去耦电容
PCB设计过程中工程师几乎必做的事就是给每个电源管脚(Vcc、Vdd等)加上一个0.1uF的陶瓷电容,并在某些地方加上更大容量的极性电容,几乎成了每天吃饭必定要吃碗米一样的事情了,但Why呢?
• 为什么要加这些电容?
• 为什么要加0.1uF的?
• 为什么有时还要加其它值的电容?
• 在PCB上这些电容放在哪里?
这些我们习以为常的事情细究起来困扰着很多硬件工程师,即便做了很多项目的老司机也未必能给你讲清楚这里面的关系,不信你问问你们实验室的大哥?
还有一个让很多人抓狂的问题 - Decoupling Cap(去耦电容)和Bypass Cap(旁路电容)的区别,看到很多文章的作者把这俩概念的区别讲得貌似斩钉截铁,但读下来却发现其实作者也并不真正清楚,当然也不排除我自己的阅读能力出现了问题,不信你从网上搜几篇文章读读,越发的糊涂。
作为一个实用主义者,我从来不在乎概念如何叫,只是从功能上来理解为什么。
很多文章都从晶体管级别深入分析了为什么要加去偶电容,既有图又有公式,貌似揭示了真相,但这些分析看半天你未必看懂,看懂了未必能记住,苏老师今天不讲高深的理论,从宏观上让大家清楚为什么就可以了。
本质上我们设计的所有电路可以像下图一样抽象一下:
• 板子上有n个不同的负载(比如某个运放电路、MCU的内核、MCU的IO、ADC、时钟),每个负载都需要稳定地供电 - 电压稳定、干净,电流充足,在此图上我只画出2个负载进行举例;
• 电源产生电路,它为每个负载提供能源
每个负载要正常工作,前提就是负载上的供电电压要稳,如果是5V,就得是尽可能干净的5V,如下图:
但该负载内的器件们工作起来,都要动态地吸收电流,供电电压就变成了下面的鸟样子:
也就是在5V的DC上叠加了各种高频率的噪声,这些噪声是由于器件对供电电流的需求导致的电压波动,可以看成是在DC 5V上“耦和”了由于器件工作带来的AC噪声。
这样耦和了AC的DC供电电压不仅会影响本负载区域内的电路的工作,也会影响到其它连接在同一个VCC上的其它负载的工作,有可能导致那些负载的电路工作出现问题。
怎么办呢?当然就是把每个地区的问题控制在该地区范围内喽:
• 电源供电取决于变换的方式,其供电本身在DC上就有纹波,因此我们需要在电源输出Vout端要有电容C1(我们可以看成是国家粮仓)负责将供电电压上的噪声降到尽可能的低,完全为零是不可能的,因为完美的世界从来都不存在,只要不影响后面负载的正常工作即可。
• 既然每个负载工作起来会导致其电源出现额外的波动,那就让波动在本地尽可能降低,且不影响到其它负载的工作。降低负载供应波动影响的方式就是加强能即时响应的供给(本地粮库) - 通过备用的供给平滑掉主供给快速反应方面的不足。电容的本性就是储能,用电容来做备用电能提供供给也就能平滑掉负载瞬间的需求带来的波动(不同的电容响应速度也不同,且听下文分解),保证该负载的电压尽可能稳定,也就是将有可能耦和到DC上的AC给去除掉(去耦的含义1),同时由于让本地的DC稳定,降低了对其它负载的波及(去耦的含义2)
从电源上看,没有去耦电容的时候如左侧的波形,加上了去耦电容之后变成了右侧的样子,供电电压的波形变得干净了,我们称该电容的作用是去掉了耦和在干净的DC上的噪声,所以该电容被称之为去耦电容,当然也可以被称之为旁路(Bypass)电容,因为该电容将DC上耦和的噪声给旁路到地上去了,只留下干净的DC给后续的电路供电。
举一个栗子:每个负载的工作就像我们平日吃“粮食”,每家的用量是动态的、不确定的,所有家庭用的“粮食”加在一起平均下来就相当于在本地区的供粮量(稳定的),但由于每家每天的粮食消耗量很随机,导致供粮的渠道上会有波动,如果没有本地区的粮库(每家也都有储备粮),每个地区的粮食供应就会出现波动,而且A地区的波动就会影响到B地区,我们当然不希望这种情况发生,所以在每个地区都会有本地粮库储存粮食,这样每个地区内部用粮得到保障,地区和地区之间不会产生干扰。
当然如果给所有地区供粮的上游出现了波动,而这种波动超过了本地粮库的平滑能力,那该地区的家庭用粮自然也会出现问题。
就是如此简单。
本文转自:微信号 - 电路设计技能(cirmall),转载此文目的在于传递更多信息,版权归原作者所有。
1.滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。
2.去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。
3.旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。
一、关于去耦电容蓄能作用的理解
(1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水,这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。 实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。而去耦电容可以弥补此不足。这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一 。(在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。)
2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。
二、旁路电容和去耦电容的区别
去耦:去除在器件切换时从高频器件进入到配电网络中的RF能量。去耦电容还可以为器件提供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。
旁路:从元件或电缆中转移出不想要的共模RF能量。这主要是通过产生AC旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。
我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰。
在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象。
补充:电容器选用及使用注意事项:
1,一般在低频耦合或旁路,电气特性要求较低时,可选用纸介、涤纶电容器;在高频高压电路中,应选用云母电容器或瓷介电容器;在电源滤波和退耦电路中,可选用电解电容器。
2,在振荡电路、延时电路、音调电路中,电容器容量应尽可能与计算值一致。在各种滤波及网(选频网络),电容器容量要求精确;在退耦电路、低频耦合电路中,对同两级精度的要求不太严格。
3,电容器额定电压应高于实际工作电压,并要有足够的余地,一般选用耐压值为实际工作电压两倍以上的电容器。
4,优先选用绝缘电阻高,损耗小的电容器,还要注意使用环境。
高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。
数字电路中典型的去耦电容值是0.1μF。这个电容的分布电感的典型值是5μH。0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用。1μF、10μF的电容,并行共振频率在 20MHz以上,去除高频噪声的效果要好一些。每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右。最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感。要使用钽电容或聚碳酸酯电容。去耦电容的选用并不严格,可按C=1/F,即10MHz取 0.1μF,100MHz取0.01μF。
转自:博客园 _安德鲁