氮化镓

氮化镓(Gallium Nitride,简称GaN)是一种化合物半导体材料,由镓(Ga)和氮(N)元素组成。它具有一些重要的电子特性,使其在电子器件和半导体应用中具有广泛的用途。

总的来说,氮化镓是一种具有出色电子性能和热性能的半导体材料,广泛应用于高性能电子器件和半导体行业中。随着技术的不断进步,预计其在各种领域中的应用将继续扩展。

NCP51820 是一款 650 V、高速、半桥驱动器,能够以高达 200 V/ns 的 dV/dt 速率驱动氮化镓(以下简称“GaN”)功率开关。之前我们简单介绍过氮化镓GaN驱动器的PCB设计策略概要(点击查看),本文将为大家重点说明利用 NCP51820 设计高性能 GaN 半桥栅极驱动电路必须考虑的 PCB 设计注意事项。

1.png

本设计文档其余部分引用的布线示例将使用含有源极开尔文连接引脚的 GaNFET 封装。

VDD 电容

VDD 引脚应有两个尽可能靠近 VDD 引脚放置的陶瓷电容。如图 7 所示,较低值的高频旁路电容(通常为 0.1 μF)应与第二个并联电容(1 μF)一起放在最靠近 VDD 引脚的位置。

               2.png

图1. NCP51820 VDD 电容布局和布线

所有走线须尽可能短而直。可以使用过孔,因为 VDD 电流相对较低。SGND 返回平面对于其屏蔽特性以及让所有信号侧接地回路保持相同电位很有好处,建议使用。SGND 平面位于第 2 层,使其靠近信号侧元器件和 NCP51820。所有信号侧元器件都放在 SGND 平面上,并通过过孔连接。VDD 引脚和 VDD 电容之间应建立直接连接,最好使用过孔作为 SGND 平面的返回连接。

如图1所示,两个 VDD 电容的接地连接并在一起,并通过单个过孔连接到 SGND 平面。如果可能,最好使用不间断的实心 SGND 接地平面,以免形成接地环路。建议将“安静”的 SGND 平面延伸到 NCP51820 下方,以帮助屏蔽驱动器 IC,使其不受噪声影响。注意在图1中,SGND 平面没有延伸到 NCP51820 栅极驱动器输出引脚下方。这是有意为之,目的是避免噪声从栅极驱动 di/dt 峰值拉电流和灌电流耦合到 SGND 平面中。

VBST 电容和二极管、VDDH 和 VDDL 旁路电容

VBST 电容应尽可能靠近 VBST 引脚放置。VBST 电容返回引脚应连接到 GaNFET 的驱动器 SW 引脚、VDDH 返回引脚和源极开尔文引脚。每个连接都是通过过孔接到 HS 栅极返回平面,如图2所示。务必注意,不应从功率级开关节点接回到 NCP51820。请勿将 VBST 电容连接到功率级开关节点。“开关节点”的唯一连接是通过 HS GaNFET 源极开尔文引脚。

HS 栅极返回平面的设计应注意,不得与功率级开关节点发生重叠或相互作用。同样,LS 栅极返回平面的设计应注意,不得与 LS GaNFET 电源地发生重叠或相互作用。请勿将 SGND 平面放在 VBST 二极管或 VBST 电容下方,因为 VBST 二极管的阴极上存在高 dV/dt,它可能会将噪声注入 SGND 平面。

3.png

图2. NCP51820 VBST 电容和二极管、VDDH 和 VDDL 电容

VDDH 电容应尽可能靠近 VDDH 引脚放置。如图2所示,VDDH 电容返回引脚应通过过孔连接到 HS 栅极返回平面(与 VBST 电容共用一个双过孔连接)。

VDDL 电容应尽可能靠近 VDDL 引脚放置。如图2所示,VDDL 电容返回引脚应通过过孔连接到 LS 栅极返回平面。VDDL 电容返回引脚必须连接到驱动器上的 PGND 引脚。VDDL 电容返回引脚通过过孔连接到 LS 栅极返回平面,该平面也通过过孔连接到驱动器 PGND 引脚。

由于栅极驱动电流峰值很高,并且为了降低过孔寄生电感,VBST、VDDH 和 VDDL 需要多个过孔。在此示例中,每个 GaNFET 栅极返回连接使用四个过孔。这是一个合理的折衷考虑,一方面能在 NCP51820 栅极驱动器返回引脚与 GaNFET 返回引脚之间获得低阻抗连接,另一方面能保持实心返回平面和良好的屏蔽完整性。如果可能,最好使用导电材料填充的过孔,因为其相关电感更低。

栅极驱动布线

当 NCP51820 向 HS GaNFET 栅极提供电流时,该栅极电流来自 VDDH 调节器旁路电容中储存的电荷。如图3所示,拉电流流经 HO 驱动器源极阻抗和栅源电阻,进入 GaNFET 栅极。然后,电流从 GaNFET 源极开尔文引脚返回,又回到 VDDH 旁路电容。

4.png

图3. 高压侧栅极驱动拉电流

当 NCP51820 从 HS GaNFET 吸收电流时,该电流来自栅源电容中储存的能量。如图4所示,灌电流从 HS GaNFET 栅极流出,经过栅极灌电流电阻、HO SINK 驱动器阻抗和 SW 引脚,回到 GaNFET 源极开尔文引脚。

5.png

图4. 高压侧栅极驱动灌电流

当 NCP51820 向 LS GaNFET 栅极提供电流时,该栅极电流来自 VDDL 调节器旁路电容中储存的电荷。如图5所示,拉电流流经 LO 驱动器源极阻抗和栅源电阻,进入 GaNFET 栅极。然后,电流从 GaNFET 源极开尔文引脚返回,又回到 VDDL 旁路电容。

6.png

图5. 低压侧栅极驱动拉电流

当 NCP51820 从 LS GaNFET 吸收电流时,该电流来自栅源电容中储存的能量。如图6所示,灌电流从 LS GaNFET 栅极流出,经过栅极灌电流电阻、LO SINK 驱动器阻抗和 PGND 引脚,回到 GaNFET 源极开尔文引脚。

7.png

图6. 低压侧栅极驱动灌电流

GaNFET 能以高开关频率工作,漏源切换期间会出现高 dV/dt(100 V/ns 及更高)。GaN 的栅源导通阈值较低 (<2 V),因此栅极驱动拉电流和灌电流路径必须尽可能保持短而直,以减轻走线寄生电感的不良影响。栅极环路中的过大寄生电感可能导致超过栅源阈值电压的栅极振荡或高频振铃。栅极驱动和返回路径中的过孔只有在绝对必要时才应使用。最好使用导电材料填充的过孔,因为每个这种过孔的电感要小得多。在栅极电阻和相关布线下方使用载流返回平面,以在拉电流和灌电流路径正下方提供一个返回路径,有助于减少环路电感。

NCP51820 高压侧和低压侧驱动在内部相互隔离。对于高压端,SW 引脚必须与功率开关节点隔离,以防止开关噪声注入栅极驱动路径,并且它只能连接到高压侧 GaNFET 上的 SK 引脚。源极开尔文引脚和电源引脚之间的开尔文连接是 NCP51820 SW 引脚和功率级开关节点之间的唯一电气连接,如图3和图4所示。同样,低压侧栅极驱动的布线应使 NCP51820 PGND 引脚与功率级 PGND 隔离,并且只能连接到低压侧 GaNFET 的 SK。设计目标是避免电源 PGND 噪声注入低压侧栅极驱动路径。在低压侧 GaNFET 内部,SK 引脚和电源引脚之间存在开尔文连接,它是 NCP51820 PGND 和电源 PGND 之间的实际连接,如图5和图6所示。

在设计允许的范围内,HS 和 LS 栅极走线的长度应尽可能相等。这有助于确保两个 GaNFET 具有相似的栅极驱动阻抗。高压侧和低压侧 GaNFET 交错对齐具有双重作用:一是使得栅极驱动布线接近对称且等距,二是允许使用更大、更高电流的功率开关节点铜触点。

最好将 HS 和 LS 返回平面分配至第 2 层,并将它们直接放置在栅极驱动电阻和走线下方,这样有助于减少栅极驱动环路电感。对于高压侧 GaNFET,由于 VDDH 旁路电容返回引脚和 NCP51820 SW 引脚被 HO 拉电流和 HO 灌电流走线分开,因此可以使用无填充的过孔通过 HS 栅极返回平面连接到 GaNFET 的源极开尔文引脚。建议使用多个过孔以帮助减少过孔电感。请注意,栅极驱动电流路径与功率开关节点电流路径隔离,尽可能避免主电流路径中的噪声注入栅极驱动电流路径。

对于低压侧 GaNFET,由于 VDDL 旁路电容返回引脚和 NCP51820 PGND 引脚被 LO 拉电流和 LO 灌电流走线分开,因此可以使用无填充的过孔通过 LS 栅极返回平面连接到 GaNFET 的源极开尔文引脚。建议使用多个过孔以帮助减少过孔寄生电感。请注意,栅极驱动电流路径与电源 PGND 电流路径隔离,尽可能避免主电流路径中的噪声注入栅极驱动电流路径。

信号接地 (SGND) 和电源接地 (PGND)

SGND 是所有内部控制逻辑和数字输入接地。在内部,SGND 和 PGND 引脚相互隔离。PGND 用作低压侧栅极驱动和返回基准。

对于半桥电源拓扑或任何使用电流检测变压器的应用,NCP51820 SGND 和 PGND 应在 PCB 上连接在一起。在此类应用中,建议在 PCB 上通过一条低阻抗短走线将 SGND 和 PGND 引脚连接在一起,并且让它们尽可能靠近 NCP51820。NCP51820 正下方是建立 SGND 至 PGND 连接的理想位置,如图7所示。

8.png

图7. PGND 至 SGND,0 Ω 单点连接

对于低功耗应用,例如有源箝位反激式或正激式转换器,通常会在低压侧 GaN FET 源极支路中使用一个电流检测电阻 RCS。在此类应用中,NCP51820 PGND 和 SGND 引脚不得在 PCB 上连接,因为 RCS 会通过此连接短路。NCP51820 低压侧驱动电路能够承受 -3.5 V 至 +3.5 V 的共模电压。大多数电流检测电压信号小于 1 V,因此低压侧驱动级很容易“浮动”到电流检测所产生的电压 VRCS 以上。如图8所示,整个低压侧栅极驱动浮动到 VRCS 以上。这一点很重要,因为它确保栅极驱动幅度不会有损失,因此完整的 VDDL 电压会出现在低压侧 GaN FET 栅源端子。

按照上文所述布置电路时,连接到 NCP51820 HIN 和 LIN 的控制器 HO/LO 路径必须返回到控制器 GND 以形成完整电路。因此,NCP51820 SGND 和控制器 GND 必须相连。这是通过使用过孔将 NCP51820 SGND 和控制器 GND 连接到 SGND 平面来实现的,如图 14 所示。SGND 平面仅用于信号和信号侧 VDD 返回,也会充当信号的屏蔽层。VRCS 返回引脚还必须连接到控制器 GND,这应该使用单条低阻抗走线来完成,该走线应尽可能靠近 VRCS 走线(或位于其下方)。这会将功率级 PGND 单点连接到 SGND,并将功率级 PGND 上的高 dV/dt 和 di/dt 与 SGND 平面隔离开来。

9.png

图8. LS 栅极返回隔离和 VRCS 连接

开关性能验证

在利用 NCP51820 驱动 GaNFET 的半桥功率级布局中使用了本文介绍的 PCB 设计技术。

10.png

图9. 650 V,18 A,HEMT,GaNFET,350 V,10 APK

图9显示了驱动两个 650 V、18 A、90 mΩ GaNFET 的稳态波形。通道 1(黄色)是高压侧栅源电压,通道 2(红色)是低压侧栅源电压,通道 3(蓝色)是开关节点电压(低压侧 GaN VDS),通道 4(绿色)是电感电流。高压侧栅源电压(通道 1,黄色)显示存在轻微过冲和欠冲,这是使用高压探针测量低压浮动信号(在栅极和功率开关节点之间测量)的附带结果。通道 2(红色)显示了栅源电压的“更真实”测量结果,其中低压侧 GaNFET 栅源电压在栅极和 PGND 之间测得。可以看到,栅极驱动边沿非常锐利且干净。同样,开关节点电压(通道 3,蓝色)没有振铃、过冲或欠冲。

11.png

图10. 600 V,26 A,HEMT,GIT,GaNFET,dV/dt = 75 V/ns,320 V,20 APK

图10所示波形是驱动两个 HEMT、GIT、600 V、26 A、56 mΩ GaNFET 的结果,其电流能力比图9中使用的器件要高。要实现高 dV/dt,需要相当大的漏极电流 ID。例如,所示测量是在 ID = 20 APK 下进行的,导致实测 VDS dV/dt = 75 V/ns。三角形峰值电感电流显示为纯直流,这是进行此测量所需的时基 (2 ns/div) 造成的。VSW 波形的 100 V 欠冲是用于显示高 dV/dt 的测量技术的结果,在开关节点上并不真正存在。

在高电压、高频率 PCB 设计中,为了成功运用宽禁带半导体,需要更好地了解寄生电感和电容的负面影响。透彻理解电气返回平面、屏蔽、电流分离、隔离和精心布线的重要性,对于充分发挥 GaN 技术的性能优势至关重要。本文重点说明在利用 NCP51820 驱动高速电源拓扑中使用的 GaN 功率开关设计中,实现成功设计必须采用的重要 PCB 设计准则。这些技术已通过实测波形得到了验证,表明其能够获得出色的结果。

来源:安森美

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 57

NCP51820 是一款 650 V、高速、半桥驱动器,能够以高达 200 V/ns 的 dV/dt 速率驱动氮化镓(以下简称“GaN”) 功率开关。只有合理设计能够支持这种功率开关转换的印刷电路板 (PCB) ,才能实现实现高电压、高频率、快速dV/dt边沿速率开关的全部性能优势。本文将简单介绍NCP51820及利用 NCP51820 设计高性能 GaN 半桥栅极驱动电路的 PCB 设计要点。

NCP51820 是一款全功能专用驱动器,为充分发挥高电子迁移率晶体管 (HEMT) GaNFET 的开关性能而设计。与击穿电压额定值相似的硅器件相比,制造 GaNFET 所使用的芯片尺寸更小。因此,哪怕与同类最佳的硅 MOSFET 相比,GaNFET 的栅极电荷、输出电容和动态导通电阻也大大降低。此外,GaNFET 没有 PN结,因此漏极-源极上没有本征寄生体二极管,也就没有与第三象限操作相关的反向恢复电荷。

GaNFET 非常适用于离线半桥功率拓扑、无桥 PFC 和单端有源箝位拓扑。这些功率级常常采用零电压开关 (ZVS),但也可以在硬开关条件下采用大约 400V 的电压工作。所有这些改进使得 GaNFET 能够以 MHz 范围或接近该范围的频率开关,漏源边沿速率高达 100V/ns。能否实现基于 GaN 的功率级的最优性能,在很大程度上取决于设计人员对寄生电路元件(如封装电感、PCB 走线电感、变压器电容)以及元器件选择和布局的理解。虽然硅 MOSFET 功率系统中也存在这些寄生元件,但在 GaN 功率解决方案中,当受到其中存在的高 dV/dt 和 di/dt 激励时,会有更明显的响应,因此会产生问题。

NCP51820 的 MLP 无引线功率封装(图 3)以及行业中的各种无引线 GaNFET 功率封装(图 1 和图 2),体现了为充分降低寄生电感所作的设计努力。同样,必须特别注意 PCB 设计和元器件布局。为了充分发挥利用 NCP51820 驱动高速半桥功率拓扑中使用的 GaN 功率开关的优势,有一些重要的 PCB 设计因素需要考虑,本白皮书将重点讨论其中的一些重要注意事项。

HEMT GaN 和 NCP51820 封装说明

大多数 GaNFET 封装包含一个专用源极开尔文返回引脚,如图 1 中的“SK”所示,其作用只是为了将栅极驱动返回电流送回 NCP51820。较高电流的漏源引脚通过多条焊线焊接到多个焊盘,不过为了简明起见,图 1 中的简化示意图仅显示了一条焊线连接。NCP51820 输出和 GaNFET 栅源开尔文引脚之间的接口必须是直接单点连接,该接口特别重要,如含有源极开尔文引脚的 GaNFET 部分所述。

但是,并非所有 GaNFET 都包含一个专用源极开尔文返回引脚,例如图 2 所示的示例。对于不含源极开尔文返回引脚的 GaNFET,为 PCB 设计中的栅极驱动部分布线时必须特别注意。对于半桥功率级的开关节点连接,高压侧 GaNFET 的源极直接连接到低压侧 GaNFET 的漏极,构成一个承载高 di/dt 负载电流的高 dV/dt 节点。不建议直接使用此高压开关节点的栅极驱动返回引脚,如不含源极开尔文引脚的 GaNFET 部分所述。

1.png

图1. 含有源极开尔文返回引脚的典型 GaN

2.png

图2. 不含源极开尔文返回引脚的典型 GaN

NCP51820 采用 4x4 mm 无引线封装,所有逻辑电平输入和编程功能都设置在 IC 右侧,与策略性设置在 IC 其余三侧的电源功能分开。基于设计策略安置引脚,以便必要时提供高压隔离。以下 PCB 布局部分说明,将充分展现 NCP51820 引脚分配的优势。

3.png

图3. NCP51820 GaN 驱动器引脚分配

PCB 设计策略概要

使用 GaNFET 开始 PCB 设计时,最好根据优先级考虑整个布局,如下所列。

1. 必须采用多层PCB设计,并且按照本文所述适当使用接地/返回平面。高频率、高电压、高dV/dt和高di/dt都要求采用多层PCB设计方法。为了实现基于GaN的功率级的全部优势,接地平面必须采取适当的布线或设计,而廉价的单层PCB设计无法做到。

2. 开始时,首先将对噪声最敏感的元器件安置在 NCP51820 附近。VDD、VDDH 和 VDDL 旁路电容以及 VBST 电容、电阻和二极管应尽可能靠近各自的引脚。

3. 将 DT 电阻直接放在 DT 和 SGND 引脚之间。

4. HO和LO、拉电流和灌电流栅极驱动电阻应尽可能靠近 GaNFET。

5. 将 NCP51820 和关联的元器件移到尽可能靠近 GaNFET 拉电流和灌电流电阻的位置。

6. 如果可能,安置 GaNFET 时使 HO 和 LO 栅极驱动长度尽可能匹配。为了避免高电流和高 dV/dt 流经过孔,两个 GaNFET 最好和 NCP51820 位于 PCB 的同一面。

7. 应将 HO 和 LO 栅极驱动视为两个独立的、相互电隔离的栅极驱动电路。因此,HO 和 LO 各自都需要专用铜触点 (copper land) 返回平面,这些平面在第 2 层上,位于第 1 层栅极驱动布线正下方。

电源环路、开关节点、栅极驱动环路的正确布线以及使用平面,对于顺利完成 GaN PCB 设计至关重要。这部分内容如有需求,后续可能会推送新的文章配合插图对每一项加以说明。对于栅极驱动器,正确的布线和噪声隔离将有助于减少额外的寄生环路电感、噪声注入、振铃、栅极振荡和意外导通。目的是设计一个精心考虑了适当接地,同时让受控电流以最小环路距离流经直接通路连接的高频电源 PCB。

元器件布局和布线

图 4 突出显示了 NCP51820 周围的关键元器件布局以及与 HS 和 LS GaNFET 的接口。

4.png

图4. NCP51820 元器件布局

含有源极开尔文引脚的GaNFET

许多 GaNFET 封装包括一个专用源极开尔文引脚,用于将栅极驱动返回电流与功率开关节点(高压侧)或电源地(低压侧)出现的较高电流和电压电平隔离。对于具有专用源极开尔文引脚的 GaNFET,栅极驱动布线相当简单。推荐 PCB 布线设计示例如图 5 所示,可以看到高压侧 GaNFET 栅极驱动返回电流与功率开关节点电流有效分隔。

5.png


图5. 源极开尔文 GaNFET 布线

不含源极开尔文引脚的GaNFET

有些 GaNFET 封装不含专用源极开尔文引脚,还必须要仔细考虑,将栅极驱动返回电流与功率开关节点(高压侧)或电源地(低压侧)出现的较高电流和电压电平隔离。对于没有专用源极开尔文引脚的 GaNFET,应从 GaNFET 源极接出一段额外的铜蚀刻线,其唯一作用是将栅极驱动返回电流送回 NCP51820。尽管不如专用开尔文引脚连接那么有效,但这种布线技术仍然可以在栅极驱动电流和功率开关节点之间实现可接受程度的分离。推荐 PCB 布线设计示例如图 6 所示,可以看到高压侧 GaNFET 栅极驱动返回电流与功率开关节点电流有效分隔。无论何种类型的 GaNFET 封装,其设计目标都是避免 NCP51820 和支持电路接触到流过功率级的潜在破坏性开关电压和电流。

6.png

图6. 无源极开尔文引脚的 GaNFET 布线

来源:安森美

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 191

增加GaNSense™技术,全新GaNFast™氮化镓功率芯片通过实时智能传感和保护,为40亿美元的手机充电器和消费市场带来最高效率和可靠性

氮化镓(GaN)功率芯片的行业领导者纳微半导体(Navitas Semiconductor)(纳斯达克股票代码:NVTS)宣布推出新一代采用GaNSense技术的智能GaNFast氮化镓功率芯片。GaNSense技术集成了关键、实时、智能的传感和保护电路,进一步提高了纳微半导体在功率半导体行业领先的可靠性和稳健性,同时增加了纳微氮化镓功率芯片技术的节能和快充优势。

“纳微半导体推出全球首款智能GaNFast氮化镓功率芯片,GaNSense新技术登场"

氮化镓(GaN)是下一代半导体材料,氮化镓器件的开关速度比传统的硅器件快20倍,在尺寸和重量减半的情况下,可实现高达3倍的功率和3倍的充电速度。纳微半导体的GaNFast™氮化镓功率芯片集成了氮化镓器件和驱动以及保护和控制功能,提供简单、小型、快速和高效的性能表现。

GaNSense技术集成了对系统参数的实时、准确和快速感应,包括电流和温度的感知。这项技术实现了正在申请专利的无损耗电流感应能力。与前几代产品相比,GaNSense 技术可额外提高10%的节能效果,并能够进一步减少外部元件数量,缩小系统的尺寸。此外,如果氮化镓功率芯片识别到有潜在的系统危险,该芯片将迅速过渡到逐个周期的关断状态,以保护器件和周围系统。GaNSense技术还集成了智能待机降低功耗功能,在氮化镓功率芯片处于空闲模式时,自动降低待机功耗,有助于进一步降低功耗。这对越来越多积极追求环保的客户来说尤为重要。

凭借业界最严格的电流测量精度和GaNFast响应时间,GaNSense技术缩短50%的危险时间,危险的过电流峰值降低50%。GaNFast氮化镓功率芯片单片集成提供了可靠的、无故障的操作,没有 "振铃",从而提高了系统可靠性。

纳微半导体联合创始人兼首席运营官/首席技术官Dan Kinzer表示:“从检测到保护只需30纳秒,GaNSense技术比分立式的氮化镓功率芯片的实现方案快 600%。纳微半导体下一代采用GaNSense技术的GaNFast氮化镓功率芯片产品,对潜在的系统故障模式提供了高度准确和有效的防护。再加上对高达800V的瞬态电压的免疫力以及严格的栅极波形控制和电压调节,这些功能只有通过我们专有的工艺设计套件才能实现,重新定义了功率半导体中可靠性、坚固性和性能的新标准。”

采用 GaNSense 技术的新一代纳微 GaNFast 氮化镓功率芯片有十个型号,他们都集成了氮化镓功率器件、氮化镓驱动、控制和保护的核心技术,所有产品的额定电压为650V/800V,具有2kV ESD保护。新的GaNFast功率芯片的RDS(ON)范围为120至450毫欧,采用5 x 6 mm或6 x 8 mm PQFN封装,具有GaNSense保护电路和无损电流感应。作为纳微第三代氮化镓功率芯片,针对现代电源转换拓扑结构进行了优化,包括高频准谐振反激式(HFQR)、有源钳位反激式(ACF)和PFC升压,这些都是移动和消费市场内流行的提供最快、最高效和最小的充电器和适配器的技术方法。

目标市场包括智能手机和笔记本电脑的快充充电器,估计每年有20亿美元的氮化镓市场机会,以及每年20亿美元的消费市场机会,包括一体机、电视、家庭网络和自动化设备。GaNSense技术已被用于部分一线消费电子品牌的氮化镓充电器上。

到目前为止,已经有超过3000万颗纳微GaNFast氮化镓功率芯片出货,在现场测试实现了超过1160亿个设备小时,并且没有任何关于GaN现场故障的报告。与传统的硅功率芯片相比,每颗出货的GaNFast氮化镓功率芯片可以减少碳足迹 4-10 倍,可节省4千克的二氧化碳排放。

采用GaNSense技术的新一代纳微GaNFast功率芯片将在以下活动中公开展示。

  • 11月8日: WiPDA 2021演讲(线上),演讲人:纳微半导体首席运营官/首席技术官和联合创始人,Dan Kinzer

  • 11月14日: 中国电源学会第二十四届学术年会的纳微半导体卫星会议(上海,线下),演讲人 纳微半导体应用工程总监,黄秀成博士

  • 11月18日: PSMA电力技术路线图演讲(线上),演讲人:纳微半导体首席运营官/首席技术官和联合创始人,Dan Kinzer

采用GaNSense技术的新一代GaNFast氮化镓功率芯片已开始批量生产,并可立即供货。新的GaNSense技术的全部技术细节,包括数据表、鉴定数据、应用说明和样品,可在签署保密协议后提供给客户合作伙伴。

关于纳微半导体

纳微半导体(纳斯达克股票代码: NVTS)成立于2014年,是氮化镓功率芯片的行业领导者。氮化镓功率芯片将氮化镓电源与驱动、控制和保护集成在一起,为移动设备、消费产品、企业、电动汽车和新能源市场提供充电更快、功率密度更高和节能效果更好的产品。纳微半导体拥有130多项专利已经颁发或正在申请中,超过3000万个GaNFast功率芯片已经发货,没有任何关于纳微氮化镓功率芯片的现场故障报告。2021年10月20日,纳微半导体敲响了纳斯达克的开市钟,并开始在纳斯达克交易,企业价值超过10亿美元,总融资额超过3.2亿美元。

围观 37

基础半导体器件领域的专家Nexperia今天宣布其第二代650 V功率GaN FET器件系列开始批量供货。与之前的技术和竞争对手器件相比,新款器件具有显著的性能优势。全新的功率GaN FET具有低至35mΩ(典型值)的RDS(on)性能,适用于2 kW至10 kW的单相AC/DC和DC/DC工业开关模式电源(SMPS),特别是必须满足80 PLUS®钛金级效率认证的服务器电源和高效率要求的电信电源。该器件也非常适合相同功率范围内的太阳能逆变器和伺服驱动器。

全新650V H2功率GaN FET采用TO-247封装,对于给定RDS(on)值,芯片尺寸缩小36%,具有更好的稳定性和效率。级联配置无需复杂的驱动电路,加快了产品上市速度。该器件在硬开关和软开关电路中均具有出色的性能,为设计人员提供极大的灵活性。

Nexperia GaN战略市场总监Dilder Chowdhury解释说:“钛金级是80 PLUS®规格中最严苛的,满载条件下要求达到>91%的效率(半载条件下>96%)。对于2 kW及更高功率的服务器电源应用,使用传统硅器件来实现这种性能水平,电路设计复杂而具有挑战性。Nexperia新的功率GaN FET非常适合简洁的无桥图腾柱PFC电路,使用更少的器件,并能减少尺寸和系统成本。”

Nexperia GAN041-650WSB GaN FET现已大量供货。

欲了解更多信息,包括产品数据手册和快速学习视频,请访问https://www.nexperia.com/products/gan-fets.html

设计人员可以在5月3日至7日举行的PCIM Digital Days期间访问Nexperia的展区,了解Nexperia GaN FET的实际应用。https://pcim.mesago.com

关于Nexperia

Nexperia,作为生产大批量基础半导体器件的专家,其产品广泛应用于全球各类电子设计。公司丰富的产品组合包括二极管、双极性晶体管、ESD保护器件、MOSFET器件、氮化镓场效应晶体管(GaN FET)以及模拟IC和逻辑IC。Nexperia总部位于荷兰奈梅亨,每年可交付900多亿件产品,产品符合汽车行业的严苛标准。其产品在效率(如工艺、尺寸、功率及性能)方面获得行业广泛认可,拥有先进的小尺寸封装技术,可有效节省功耗及空间。

凭借几十年来的专业经验,Nexperia持续不断地为全球各地的优质企业提供高效的产品及服务,并在亚洲、欧洲和美国拥有超过12,000名员工。Nexperia是闻泰科技股份有限公司(600745.SS)的子公司,拥有庞大的知识产权组合,并获得了IATF 16949、ISO 9001、ISO 14001和OHSAS 18001认证。

围观 26

新一代氮化镓技术针对汽车、5G 和数据中心等应用;新器件采用了传统的TO-247封装和创新的铜夹片贴片封装CCPAK

Nexperia宣布推出一系列采用新一代H2技术的全新高压氮化镓场效应管。新器件包含两种封装,TO-247 和Nexperia专有的CCPAK。两者均实现了更出色的开关和导通性能,并具有更好的稳定性。由于采用了级联结构并优化了器件相关参数,Nexperia的氮化镓场效应管无需复杂的驱动和控制,应用设计大为简化;使用标准的硅MOSFET 驱动器也可以很容易地驱动它们。

新的氮化镓技术采用了贯穿外延层的过孔,减少了缺陷并且芯片尺寸可缩小约24%。TO-247 封装的新器件,导通电阻RDS(on)降低到仅 41mΩ(最大值,25℃的典型值为 35mΩ),同时具有高的栅级阀值电压和低反向导通电压。CCPAK封装的新器件,将导通电阻值进一步降低到39mΩ(最大值,25℃的典型值为 33mΩ)。两种封装的新器件均符合 AEC-Q101 标准,可满足汽车应用的要求。

Nexperia氮化镓战略营销总监 Dilder Chowdhury表示:“客户需要导通电阻RDS(on)为30~40mΩ的650V新器件,以便实现经济高效的高功率转换。相关的应用包括电动汽车的车载充电器、高压DC-DC直流转换器和发动机牵引逆变器; 以及1.5~5kW钛金级的工业电源,比如:机架装配的电信设备、5G设备和数据中心相关设备。Nexperia持续投资氮化镓开发,并采用新技术扩充产品组合。首先为功率模块制造商提供了传统的 TO-247封装器件和裸芯片,并随后提供我们高性能的CCPAK 贴片封装的器件。”

Nexperia 的 CCPAK贴片封装采用了创新的铜夹片封装技术来代替内部的封装引线。这样可以减少寄生损耗,优化电气和热性能,并提高可靠性。CCPAK封装的氮化镓器件提供顶部或底部散热两种配置,使其更通用,并有助于进一步改善散热。

650V TO-247封装的GAN041-650WSB 和 CCPAK 封装的 GAN039-650NBB目前均可提供样品。有关更多信息,包括产品规格和数据表,请访问:www.nexperia.com/gan-fets

关于Nexperia

Nexperia,作为半导体基础元器件生产领域的高产能生产专家,其产品广泛应用于全球各类电子设计。公司丰富的产品组合包括二极管、双极性晶体管、ESD保护器件、MOSFET器件、氮化镓场效应晶体管(GaN FET)以及模拟IC和逻辑IC。Nexperia总部位于荷兰奈梅亨,每年可交付900多亿件产品,产品符合汽车行业的严苛标准。其产品在效率(如工艺、尺寸、功率及性能)方面获得行业广泛认可,拥有先进的小尺寸封装技术,可有效节省功耗及空间。

凭借几十年来的专业经验,Nexperia持续不断地为全球各地的优质企业提供高效的产品及服务,并在亚洲、欧洲和美国拥有超过12,000名员工。Nexperia是闻泰科技股份有限公司(600745.SS)的子公司,拥有庞大的知识产权组合,并获得了IATF 16949、ISO 9001、ISO 14001和OHSAS 18001认证。

围观 13
订阅 RSS - 氮化镓