,因为电源 (电池) 电压增强了 MOSFET,因而产生了更少的压降和实质上更高的电导。该电路的 NMOS 版本比 PMOS 版本更好,因为分立式 NMOS 晶体管导电率更高、成本更低且可用性更好。在这两种电路中,MOSFET 都是在电池电压为正时导通,电池电压反转时则断开连接。MOSFET 的物理“漏极”变成了电源,因为它在 PMOS 版本中是较高的电位,而在 NMOS 版本中则是较低的电位。由于 MOSFET 在三极管区域中是电对称的,因此它们在两个方向上都能很好地传导电流。采用此方法时,晶体管必须具有高于电池电压的最大 VGS 和 VDS 额定值。

遗憾的是,这种方法仅对负载侧电路有效,无法配合能够给电池充电的电路工作。电池充电器将产生电源,重新启用 MOSFET 并重新建立至反向电池的连接。图 2 展示了采用 NMOS 版本的一个实例,图中所示的电池处于故障状态。

2.jpg

图 2:具有一个电池充电器的负载侧保护电路

当电池接入时,电池充电器处于闲置状态,负载和电池充电器与反向电池安全去耦。然而,如果充电器变至运行状态 (例如:附联了输入电源连接器),则充电器在 NMOS 的栅极和源极之间产生一个电压,这增强了 NMOS,从而实现电流传导。这一点在图 3 中更形象。

3.jpg

图 3:传统的反向电池保护方案对电池充电器电路无效

负载和充电器虽与反向电压隔离,但是起保护作用的 MOSFET 现在面临的一大问题是功耗过高。在这种情况下,电池充电器变成了一个电池放电器。当电池充电器为 MOSFET 提供了足够的栅极支持以吸收由充电器输送的电流时,该电路将达到平衡。例如,如果一个强大 MOSFET 的 VTH约为 2V,而且充电器能够在 2V 电压下提供电流,则电池充电器输出电压将稳定在 2V (MOSFET 的漏极处在 2V + 电池电压)。MOSFET 中的功耗为 ICHARGE• (VTH + VBAT),因而使 MOSFET 升温发热,直到产生的热量散逸离开印刷电路板。该电路的 PMOS 版本也是一样。

下面将介绍该方法的两种替代方案,这些替代方案各有优缺点。

N 沟道 MOSFET 设计

第一种方案采用一个 NMOS 隔离器件,如图 4 所示。

该电路的算法是:如果电池电压超过了电池充电器输出电压,则必须停用隔离 MOSFET。

如同上述的 NMOS 方法一样,在该电路中,MN1 连接在介于充电器/负载和电池端子之间接线的低压侧。然而,晶体管 MP1 和 Q1 现在提供了一个检测电路,该电路在电池反接的情况下将停用 MN1。反接电池将 MP1 的源极升举至高于其连接至充电器正端子的栅极。接着,MP1 的漏极通过 R1 将电流输送至 Q1 的基极。然后,Q1 将 MN1 的栅极分流至地,防止充电电流在 MN1 中流动。R1 负责控制在反向检测期间流到 Q1 的基极电流,而 R2 则在正常操作中为 Q1 的基极提供泄放。R3 赋予了 Q1 将 MN1 的栅极拉至地电位的权限。R3/R4 分压器限制 MN1 栅极上的电压,这样栅极电压在反向电池热插拔期间不必下降那么多。最坏情况是电池充电器已经处于运行状态、产生其恒定电压电平,附联了一个反接电池时。在这种情况下,必需尽可能快地关断 MN1,以限制消耗高功率的时间。该电路带有 R3 和 R4 的这一特殊版本最适合 12V 铅酸电池应用,但是在单节和两节锂离子电池产品等较低电压应用中,可以免除 R4。电容器 C1 提供了一个超快速充电泵,以在反向电池附联期间下拉 MN1 的栅极电平。对于最差情形 (附联一个反向电池时充电器已使能的状况再次出现),C1 非常有用。

该电路的缺点是需要额外的组件,R3/R4 分压器在电池上产生了一个虽然很小、但却是持续的负载。

此类组件大多是纤巧的。MP1 和 Q1 不是功率器件,而且通常可采用 SOT23-3、SC70-3 或更小的封装。MN1 应具有非常优良的导电性,因为它是传输器件,但是尺寸不必很大。由于它在深三极管区工作,并且得到了大幅的栅极强化,因此其功耗即使对于导电性中等的器件来说也很低。例如,100mΩ 以下的晶体管也经常采用 SOT23-3 封装。

4.jpg

图 4:一款可行的反向电池电路

不过,采用一个小传输晶体管的缺点是:与电池充电器串联的额外阻抗延长了恒定电压充电阶段的充电时间。例如,如果电池及其配线具有 100mΩ 的等效串联电阻,并且采用了一个 100mΩ 的隔离晶体管,那么恒定电压充电阶段中的充电时间将加倍。

MP1 和 Q1 组成的检测和停用电路停用MN1 的速度不是特别快,而且它们无须如此。虽然 MN1 在反向电池附联期间产生高功耗,但是关断电路只需“在最后”断开 MN1 连接。它必需在 MN1 升温幅度大到导致受损之前断开 MN1 连接。几十微秒的断开连接时间可能比较适合。另一方面,在反接电池有机会将充电器和负载电压拉至负值之前停用 MN1 至关重要,因而需要采用 C1。基本上,该电路具有一条 AC 和一条 DC 停用路径。

用一个铅酸电池和 LTC4015 电池充电器对此电路进行了测试。如图 5 所示,当反向电池热插拔时电池充电器处于 OFF 状态。反向电压不会被传送至充电器和负载。

5.jpg

图 5:充电器处于关断状态的 NMOS 保护电路

值得注意的是,MN1 需要一个等于电池电压的 VDS额定值和一个等于 1/2 电池电压的 VGS额定值。MP1 需要一个等于电池电压的 VDS和 VGS额定值。

图 6 显示了一种更加严重的情况,就是在反向电池进行热插拔时电池充电器已处于正常运行状态。电池反接将下拉充电器侧电压,直到检测和保护电路使其脱离运行状态,从而让充电器安全返回至其恒定电压电平。动态特性将因应用而异,而电池充电器上的电容将对最终结果起到很大的作用。在该测试中,电池充电器兼具一个高 Q 值陶瓷电容器和一个 Q 值较低的聚合物电容器。

6.jpg

图 6:充电器处于运行状态的 NMOS 保护电路

总之,建议在电池充电器上采用铝聚合物电容器和铝电解电容器,以改善正常的正向电池热插拔期间的性能。由于极度的非线性,纯陶瓷电容器会在热插拔期间产生过高的过冲,背后的原因是:当电压从 0V 升至额定电压时,其电容的降幅可达惊人的 80%。这种非线性在低电压条件下激发高电流的流动,而当电压上升时则使电容快速递减;这是一种导致非常高电压过冲的致命组合。凭经验,一个陶瓷电容器与一个较低 Q 值、电压稳定的铝电容器甚至钽电容器的组合似乎是最稳健的组合形式。

P 沟道 MOSFET 设计

图 7 示出了第二种方法,即采用一个 PMOS 晶体管作为保护器件。

7.jpg

图 7:PMOS 晶体管传输元件版本

在此电路中,MP1 是反向电池检测器件,MP2 是反向隔离器件。利用 MP1 的源极至栅极电压来比较电池的正端子与电池充电器输出。如果电池充电器端子电压高于电池电压,则 MP1 将停用主传输器件 MP2。因此,如果电池电压被驱动至低于地电位,则显然,检测器件 MP1 将把传输器件 MP2 驱动至关断状态 (将其栅极干扰至其源极)。不管电池充电器是使能并形成充电电压还是停用 (0V),它都将完成上述操作。

该电路的最大优势是 PMOS 隔离晶体管 MP2 根本不具备将负电压传送至充电器电路和负载的权限。图 8 对此做了更加清晰的图解。

8.jpg

图 8:共源共栅效应的图解

通过 R1 在 MP2 的栅极上可实现的最低电压为 0V。即使 MP2 的漏极被拉至远低于地电位,其源极也不会施加显著的电压下行压力。一旦源极电压降至晶体管高于地电位的 VTH,晶体管将解除自身偏置,而且它的传导性逐渐消失。源极电压越接近地电位,晶体管的偏置解除程度越高。这种特性加上简单的拓扑,使得这种方法比前文介绍的 NMOS 方法更受青睐。与 NMOS 方法相比,它确实存在着 PMOS 晶体管导电性较低且成本较高的不足。

尽管比 NMOS 方法简单,但是该电路还有一个很大的缺点。虽然它始终提供针对反向电压的保护作用,但是它可能不会总是将电路连接到电池。当栅极如图所示交叉耦合时,该电路形成了一个闭锁存储元件,此元件有可能选择错误的状态。虽然难以实现,但存在这样一种情况:充电器正在产生电压 (比如 12V),在一个较低的电压 (比如 8V) 附联电池,电路断开连接。

在这种情况下,MP1 的源极至栅极电压为 +4V,因而强化 MP1 并停用 MP2。这种情况如图 9 所示,并在节点上列出了稳定的电压。

9.jpg

图 9:采用 PMOS 保护电路时可能的阻塞状态图解

为了实现该条件,电池接入时充电器必须已经处于运行状态。如果电池在充电器使能之前接入,则 MP1 的栅极电压完全由电池上拉,因而停用 MP1。当充电器接通时,它产生一个受控的电流 (而不是高电流冲击),这降低了 MP1 接通、MP2 关断的可能性。

另一方面,如果充电器在电池附联之前启用,则 MP1 的栅极只需简单地跟随电池充电器输出,因为它是由泄放电阻器 R2 上拉的。未接入电池时,MP1 根本没有接通和使 MP2 脱离运行状态的倾向。

当充电器已经启动并运行、而电池附联在后时,就会出现问题。在这种情况下,在充电器输出和电池端子之间存在瞬间差异,这将促使 MP1 使 MP2 脱离运行状态,因为电池电压强制充电器电容进行吸收。这使 MP2 从充电器电容器吸取电荷的能力与 MP1 使 MP2 脱离运行状态的能力之间形成了竞争。

该电路也用一个铅酸电池和 LTC4015 电池充电器进行了测试。将一个承受重负载的 6V 电源作为电池模拟器连接至一个已经使能的电池充电器绝对不会触发“断开连接”状态。所做的测试并不全面,应在关键应用中更加全面彻底地进行测试。即使电路确已锁定,停用电池充电器并重新启用它仍将始终导致重新连接。

故障状态可通过人为操控电路 (在 R1 的顶端和电池充电器输出之间建立临时连接) 进行演示。然而,普遍认为该电路更倾向于连接。如果连接失败确实成为一个问题,那么可以设计一款利用多个器件停用电池充电器的电路。图 12 给出了一个更加完整的电路例子。

图 10 示出了充电器被停用的 PMOS 保护电路的效果。

请注意,不论什么情况,电池充电器和负载电压都不会出现负电压传送。

图 11 示出了该电路处于“当反接电池进行热插拔时充电器已进入运行状态”这种不利情况下。

与 NMOS 电路的效果相差无几,在断开电路连接使传输晶体管 MP2 脱离运行状态之前,反向电池略微下拉充电器和负载电压。

在电路的这个版本中,晶体管 MP2 必须能够经受两倍于电池电压的 VDS (一个用于充电器,一个用于反接电池) 和等于电池电压的 VGS。另一方面,MP1 必须能够经受等于电池电压的 VDS和两倍于电池电压的 VGS。这项要求令人遗憾,因为对于 MOSFET 晶体管来说,额定 VDS始终超过额定 VGS。可以找到具有 30V VGS容限和 40V VDS容限的晶体管,适合铅酸电池应用。为了支持电压较高的电池,必须增添齐纳二极管和限流电阻器来修改电路。

图 12 示出了一个能够处理两个串联堆叠铅酸电池的电路实例。

10.jpg

图 10:充电器处于关断状态的 PMOS 保护电路

11.jpg

图 11:充电器处于运行状态的 PMOS 保护电路

ADI 确信其所提供的信息是准确可靠的。但是,对于其使用以及任何可能因其使用而导致的对第三方专利或其他权利的侵犯,ADI 公司概不负责。规格如有变更,恕不另行通知。不得暗示或以其他方式授予 ADI 公司任何专利或专利权的使用许可。

12.jpg

图 12:较高电压反向电池保护。

D1、D3 和 R3 保护 MP2 和 MP3 的栅极免受高电压的损坏。当一个反接电池进行热插拔时,D2 可防止 MP3 的栅极以及电池充电器输出快速移动至地电位以下。当电路具有反接电池或处于错误断开连接闭锁状态时,MP1 和 R1 可检测出来,并利用缺失的 LTC4015 的 RT 特性来停用电池充电器。

结论

可以开发一种面向基于电池充电器应用的反向电压保护电路。人们开发了一些电路并进行了简略的测试,测试结果令人鼓舞。对于反向电池问题并不存在什么高招,不过,希望本文介绍的方法能够提供充分的启示,即存在一种简单、低成本的解决方案。

来源:亚德诺半导体

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 13

锂电池行业现况

锂电池在嵌入式系统中应用越来越多,但各电池厂家的品质和安全性参差不齐。劣质电池在使用中导致的严重事故时有发生,如爆炸,起火等,造成人员伤害和财产损失。劣质电池也严重影响产品系统的稳定性和使用寿命,并且严重影响用户的体验感和对产品的接受度。因此,各品牌厂家高度重视产品匹配的电池质量,需要对其认证,严防假冒伪劣的电池应用到其产品系统。武汉瑞纳捷半导体有限公司的高性能防复制加密认证芯片方案,很好地解决了对电池身份认证识别,杜绝了未经认证的电池使用到产品系统中。加密认证芯片还可存储电池种类、电池参数(老化曲线等参数)、生产日期等信息,起到产品的可追溯作用。

瑞纳捷加密系列

应用图解

1.png

目前,瑞纳捷的工业级加密认证芯片方案有基于RC4算法的RJGT101、RJGT103和RJGT105,还有基于SHA-256算法的RJGT102。即将推出满足AEC-Q100的汽车级加密认证芯片解决方案。

RJGT101、RJGT103和RJGT105都是采用单线通信,速率高达20Kbps。此系列加密芯片集成4字节的真随机数发生器,支持16字节密钥和8字节UID,共集成256字节EEPROM。功耗极低,不影响系统的功耗。正常工作功耗小于1.5mA,低功耗模式小于300nA。提供SOT23-3和QFN-6小封装。其中,RJGT101和RJGT105不需要单独的电源线供电,而是通过RSD信号脚供电,从而极大简化了处理器与加密器件的连线。RJGT101和RJGT105支持宽的工作电压2.4V-5.5V。RJGT105的防静电保护ESD(HBM)达8KV。

瑞纳捷超低功耗MCU系列

防伪加密芯片放置于电池保护板。保护板对电池的状态实时监控,由于电池不能被过充、过放、过流、短路及超高温充放等,一旦异常需要断开相应的充电或放电电路。同时,需要监控电路低功耗运行,以满足低发热量和低电量损耗。瑞纳捷推出的RJM8L超低功耗MCU处理器方案很好地解决了上述问题。

RJM8L151S和RJM8L003系列产品是基于8051增强型单片机,工作电压2.0-5.5V,主频达16MHz,内置32KB FLASH,4KB SRAM,真随机数发生器, 多种通信接口(4路UART /1路LPUART /4路SPI /2路I2C),7通道12位ADC(采样转换率高达1MSPS),两路比较器。采用先进的低功耗设计,通过不同的电源域与时钟域的组合,支持6种低功耗模式,待机模式(Halt)0.6uA,低速运行85uA@32KHz,高速运行小于4mA@16MHz。

RJM8L151S和RJM8L003快速的ADC及时采样相关的电压、电流和温度信号,快速判断电池是否达到过充、过放、短路、过流、温度过高等保护条件。一旦达到保护条件,及时切断充放电回路,使电池处于安全状态。

一站式定制开发  

为了用户能快速推出产品,瑞纳捷提供这些加密认证芯片和MCU产品级应用例程和评估板供开发应用。

来源:武汉瑞纳捷半导体有限公司

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 85

作者:e络盟大中华区销售总监朱伟弟

从公共汽车站的标牌到联网的复杂工业系统,大部分电子系统的设计方式因互联网而发生了极大的改变。其中,最大的变化或许是引入了收集数据并将信息传递至云端的传感器系统。

这些小型“器件”通常无法连接主电源,这意味着它们必须通过电池或能量采集装置进行供电。

对于许多应用而言,能量采集装置是最可行的解决方案。如果设备设计成较低功耗,而能量采集装置可获取较多能量,则设备有可能实现无限期运行。

然而,由于有限的能源获取或过大的系统能源需求,许多应用不适用该方法。在这种情况下,需要通过电池来为系统供电。

遗憾的是,电池需要不断更换,而更换电池的成本往往比物联网设备的自身成本更高。因此,估算电池寿命至关重要。

影响电池寿命的因素

物联网设备的电池寿命可通过简单的计算来确定:电池容量除以平均放电速率。尽量降低设备使用的能量或增加电池容量将增加电池的使用寿命并降低产品的总体拥有成本。

电池通常是物联网传感器系统的最大组成部分,而工程师可以选择的范围很小。然而,采用大量的处理器、通信技术和软件算法,系统可以通过设计达到所需的使用寿命。

物联网处理器睡眠模式

为物联网应用而设计的处理器提供了各种超低功耗睡眠模式。

以TI CC2650MODA无线微控制器为例。图1显示了设备在不同工作状态下的电流消耗。从关机到主动运行有6个功耗级别。

物联网应用中的电池寿命计算

除非数据采样的频率非常低,否则关闭处理器几乎没有什么好处。而且需要额外的电路和代码来重新启动处理器,徒增成本和复杂性。此外,待机模式的电流消耗小于3μA,电池放电至少需要八年:比许多物联网设备的使用寿命更长,也几乎达到了CR2032电池的保存期限。因此,完全关闭处理器往往无益。

选择适当的待机模式很重要。最低功耗待机模式消耗的电流是最高功耗模式的三分之一左右,但只节省了极少的处理器空间。虽然某些物联网应用需要选择最低功耗的睡眠模式,但是多数应用会选择保留缓存,以减小处理活动模式所需要的周期。

活动模式下的处理工作需调节平衡。图1显示了由于该类型的物联网处理器使用的CMOS技术,功耗会随时钟频率呈线性增加。因此,更快的时钟速度似乎意味着更短的电池寿命,但是由于“基本”电流为1.45mA,所以在较快的时钟速度下运行相同算法需要较短的唤醒时间,意味着放慢时钟并不划算,实际上却缩短了电池寿命。

此外从一种模式切换到另一种模式的唤醒时间也是有限的:例如,CC2650MODA从待机切换到活动模式需要151μs。在48 MHz的最大时钟频率下,需要消耗超过7000个时钟周期的电量,来唤醒处理器。对于仅需要少量代码的应用,在唤醒期间减慢时钟来获取更长的代码执行时间以降低功耗,可以延长电池寿命。同样地,在返回待机模式之前尽量减少唤醒操作次数并执行尽可能多的任务也可以延长电池寿命。

现代物联网设备是非常复杂的产品,集成了许多外设,使单芯片解决方案能够满足不同的需求。然而,通常物联网设备—特别是简单的传感器—并不需要这些复杂的功能。

物联网应用中的电池寿命计算

图2显示了TI CC2650MODA系列中可用外设的功耗。尽管各种设备消耗的电流非常小—仅几十或几百微安的程度—但是禁用这些设备可能会产生重大影响。如果不需要进行串行连接,则可以节省总共318μA。虽然可能看起来不太多,但是这个电流变化会对电池寿命产生重大影响。

物联网通信技术

选择正确的通信技术通常取决于系统要求。电池供电的物联网系统,往往需要使用射频链路。

就无线通信而言,更大的范围或更快的数据传输速率通常需要消耗更多的能量,因此满足这些需求的最低功耗通信技术通常是明智的选择。

而对于物联网传感器,目前有几种主流技术。例如,LoRa技术可以构建覆盖数公里范围的低功耗、远距离广域网(WAN),而低功耗蓝牙(BLE)技术仅能在短距离通信,但是消耗的电量大幅度减少。另一个必须要做的决定是使用片上设备,还是选择单独的芯片来进行通信。

通信接口管理至关重要,因为即使是低功耗通信技术也会很快耗尽电池,并且处理要求通常高于射频阶段。

为了最大限度地利用通信电池的容量,许多物联网系统只有在积累了足够多的数据值得进行传输时才唤醒通信电路。

选择传感器以最大限度延长电池寿命

传感器可以对物联网系统的电池寿命产生重大影响。例如电阻温度检测器和热敏电阻可以随温度改变其电阻。精确度不高的简单应用可以使用分压器,但是高精度系统需要电流源,这需要更多的电量。对于许多应用来说,诸如TI LM35DZ的集成温度传感器是一个很好的解决方案:该设备在室温下精确到±0.25°C,仅消耗60μA。不论选择哪种传感器,都需保证只有在使用它们时才能获取电力。

用于物联网的电池技术

电池选择存在一个问题,许多电池的规格非常有限。除物理尺寸和输出电压之外,通常唯一指定的其他参数就是容量。电池容量显然非常关键,因为它决定了物联网设备可用的总电量。

电池质量对容量有重大影响。简单设定某一型号有可能冒着购入低容量便宜设备的风险。这又会缩短物联网应用的电池寿命,并带来昂贵的电池更换费用。也可能使用了不同化学物质构成的电池:而不同的化学成分会对电池寿命产生巨大的影响。

许多电池随附的简要数据表很容易让人轻信电池是非常简单的设备,电池的容量也是固定的,但事实并不如此。例如,如果负载需要更大电流,则寿命会显著缩短。更重要的是,对于某些应用来说随着温度的下降,电池的容量也会大大缩小。

物联网应用使用脉冲电流。处理器和传感器可以抽取几毫安的短脉冲电流,然后切换到低功耗模式并维持很长时间。使用脉冲电流会导致输出电压下降。图3显示即使2mA的脉冲负载也会使CR2032的输出从3V下降到2.2V左右。

物联网应用中的电池寿命计算

工程师们往往更重视电池的电量存储,而忽视其消耗。然而,物联网应用通常需要以单个电池运行多年,因此保质期非常关键。大部分电池只提供七至八年的保质期。

结论:最大限度延长电池寿命

开发由电池供电的物联网设备需要严谨的工程设计。虽然组件选择很重要,但是糟糕的设计会削弱低功耗处理器的优势。延长电池寿命的关键是确保处理器尽可能地处于低功耗待机模式,并尽可能减少使用无线通信。

在这一背景下,e络盟开发了一款计算器,帮助用户快速、轻松地预测物联网系统的电池寿命(图4)。用户只需输入其处理器、通信设备、传感器和电池的相关参数,以及软件操作的关键细节,该计算器就能预测出物联网设备的电池寿命。

物联网应用中的电池寿命计算

关于e络盟

e络盟是Premier Farnell 旗下系列业务之一。Premier Farnell是全球技术领导者,致力于科技产品和电子系统设计、生产、维护与维修解决方案的高质量服务分销已逾80年。作为 ‘电子与开发服务分销商’,Premier Farnell凭借其深厚的业界经验向电子爱好者、设计工程师、维修工程师和采购人员等广泛客户群提供强有力支持,同时与全球领先品牌和初创企业积极展开合作共同研发全新产品并推向市场。公司还全力协助推动行业的发展以期培养出一批优秀的当代和下一代工程师。

Premier Farnell隶属于安富利公司 (NYSE:AVT)旗下元件营运机构安富利电子元件(Avnet Electronics Marketing)。Premier Farnell在欧洲经营 Farnell element14 品牌,北美经营 Newark element14品牌,在亚太地区经营element14品牌。它拥有一个涵盖3,500多家供应商的全球性供应链,其广泛产品库存可以预测并满足各地区创新客户的需求。

欲了解更多信息,敬请访问:http://www.premierfarnell.com

围观 431

在物联网风潮的驱动下,恒温器已朝向联网与智慧化发展。微控制器(MCU)开发商遂推出低功耗,且具备段式LCD显示控制与Wi-Fi/蓝牙/ZigBee无线连结支援能力,以及256位元AES先进加密功能的新方案,助力智慧型恒温器应用发展。

目前,市场上涌现出越来越多的物联网(IoT)恒温器产品。本文阐述如何使用微控制器(MCU)打造IoT恒温器,并以爱特梅尔(Atmel)SMART SAM L22 MCU为例,同时也介绍此MCU作为段式液晶显示器(LCD)控制器平台实现恒温器应用的功能。该MCU内置一个主频32MHz的ARM Cortex-M0+处理器,拓展该公司现有的低功耗MCU系列。它专为本文描述的恒温器等人机介面(HMI)应用而设计,内置一个支持上至三百二十段的段式显示控制器、一个用于实现按键、滑块和滚轮的外接周边设备触摸控制器(PTC)以及USB、Timer、SERCOM等可配置为USART、SPI和I2C介面的其他众多外接的周边设备。 低功耗/通讯/安全性 IoT恒温器必备功能

IoT应用强调万物联网,因此IoT恒温器也须具备联网通讯功能,此外为因应设备功能与资料传输增多,其亦须符合低功耗、安全性和简易使用的人机介面等特性。

低功耗

与其他很多IoT应用一样,功耗是IoT恒温器的重要考虑因素。IoT应用通常是电池供电型,或者用户希望它们比之前型号在提供更多功能的同时,减少电量消耗。 SAM L22 MCU专为低功耗应用而设计。使用快闪记忆体进行EEMBC Coremark测试时,其工作模式下的功耗低于39μA/MHz,待机模式下的功耗仅为1.87μA(RTC处于工作状态时)。 此MCU之所以能实现上述低功耗,凭藉的是其独特设计和众多特性。例如功率级特性让其能为具体任务选择正确的性能。控制器能将内核电压从1.2伏特(V)迅速切换到0.9V。降低内核电压可大幅降低总功耗,因为中央处理器(CPU)的功耗随着频率和电压的升高而增加。当内核电压为0.9V时,CPU的最大频率为12MHz;而当内核电压为1.2V时,CPU的最大频率为32MHz。例如当内核电压为0.9V,频率为12MHz时,该MCU计算一次斐波那契数列须消耗28μA/MHz;当内核电压为1.2V,频率为32MHz时,同样计算却须消耗37μA/MHz。

除了一个低压差稳压器(LDO)之外,该款MCU还内置一个降压转换器。此前的功耗是采用降压转换器和3.3V电压测量。在此电压下,降压转换器的工作效率最高。这比LDO的效率高出很多,能实现低功耗。

此MCU的另一个优势是直接记忆体存取(DMA)和事件系统(Event System),它们能在无需CPU参与的情况下,实现资料通讯和控制外接的周边设备。各个外接的周边设备在独立执行任务或相互控制时,Cortex-M0+处理器可进入睡眠状态。

这款MCU的模拟功能也是专为此类低功耗应用而设计的。12位1MSPS类比数位转换器(ADC)可在10Ksps和单端模式下测量温度感测器,仅需60μA用于模数转换。

通讯

其次,IoT应用须通过射频(RF)与互联网、智慧手机、感测器、致动器或其他IoT设备通讯。此MCU提供多个输入/输出(I/O)介面,用于连接各种RF模组和其他外接的周边设备。它最多可配备六个片上SERCOM外接的周边设备,足够用于将更多元件连接至恒温器。每个SERCOM外接的周边设备可被配置为USART、UART、SPI或I2C。Atmel SmartConnect WINC3400 Wi-Fi/蓝牙组合解决方案或面向ZigBee设备的SAM R21都可以通过I2C或SPI连接该款MCU。内置USB可用于实现其他有线通讯。该USB是一个无石英的全速USB设备,这意味着无需精准的外部振荡器,从而降低应用的物料成本(BOM)。

安全性

所有IoT应用都必须有重要元件:安全性。为了实现安全的通讯,该款MCU配有一个256位元的先进加密标准(AES)外接的周边设备。它可以在不增加软体开支的情况下进行加密和解密。此外,它还支援多种模式,如密码段连结模式(Cipher Block Chaining)、伽罗瓦计数器模式(Galois Counter Mode)等等。

AES外接的周边设备内置抗差分功耗分析攻击(Differential Power Analysis Attacks)措施。通过差分功耗分析,攻击者能得知控制器的功耗,并利用这些资料探测出加解密金钥。

通过采用这种方法,AES外接的周边设备能随机增加加解密运算的周期,加大攻击者探测出金钥的难度。此MCU还内置一个真乱数产生器(TRNG)外接的周边设备,它能生成真乱数的所有八十四个周期。这个数对于加密至关重要,因为真乱数不能被预测,因此也不能通过数学方法被计算出来。乱数可用于通过IP网路进行身份验证。

加密金钥可保存在备份区暂存器、快闪记忆体或静态随机存取记忆体(SRAM)中。为了提高安全性,此MCU内置一个防篡改单元,它能检测出是否有人试图打开恒温器。防篡改引脚与恒温器的外壳相连。当攻击者通过机械方式打开恒温器的外壳时,防篡改线将断裂,从而检测到篡改攻击。

在这种情况下,防篡改单元将发起“事件”,内核则执行相应的软体功能,删除SRAM、串列电子抹除式可复写唯读记忆体(EEPROM)、快闪记忆体或其他外部记忆体中的加密金钥或其他资料。

为进一步增强安全性,该MCU还内置活动层防护(Active Layer Protection)功能。

讯号通过印刷电路板(PCB)/外壳发送到防篡改输入埠。程式将对该输入讯号与输出讯号进行对比,如果不匹配,则检测到篡改。如果攻击者在PCB上钻孔,并剪断PCB上的防篡改线,该功能也将检测到篡改,并发起“事件”。

人机介面

同样重要的是,IoT应用需有人机介面(HMI)或使用者介面。该IoT恒温器功能由最终用户通过智慧手机控制。但它须提供一个手动更改和监测温度的选项,因为智慧手机有可能发生故障或者丢失。

在这种情况下,内置的段式LCD显示器可向使用者显示温度和其他资讯。段式LCD控制器最多可控制三百二十个段,而且能从五十二个LCD I/O引脚中选择四十八个LCD引脚。设计人员还可选择未使用的LCD引脚,用于实现SERCOM等协助工具或模拟功能。

此外,SLCD控制器还支持各种用于降低功耗的功能。例如可通过DMA将资料从SRAM/快闪记忆体发送到显示器缓冲区。

硬体特征映射、自动位元映射(ABM)和闪烁(Blinking)功能能以极低的功耗改变段式LCD上显示的内容。这种改变无需大功率内核。很多恒温器在它们的显示器上显示当前时间。闪烁功能用于显示秒,同时也是段式LCD控制器的一个硬体功能。

除了能通过无线区域网路(WLAN)或蓝牙远端更改设置或温度之外,使用者还能在恒温器上执行这些任务。此MCU支援Atmel QTouch技术,其中包括采用互电容触控技术和自电容触控技术的按键、滑块和滚轮。该款MCU可为此类应用提供足够多的触控通道。借助Atmel技术,触控按键直接整合到段式LCD的铟锡氧化物(ITO)层上。触控输入可用于升降温度,或选择其他房间中的加热器或感测器。

智慧/触控控制 恒温器更聪明

该款恒温器藉由RF监测不同房间中的无线温度感测器,并控制其中的加热器。使用者可通过WLAN或低功耗蓝牙协议、家用网路或互联网,并使用智慧手机对其进行控制,或直接使用触控按键进行控制。

此MCU内置的ADC能测量恒温器周围的温度,其对来自温度感测器的外部数值进行数位化处理。内部温度感测器可用于控制外部数值,以便进行交叉核对。而MCU的内部温度感测器提供两点测量功能,精度为±1℃(0∼60℃)。

另一条ADC通道也可用于测量电池电压。欠压检测(BOD)功能可检测出较低的电压,并自动关闭系统,以防出现故障。

来源: 电子产品世界

围观 286

来源:智能硬件小站

有人知道什么是能源地砖吗?从专业角度讲,这是一种新型电池——飞轮电池(飞轮电池是20世纪90年代提出的新概念电池,它突破了化学电池的局限,用物理方法实现储能)。

新型电池越来越多,也是为了解当今智能设备的“燃眉之急”,就拿手机来说吧,如果它没电了,就形如一块板砖。为此,科学研究者及硬件生产厂商在电池的材料上、技术上努力,希望挖掘更好的电池材料,也希望能将电池容量做大一点,让续航好一点。今天,我们就来涨涨姿势,看看这些神奇的电池。

超轻光伏电池

大家都知道,电池的大小限制了智能手机、电脑、可穿戴设备可以接受的外形。

一款超轻量的光伏电池已然问世,它让那些所谓电池限制都成了无稽之谈。因为它的特点除了轻还是轻,轻到可以把它放在泡泡上。

这群麻省理工学院的研究者表示,制造这一电池的核心在于技术,而非材料。他们把电池、基片和保护图层在同一工艺上实现,这样一来可以免受灰尘侵入。

一种名为聚对二甲苯的柔性聚合物用作基片和保护涂层,而主吸光层是由一种叫酞酸二丁酯的有机材料制作而成的。而且,整个过程是在室温下真空完成的,没有使用任何化学溶剂或刺激性化学物质。

当大家把精力都投射在续航能力上时,关注电池的体量也是一个新的拓展点。

这款电池非常轻盈,适用范围也很广,比如说嵌在衣服或笔记本上,比如说太空或是高海拔环境,而且,它可以做为现有设备的简易扩展。

柔性太阳能电池

传统的无机光电器件(即太阳能电池)已经不是什么新鲜事物了,只是它必须加工成坚硬的板块状物件,才能大面积的吸收太阳能,而这明显限制了日常应用。而柔性器件重量轻,并且可以折叠、卷曲、粘贴在曲面上,如汽车玻璃、屋顶、衣服等。

如果柔性太阳能电池成为现实,可穿戴设备将变得更加完美。

目前,来自中国、美国以及韩国的科学家已经开发出类似电池,它可以任意改变形状以适应不同的设备。

中国科学技术大学熊宇杰教授课题组基于应用广泛的半导体硅材料,采用金属纳米结构的热电子注入方法,设计出一种可在近红外区域进行光电转换且具有力学柔性的太阳能电池。

熊宇杰课题组将具有近红外光吸收性能的银纳米片与硅纳米线集成在一起,构筑了两种不同的光伏器件,在近红外光照下,银纳米片产生的热电子可以直接注入硅半导体中,近红外光区光电转换效率提高了59%。

这种柔性电池可以安装在你的皮肤上,随时为可穿戴设备提供足够电量。该成果有望用于发展智能温控型太阳能电池及可穿戴太阳能电池。

氢燃料电池

电池在燃料上做文章并不鲜见,这里要说的这个氢燃料电池可以让无人机的续航增添到2个小时。

英国Intelligent Energy公司研制出了一种氢燃料电池,这种电池能够让无人机在天上连续飞行2个小时,并且在着陆之后可以立即补充燃料,继续飞行。

这种无人机氢燃料电池加满燃料差不多只有1.6千克,相比锂电池还更轻了。

目前这款氢燃料电池已经安装在大疆Matrice 100无人机上进行了成功测试。Intelligent Energy公司表示,这款电池最快能在今年年底就上市。

不过由于这种氢燃料电池燃料的特殊性,使得电池的危险性增加了不少。只要在技术上把关够严谨,危险系数还是可以控制的。

蔗糖电池

先纠正一下,这款蔗糖电池并不是由蔗糖制成的。只是日常生活中的普通蔗糖可以用来发电。

MIT的科学家研究结果显示,使用蔗糖包裹碳纳米管,从一端点燃碳纳米管,就会产生热能波(TPW)来推动管内的电子向前运动,进而产生电流。

各大报道均称,这个原理很复杂!想来科学家整出来的原理也不是我等普通人能理解的。还是来说说它的用处吧~

虽说这种蔗糖电池使用效率不高,但难能可贵的是它储存的电量不会随着时间丢失,这点绝对碾压锂电池。另外,由于该技术中的碳纳米管体量可以被缩小,因此未来糖电池还可以用在可穿戴设备当中。

空气充电

华盛顿大学传感实验室研究员创造了无线识别和传感平台(WISP):一个传感器和计算芯片的结合,不需要电池也不需要连接电源线就能运作。


 
它吸收一个RFID(射频识别)读写器发出的无线电波将之转化为电流。

它和Fitbit里的处理器有类似的时钟速度和功能,包括嵌入式加速器和温度传感器。它通过反向散射无线信号实现了这项伟业。

它的带宽类似蓝牙低功耗模式,一种支持大部分蓝牙音箱和无线耳机的无线充电技术。举个例子吧,将WISP安装进健身追踪器,无需把它连接到任何装置里,就可以下载新的追踪功能,或者通过更新来修正错误。

通过联合WISP和RFID读写器,研究人员称,他们已经能够制造10倍快速的无电池计算机。

只是,想要用无线电波给iPhone和笔记本电脑充电,还有些遥远。

不过,目前可以使用WISP的领域有:1、建筑,可以探测到大楼是否在地震中收到了损坏;2、农业领域,能够同时监测几千株植物的能力可以带来巨大价值;3、用于可植入设备,来监测病人的健康;4、健身手环。最重要的,WISP和其他无电池计算机完全可以让物联网设备变得智能起来。

结束语

大家都知道,电池的大小限制了智能手机、电脑、可穿戴设备可以接受的外形,电池的性能有严重制约着这些智能设备的功能发挥。因此,电池甚至电池技术,就是智能硬件整个行业的命脉所在。

产品的性能再高端,功能再酷炫,没有了电源的支撑,一切都只能算作P!新型电池技术的引进,将给智能硬件尤其是可穿戴领域带来了新的可能性,无论是体量上还是续航上。

围观 326

便携式系统通常用电池供电,而电池使用寿命取决于系统的功耗。在提倡“绿色环保”计划的今天,即便是市电供电的应用也要把功耗作为一项重要的产品选择标准。

便携式设备通常分为使用充电电池供电的设备和使用非充电电池供电的设备。如果应用使用的是非充电电池,那么电池使用寿命将是至关重要的规范要求。对于任何应用而言,电池使用寿命取决于:
所用电池的可用电荷量;
应用的平均电流消耗。

使用充电电池的应用还要考虑到另一个参数,那就是电池充电的频率和每次充电所花的时间。从最简单的角度说,延长电池使用寿命可通过提高电池容量或降低应用的平均电流消耗来实现。由于电池重量过大会影响系统的机械约束和成本,因此系统设计人员只能将电池电量提高到一个限值。在电池化学技术的全新发展不断提高电池电荷密度的同时,我们还亟需想办法继续降低平均功耗。

应用的平均功耗取决于:

每个电路组件的功耗;

应用的供电方案以及电力如何通过栅极输送到设计的各个部分;

设计中的各个组件是如何在不同的工作条件下工作的;

每个组件的功耗可从各组件的器件数据表获得。了解每个组件的功耗拆分信息非常重要,这有助于设计出色的系统,实现低功耗优化。

不妨来设想一个简单的小型电池供电数字时钟。该设备可用于计时,并在按下按键时能显示当前时间。设备通常处于断电模式以节电,只有在检测到按键动作时才会被唤醒并刷新显示屏。显示屏和主电路在工作一段时间后会返回断电模式以节电。该系统的高层次方框图如下:

图1:小型数字时钟的高层次方框图

电路采用RTC计时,用主控制器芯片与RTC通信,并管理显示屏界面。整个系统大部分时间处于断电状态,显示屏关闭,主控制器也处于断电模式,这样电流消耗可降到最低,所有外设都关闭。按键则作为唤醒设备的触发器,以获取RTC数据并在显示屏(通常为LCD)上进行显示。

要分析这种系统的功耗,要看的第一个数据就是设备和显示屏都处在断电模式下的典型平均电流是多少。应查看每个外设和控制器的数据表,以了解功耗数据。为了最大限度地降低功耗并延长电池使用寿命,应做到给所有不使用的外设断电。在本应用中,这个不使用的外设就是显示屏。与显示屏形成对比的是,RTC需要始终进行供电,以实现计时功能。

MCU通常是大多数系统中总功耗的主要来源。这一点同样适用于本案例中的应用,如果不能选择并适当使用正确的MCU时尤为如此。有很多办法可降低MCU的功耗,包括但不限于:

1. 降低工作频率

2. 以更低的工作电压运行

3. 使用低功耗工作模式

MCU能在各种工作频率上运行。然而,不同器件支持的频率各不相同。MCU的功耗与工作频率成正比,随着频率的升高,动态功耗也会升高。因此,MCU应该以尽可能低的频率运行,同时能够可靠地满足系统的需求。

此外,频率也与时钟源有关。设备支持各种时钟源选项,包括内部高速振荡器、内部低速振荡器、外部晶体振荡器等。在大多数情况下,外部晶体可提高精确度,但代价是功耗较高。选择低功耗时钟源,往往要权衡速度和精确度。为选择适当的时钟源,确保系统性能和功耗的完美平衡,应该认真研究系统要求。

大多数MCU支持低功耗工作模式,从而满足低功耗系统设计的要求。同样,支持模式的数量以及每种模式的特性根据器件会有所不同。应适当使用低功耗模式,以降低平均功耗。常见的模式包括:

工作模式:MCU正常运行。

较低功耗模式:时钟经门控后送至MCU,保持各种寄存器和RAM的状态。

最低功耗模式:包括MCU在内的所有外设都断电。

当时钟经门控后送至MCU时,功耗就是静态功耗。静态功耗取决于几个因素,包括亚阈值条件和FET中的隧道电流等。此外,隧道电流在小型芯片设计的FET缩减时会成为主要因素(即尺寸减小使得氧化物的厚度减小)。

今天,我们已经拥有在单芯片上实现完整系统/子系统高度集成的SoC。 除了集成度之外,就功耗而言,这些SoC也有助于降低平均功耗,使其低于采用独立MCU和分立外设的情况。

文章来源:周立功单片机

围观 261
订阅 RSS - 电池